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Résumé — The general idea here is to produce a high quality representation of the material phase
indicator function of material microstructure for high resolution Digital Material Representation (DMR).
The storage requirement is properly scaled down through bi-level reduction, by which the microstructure
is represented in a reduced order in terms of the extracted spatial and parametric common bases. Based on
the reduced data set, a parameterization model is proposed and the analysis of the intrinsic dimensionality
yields the minimal set of parameters needed for the description of the microstructure with adequate
precision. Moving Least Squares (MLS) is used for interpolation in this reduced space. We showcase the
approach by constructing a low-dimensional model of a two-phase composite microstructure.
Mots clés — Microstructure representation, Parameterization, Model reduction, Manifold learning, Data-
driven models, Moving Least Squares, Separation of variables

1 Introduction

The constant increase of computing power coupled with ever-easier access to high-performance com-
puting platforms enables the computational investigation of materials at the microscopic level : micro-
structure generation and modeling [1], material property prediction and evaluation [3, 4], multi-scale
analysis [5], and within a stochastic framework to include the effects of the input uncertainties at the
material level in order to understand how they propagate and affect the performance of the structure
[6]. At the same time, the progress in material science allows us to control the material microstructure
composition to an unprecedented extent [7].

That being said, how to efficiently parameterize the microstructures under consideration is a question
of significant importance. Moreover, image-based microstructure analysis, especially when it involves a
large number of micrographs, requires increasingly higher memory storage requirement with the ever-
increasing resolution of the micrographs provided by image techniques, such as computer tomography
(CT), magnetic resonance imaging (MRI), etc.[8]. Therefore, there is also a great need to properly scale
down the storage requirements for high resolution images while still maintaining a high quality repre-
sentation.

In earlier works, Principal Component Analysis (PCA), has been widely used for the purpose of mo-
del reduction in structural shape design [9]. In [10], PCA has also been applied to reduce the parametric
space constructed by a large-dimensional data set called the set of ‘snapshots’, e.g., M snapshots of re-
solution N×N (N3 in 3D). Each snapshot may be represented as a combination of their eigen-images.
For the purpose of reduction, fewer basis vectors, say m (m� M) selected in the order of decreasing
importance may be used for the representation of the high-dimensional data set. With this single-level
reduction, the storage requirement is then m×N2 +m×M. In this case, the storage requirement may
be a serious problem when the resolution of the image increases. This is even more critical when exten-
ding the approach to 3D with the storage requirement becoming m×N3 +m×M, which is definitely
not scalable as for N = 1024 and M = 100 some 800GB (considering 8 byte floating point numbers) are
necessary for the modes alone and for N = 4096 and M = 1000, having a ∼ 50T B memory we go well
beyond the capacity of existing workstations.

Therefore, there is a clear need for a model reduction approach that scales better with increasing re-
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solution for data reduction. Using this approach, any of the microstructures under consideration could be
transformed into the set of coefficients in the reduced dimension of ℜm, where the coefficients may then
be used for the parameterization. However, according to the discussion in [10], such a transformation
is injective but not surjective, i.e., while every microstructure considered does correspond to a unique
mapping of coefficients, an arbitrarily chosen combination of coefficients does not necessarily result in
an admissible microstructure layout. In order to use the coefficients for the parameterization, certain
constraints (linear, nonlinear, statistical, . . .) must be enforced on the coefficients in order to construct a
bijective transformation from the coefficients to the material phases layout [10, 11]. Theoretically spea-
king, this parameterization approach is a generalized model, which is applicable for the parameterization
of microstructures of any type. However, it is too general and even redundant when considering cases
where there are intrinsic interrelationships in the considered data set. For instance, by the thermomecha-
nical processing of aluminum sheets, the grain structures in the rolling direction depend on the processing
parameters, e.g., heating temperature, operation speed, numbers of hot and cold rollings, etc., the number
of which may determine the intrinsic dimensionality of the microstructure layout [12]. Therefore, it is
necessary to develop a more specific approach that can first detect the intrinsic dimensionality, and then
use this to construct the parameterization model.
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Fig. 1 – Illustration of a six-parameter microstructure and the detection of dimensionality.

For the above reasons, we have developed a bi-level reduction model, based on which a more spe-
cific parameterization model is proposed for the interrelated data set. Without loss of generality, let us
consider a 2D material phase indicator function s(x,y,v) parameterized by a certain number of parame-
tric variables v ∈ ℜp, e.g., geometrical, physical, stochastic, process factors, etc. By discretization, the
continuous representation turns into to a snapshot S(v) of resolution N×N, as shown in Fig. 1.

Using linear algebra, this discrete representation can always be transformed into the space comprised
by two spatial common bases Φ ∈ℜmx and Ψ ∈ℜmy . The first level reduction is performed by choosing
lower order common bases, by which the dimensionality of the data set is reduced to the order of the
spatial common bases. In the second level, the reduced data set is further reduced to the order of the
extracted common parametric basis Ξ∈ℜme and we thus have the bi-level reduced representation ˜̃S(v) =
Φ(Ξα(v))ΨT in terms of bases Φ, Ψ, and Ξ. The storage requirement for this model is (mx +my)×
N +me× (mx×my)+me×M, which is significantly less than m×N2 +m×M as required previously.

The developed parameterization model, which may be described as a coefficient-manifold learning
approach, is constructed using the method of moving least squares (MLS) [13] or diffuse approximation
[14]. The general idea here is to detect the intrinsic dimensionality of the data set (see Fig. 1), and then
parametrize the data set in the space of the detected dimensionality. As can be seen in the aforementioned
bi-level reduction process, the parametric information is contained only in the coefficients α(v) of Ξ. We
first extend the algorithm of [15] to detect the intrinsic dimensionality of the coefficient-manifold. Then
the MLS-based approximation is performed locally for the evaluation point in accordance with the detec-
ted dimensionality. By using this model, not only can arbitrary admissible mircrostructure micrographs
be reconstructed using a limited number of parameters, but the model is also further reduced to a much
lower order in accordance with the detected (intrinsic) dimensionality.

The remainder of this paper is organized in the following manner : section 2 presents general ideas
and formulations. The parameterization methodology is presented in section 3. The numerical implemen-
tations for the extraction of spatial and parametric common bases is given in section 4. We demonstrate
this approach by constructing a low-dimensional model of a two-phase composite microstructure in sec-
tion 5. The paper ends with concluding comments and suggestions for future work.
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2 Overall concept and formulation

Without loss of generality, consider a real-valued continuous or discrete material phase indica-
tor function s = s(x,y,v) depending on a set of intrinsic parameters v ∈ ℜp, e.g., geometrical, physi-
cal, stochastic, process factors, etc. Given an N×N grid of sampling points by the indicator function
[S(v)]i, j = s(x(i),y( j),v), i = 1, . . . ,N, j = 1, . . . ,N, continuous representation could be discretized to a
representation matrix S(v), the precision of which depends on the resolution.

In practice, the discretized representations obtained using image techniques must be used instead
of the continuous indicator function. Therefore, an inverse procedure must be performed by interpola-
tion in order to obtain a continuous material phase indicator function. This spatial interpolation may be
performed by using standard 2D finite element shape functions ϕ(x,y)

s̃(x,y,v) =ϕT (x,y)S (1)

or by separating the individual spatial dimensions x and y independently

s̃(x,y,v) =ϕT (x)Sϕ(y) (2)

by means of the standard 1D finite element shape functions ϕ(x) and φ(y) .
Using linear algebra, we can transform the N×N discrete representation S(v) in terms of two spatial

common bases
S̃(v) =ΦE(v)ΨT (3)

where Φ ∈ ℜmx and Ψ ∈ ℜmy . Notice that when mx = my = N, S̃ = E = S and Φ and Ψ are identity
matrices I. The first level reduction is realized by choosing lower order common bases, by which the
dimensionality of the data set is reduced to mx×my, the value of mx and my depending on the degree of
similarity and difference among the considered data set.

In the second level, the common parametric basis Ξ ∈ℜme is extracted from the reduced data set

Ẽ(v) =Ξα(v) = α1ξ1 +α2ξ2 + · · ·+αmeξme (4)

giving us the bi-level reduced representation

˜̃S(v) =ΦẼ(v)ΨT =Φ(Ξα(v))ΨT (5)

in terms of two spatial common bases Φ and Ψ and one parametric common basis Ξ.
As can be seen in the above bi-level reduction process, the parametric information is contained only

in the coefficients α(v) of Ξ. We are thus able to build a mapping whereby each microstructure v ∈ℜp

has a unique image α ∈ℜme . However, there are two problems that need to be solved :
– an arbitrary α ∈ℜme does not necessarily yield an v ∈ℜp,
– the dimension of ℜp is not a priori known.
We address both problems by building a manifold of admissible microstructures. This is done locally

for a snapshot by analyzing the local dimensionality of the space spanned by its coefficient vectors α.
The detailed parameterization methodology is explained in the next section.
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Fig. 2 – Illustration of a two dimensional α-manifold and its LS approximation.
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3 The parameterization methodology

In this section, we illustrate the parameterization methodology. Based on the formulation given by
Eq. (5), we only need to focus on α(v). Traditional PCA based model reduction would stop at Eq.(5)
and use the coefficients α= [α1,α2, . . . ,αme ] as the design variables for parameterization. However, the
coefficients can not be directly interpreted as design variables without taking into account the possible
inter-relationships that exist between them so as to render feasible shapes. This means that we now need
to take a closer look at the α’s obtained from the M snapshots in order to detect the true dimensionality
(p) of the design domain. For the sake of simplicity and ease of visualization, we assume that the order
of the parametric space is v ∈ℜ2. Considering a large-dimensional admissible data set generated by the
so called ‘snapshots’ method, the corresponding α-manifold is shown in Fig. 2 together with its global
approximation using the method of Least Squares (LS) with a third order polynomial.

From Fig. 2, it can be seen that the α’s form a set of two-dimensional manifolds rather than a cloud
of points in 3D space, clearly indicating that the dimensionality of the parametric space is two, as is
known a priori. The coefficients may then be expressed as a function of two chosen coefficients, e.g.,
α j = α j(α1,α2), j = 3, . . . ,me by this global approximation. However, it is not practical to globally ap-
proximate the manifold when it comes to cases of higher dimensionality and more complexity. Therefore,
instead of pursuing a global approximation, a more practical solution would be a local approximation
using the method of Moving Least Squares (MLS). The MLS-based approximation is performed locally
for the evaluation point in accordance with the detected dimensionality. The general concept is illustrated
in Fig. 3, where only a limited number of red points are needed for local approximation instead of the
whole data set of blue points.
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Fig. 3 – Illustration of the concept of local approximation.

In order to detect the intrinsic dimensionality of the α-manifolds, we extend the work of [15]. To lo-
cally detect the dimensionality of the hyper-surface in the neighborhood of the evaluation pointαev, a suf-
ficiently dense local neighborhood is generated by sampling the nbd neighboring points β1,β2, . . . ,βnbd
in the parametric space. We next use a polynomial basis centered on αev

P =

 1 β1
1−αev

1 β1
2−αev

2 . . . β1
me
−αev

me
...

...
... . . .

...
1 βnbd

1 −αev
1 βnbd

2 −αev
2 . . . βnbd

me
−αev

me

 (6)

with an appropriate weighting function (e.g. Gaussian w(d) = exp(−c× d2) where d is the distance
from node and c determines the “strength” of influence of the node) and assemble the moment matrix
A = PT WP, where W is the diagonal matrix whose elements correspond to the weighted contributions
of the neighboring nodes. Finally, we detect the local rank of the manifold by calculating the singular
values of the moment matrix A, this gives us the dimensionality p≤ me.

4 The extraction of common bases

4.1 Level 1 : Spatial common bases extraction

A given real-valued matrix may be decomposed using Singular Value Decomposition (SVD) in terms
of its ‘left’ and ‘right’ singular vectors, and the ‘central’ diagonal matrix, i.e. S=UΣVT . In the first level
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reduction, the spatial common bases Φ and Ψ are extracted from the two groups of ‘left’ and ‘right’
singular vectors Uk and Vk, k = 1, . . . ,M and M is the number of considered snapshots.

Consider a set of discrete 2D N×N snapshots Sk(k = 1, . . . ,M) and their average S̄ = ∑
M
k=1 Sk/M.

By retaining the first mk left and right singular vectors corresponding to the mk largest singular values in
SVD, each centered snapshot may be expressed as

Sk− S̄ = UkΣkVT
k , k = 1,2, . . . ,M (7)

where the value of mk ≤ N depends on the material layout of the snapshot.
The model reduction in this stage is to represent all the “left” and “right” singular vectors by a linear

combination of lower dimensional Φ and Ψ, separately. Principle Component Analysis (PCA) is applied
for the extraction of Φ and Ψ. In this paper, we only provide the extraction process for Φ, since Ψ can
be obtained by a similar approach. We first calculate the deviation and covariance matrices DU and CU

for the “left” singular vectors U1,U2, . . . ,UM :

DU = [U1U2 . . .UM] and CU = DU DT
U (8)

allowing us to express any Uk in terms of the eigenvectors φi of CU

Uk =
N

∑
i=1

Aikφi, Aik = φ
T
i Uk (9)

Notice that the assembly of “left” singular vectors directly gives the deviation matrix since the deviation
has already been taken in Eq.(7). Retaining the first mx most “energetic” modes, we have the the common
vector basis Φ expressed

Φ= [φ1,φ2, . . . ,φmx ] (10)

By similar extraction process, we have another common vector basis Ψ = [ψ1,ψ2, . . . ,ψmy ] and its
coefficients Bk,k = 1,2, . . . ,M. The matrices Uk and Vk may now be approximated in terms of the two
separate bases Φ and Ψ

Uk ≈ΦAk, Ak =ΦT Uk (11)

Vk ≈ΨBk, Bk =ΨT Vk (12)

Substituting the above into Eq.(7), we get

S̃k = S̄+ΦEkΨ
T (13)

where
Ek = AkΣkBT

k , k = 1,2, . . . ,M (14)

The dimensionality of matrix Ek is mx×my.

4.2 Level 2 : Parametric common basis extraction

In the second level, further reduction is achieved by using a standard POD reduction approach [9] on
the reduced data set obtained by former level. Each mx×my reduced matrix Ek is restored in a column
vector ek of length mx×my. Similar to the calculation of the deviation and covariance matrices, we have
matrices De and Ce

De = [e1,e2, . . . ,eM] and Ce = DeDT
e (15)

Without loss of generality, we assume mx ≤ my, we can express ek in terms of its eigenvectors ex-
tracted by PCA.

ek =
mx

∑
i=1
αikξi, αik = ξ

T
i ek (16)

Taking a reasonable assumption that M� (mx×my), we define a projection basis Ξ= [ξ1,ξ2, . . . ,ξme ],
where me�M. An arbitrary ek is approximated by

ẽk =
me

∑
i=1
αikξi =Ξαk (17)
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By transforming the approximated vector ẽk back to the matrix form Ẽk, an arbitrary centered snap-
shot is approximated by

˜̃Sk = S̄+ΦẼkΨ (18)

The general averaged image reconstruction error is measured by

ε =
∑

M
k=1(Sk− ˜̃Sk)

T (Sk− ˜̃Sk)

∑
M
k=1(Sk− S̄)T (Sk− S̄)

(19)

where Sk and S̃k are the original and reconstructed snapshot, respectively. The accuracy of the reconstruc-
tion depends on two parts : mx and my in the first level and me in the second level. By the proposed two-
level reduction model, the storage requirement is reduced to (mx +my)×N +me× (mx×my)+me×M
in 2D case. Moreover, further reductions may be achieved for anisotropic materials when mx 6= my.

5 Numerical test case

We consider a commonly analyzed periodic two-phase microstructure pattern as shown in Fig. 4.
Microstructures of such pattern can be used to model various types of materials, such as fiber composites
[4], and reinforced alloys [16]. By relating the circular radii to two random variables, 500 snapshots of
resolution 256×256 have been generated in grayscale [0 255]. By excluding the snapshots where there
are overlaps among the circular inclusions as inadmissible, we are left with 278 admissible snapshots.

Fig. 4 – Admissible microstructure snapshots.

In the first level reduction, SVD is performed for each snapshot. Since we have no intention of
reducing the model in this stage, the first mk most “energetic” left and right singular vectors are retained
for each snapshot and thereafter no reconstruction error is introduced here. The value of mk ≤ N depends
on the layout of the material phases. The averaged value of retained modes here is 143, where the lowest
and largest value are 96 and 167 respectively. The spatial common bases Φ and Ψ are extracted from
the retained left and right singular vectors, respectively. For the purpose of a better visualization, assume
mx = my in snapshot reconstruction and the corresponding error curve is given in Fig. 5(a). It can be
seen that the retained left and right singular vectors can be represented by the two basis of reduced
dimensionality (mx = my ≤ N) within an acceptable degree of reconstruction error. Note that, mx doesn’t
have to equal my, especially when anisotropic materials are considered and obviously, the microstructure
considered here is anisotropic. Fig. 5(b) and (c) shows the reconstruction error versus mx and my chosen
independently. This means that a further reduction in storage requirement may be achieved by choosing
mx and my independently. The reconstructed snapshots are shown in Fig. 5 from (d) to (g).

In the second level reduction, POD reduction is performed on the reduced data set. Without loss of
generality, the dimensionality of the two bases Φ and Ψ in the former level is chosen to be mx = my =
150, which introduces an initial error of 5.1% as shown by comparing Fig. 6(b) and (c). However, an
error of this degree doesn’t affect us too much as long as the reconstructed figure describes the general
layout of material phases, since the image can always be refined by post-progressing operations, such as
filtering, boundary and corner enhancement [17]. The reconstruction error versus me is given by Fig. 6(a),
where the error decreases sharply over the first 20 modes. The corresponding reconstructed snapshots are
given from Fig. 6(d) to (h), where the number of retained modes varies from 1 to 100. Based on the POD
reduction process, the dimensionality of the data set could be reduced to 20 without any further loss of
image information except for the initial 5.1%.

From Fig. 7, we can see that the α’s form a set of two-dimensional manifolds rather than a cloud of
points in 3D space regardless of the particular triplet of modes used, clearly indicating that the dimensio-
nality of the design domain is two. We do know this beforehand, since the generated snapshots given in
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Fig. 4 is in fact uniquely parametrized by linking the two random variables to the radii of circular inclu-
sions. In other words, we have α j = α j(α1,α2), j = 3, . . . ,me through MLS-based local approximation
and accordingly an arbitrary microstructure snapshot can be expressed as S = S(α1,α2) with a pair of
particular value for α1 and α2. In this case, we retain the first me = 30 modes according to the recons-
truction error curve in Fig. 6. As can be seen in Fig. 7, the data set composed by admissible snapshots is
implicitly constrained in a non-convex hull, i.e. points in the hull correspond to admissible microstruc-
tures, while points outside correspond to inadmissible microstructures. For arbitrarily chosen admissible
values of α1 and α2, e.g. points a, b, and c in Fig. 7, corresponding microstructures are obtained through
the parameterization model.

6 Conclusion and perspectives

This work has proposed an original parameterization model for material microstructures based on a
bi-level reduced order model. The original data set composed of snapshots is first reduced in two levels
through the extraction of both spatial and parametric common bases. Next, by detecting the intrinsic
dimensionality of the data set, MLS is applied for the approximation of the coefficient-manifolds. Using
this model, an arbitrary admissible microstructure can be reconstructed with a limited number of parame-
ters with adequate accuracy of representation. This parameterization model may be used as input for the
evaluation and optimization of material effective properties. Moreover, further work needs to be perfor-
med for the bi-level reduction model in accordance with 3D tensor decomposition for three-dimensional
microstructures.
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