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Résumé — Solid propellants are highly filled elastomers used as propulsion medium. Because of the
high volume filler fraction of 80%− 90%, several sizes of fillers are used and as a consequence of the
complex microstructure the material presents important nonlinearities in the macroscopic behavior. An
abrupt increase in the viscoelastic storage and loss modulus has been experimentally observed in [2].
The objective of this paper is to explore numerically a highly filled elastic composite under the assump-
tions of "rigid" fillers, an elastic matrix and large strains. The present numerical analysis is based on
several artificially created microstructures. The results show the influence of the material behavior of
the matrix on the global stiffness. The computed mechanical response is in agreement with experiment
observations. The mechanical response of the composite under a uniaxial loading presents a linear and a
nonlinear part. Both are analyzed to understand the microstructural effects that lead to the macroscopic
behavior. The apparent modulus of the linear part increases with respect to the volume fraction of fillers
and the stiffening effect occurring in the nonlinear part is not dependent of the matrix behavior.

Mots clés — Propellant - Nonlinearity - Uniaxial tensile simulation - Microscopic/Macroscopic

1 Introduction

Composite materials are usual for various applications which exploit their weight or mechanical and
energetic properties. Within the class of highly filled elastomers, the propellants are used for solid pro-
pulsion and they provide the combustion material for the oxidation-reduction reaction and the structure
of the motor. Therefore, they should withstand both energetic and mechanical design criteria. Fillers re-
present 80% of the total volume and play the role of the reducer and the oxidizer. They are included in
an HTPB viscoelastic matrix, along with plasticizers and bonding agents [2].

Filled and unfilled elastomers have been the object of several recent papers. Within the domain of
hyperelastic and viscoelastic material behavior, models have been proposed, starting from both a phe-
nomenological basis ([9] and [8]) and a homogenization theory ([11]). A special interest for the present
study is the model of Lion and Retka which takes into account the prestress ([6]).

In the experimental domain, Azoug has explored the behavior of different propellants with and wi-
thout prestrain (see [10] ). When results are analyzed in terms of storage modulus (E ′) and loss modulus
(E ′′) a nonlinear evolution is observed (see Fig.1). The evolution of E ′ and E ′′ has been modeled with a
phenomenological model but no relation has so far been given between the mechanical behavior of the
microstructure and the different loading parameters. The objective of this paper is to link the microsco-
pic and the macroscopic effects. The method proposed is based on numerical simulations of artificial
microstructures and limited to the elastic behavior under a large strain assumption. A DMA is a rate
dependent experimentation. To simplify the numerical resolution, assumptions are made. The storage
modulus (in dynamic) is linked with the apparent modulus (in quasi-static), so an increase of the storage
modulus implies an increase of the apparent modulus (stiffening of the material). So hyperelastic simu-
lation are performed and only the apparent modulus is analyzed now, the loss modulus is forgotten. The
term "modulus" denotes now the apparent modulus (slope at a point of the Cauchy stress strain curve).
The objective is to understand the relations between the microscopic and macroscopic strains and the role
of the constitutive law of the matrix in the apparition of the nonlinear macroscopic elastic moduli. We
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shall analyse a series of tensile and shear experiments on different microstructures and on different filler
volume fractions (denoting by f in this paper). Two particular polynomial constitutive laws are explored
for the matrix : Neo Hookean (NH) and Arruda-Boyce (AB) model.

Fig. 1 – The evolution of the storage and loss moduli E ′ and E ′′, with respect to [10]

2 Approach

The propellant is a HTPB polymeric matrix filled with Aluminum and Ammonium particles. The
numerical microstructures are random polydisperse distributions of spheres into a cube, as described in
[7]. A volume fraction of 80% can’t be obtained numerically but a maximum of 70% is possible. In order
to keep the element size homogeneous in the numerical microstrucuture, the ratio between the largest
and the lowest diameter of the fillers is fixed to 10. Fig.2 shows the real and a simulated microstructure,
three types of microstructures are created and their parameters are defined in the Table 1. Only the radius
of the fillers are chosen, the spacial distribution is random.

Fig. 2 – Real spacial distribution (a) and simulated spacial distribution with periodic boundary conditions
(b), corresponding to an enlarged zone

f (%) Radius (mm) Cube face length (mm) Nodes Limit strain
30 0.1 0.5 7097 40%
50 0.1 - 0.05 - 0.02 0.3 7005 26%
70 0.1 - 0.05 - 0.02 - 0.015 - 0.01 0.3 33638 13%

Tableau 1 – Size parameters of the microstructures, number of nodes, and possible computation limit
strain

The microstructure presents periodic boundary conditions given by Equation (1) is the mathematical
translation of periodic boundary conditions (where U r denotes the displacement of the right face of the
cube, U l the displacement of the left face, F the deformation gradient, I the identity matrix and δX the
difference of coordinates in the reference configuration between two points face to face). Therefore, the
macroscopic strain is imposed by defining the displacement of only four corners.

U r−U l = (F− I) δX (1)
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Compared to the matrix, the filler behavior is assumed to be rigid. A linear elastic behavior is chosen
for this component, with a high value of Young modulus (E f = 6.6× 1010 Pa ) and a Poisson ratio
of ν = 0.159 according to [5]. The mechanical behavior of the matrix is complex due to the presence
of under-reticulation and plasticizer agents in the matrix, well developed in [2]. As a consequence the
particular behavior is obtained only in the presence of the fillers. As the extraction of a microscopic
specimen is not possible, we have experimentally tested a HTPB sample which presents some similitude
with the binder, to have an order of magnitude of what the inside propellant matrix hyperelastic behavior
could be, shown in Fig.3. For the mechanical behavior of the matrix we propose a polynomial model,
described by the energy function given in Equation (2).

W = ∑Cα(I
α

1 −3α) (2)

I1 = λ
2
1 +λ

2
2 +λ

2
3 (3)

λi = J−
1
3 λi (4)

Fig. 3 – Experimental measures during an uniaxial tensile test of HTPB polymer at natural state

I1 is the first invariant of the deviatoric part of the deformation gradient, defined by Equation (3), λi

the principal strain in the i direction (see Equation (4)) and J = det(F). Next, we shall to focus this study
on two particular polynomial models : the Arruda-Boyce (AB) model, defined in [1]

W =C1

(
1
2
(I1−3)+

1
20λ2

m
(I2

1−9)+
11

1050λ4
m
(I3

1−27)+
19

7000λ6
m
(I4

1−81)+
519

673750λ8
m
(I5

1−243)
)
(5)

and the Neo-Hookean (NH) model
W =C1(I1−3) (6)

It is interesting to compare the composite response for two matrix behaviors : in one hand a stiffe-
ning behavior (AB model) and in the other hand a non-stiffening behavior (NH model). We recall the
propellant is assumed incompressible (det(F) = 1). Thus during a uniaxial tensile test (supposed in the
direction 1), a unique strain parameter λ drives the behavior :

λ = λ1 ; λ2 = λ3 =
1√
λ

(7)

the invariants are :
I1 = λ

2 +
2
λ

(8)

I2 = I3 = 1 (9)

the relation between the stretch λ and the Cauchy stress σ is given by

σ = λ
∂ W (λ)

∂ λ
(10)

The computations have been performed using the ABAQUS R© finite element code and the standard
implementation of the constitutive laws, see Fig.4. The numbers of nodes are recapped in the Table 1.
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Large strains are imposed, so nonlinear geometry is used. For each microstructure, a limit strain value is
reached. At higher strain levels, the computation does not converge anymore, elements are too warp (see
limit values in Table 1).

The finite strain assumption permits a rearrangement of the microstructure during loading. With
increasing load, one can observe relative movements and rotations of the particles in the polymeric
matrix, which conduct to the creation of a high strain chains and high strain bands. A similar structure
was observed during a two dimensional analysis as reported in [2]. The ratio between the macroscopic
strain and the average of the microscopic strains in the chain is around 4.5 (see next part).

Fig. 4 – Strain in the load direction for different steps during a uniaxial tensile simulation on 70% filled
composite, macroscopic strain of (a) 2%, (b) 7% and (c) 13%

3 Results and discussion

In a preliminary stage we verifie the isotropy of the created microstructures, in order to use general
results on isotropic materials. One microstructure with 70% of filler is submitted to uniaxial tensile tests
in the three directions and three shear tests. Results (in Fig.5) exhibit a small scattering of the mechanical
response according to the direction. For an imposed stretch of 1.13 the average of the Piola stress is
3.95±0.26×108 Pa. For an imposed shear of 0.03, the average of the Piola stress is 5.4±0.22×106 Pa. As
a consequence microstructures will be considered as isotropic and ±5% of error in the tangent stiffness
can be considered as normal.

(a) (b)

Fig. 5 – (a) Uniaxial tensile simulations in the direction Ox, Oy and Oz and (b) shear simulations in the
direction OyOz, OxOz and OxOy for the 70% filled microstructure to evaluate the isotropy

For all unaxial tensile simulations of each microstrucutre, the strain (ε = δl
l ) and the Cauchy stress

(σ = F
a , where a is the real surface) are computed and the results are shown in Fig.6(a). The Arruda-

Boyce model is used for the first part here. The errors due to the random distribution are displayed in the
Table 3. By the centered difference method, the slope at each point of the stress/strain curve is computed,
to obtained the modulus, plotted in Fig.6(b).

The stiffening effect of the composite when fillers are added in the matrix is a well known process, as
described in [3]. More fillers are added, more the composite is stiffer, and this effect evolve nonlinearly
with respect to the volume fraction of fillers. Results of this simulation demonstrate it one more time.
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(a) (b)

Fig. 6 – (a) Results of the uniaxial tensile simulation for the 30%, 50% and 70% filled composite (b)
Apparent modulus for each microstructure, computed by the centered difference method from the results
of uniaxial tensile simulation. The Arruda-Boyce model for the matrix is used.

f (%) Strain Cauchy stress (Pa)
30 30% 6,7±1×107

50 23% 1.48±0.07×108

70 11% 3.33±0.27×108

Tableau 2 – Errors due to the random distribution for the uniaxal tensile simulation of each microstructure

The comparison of the nonlinearities of Fig.6(b) with experimental results of Fig.1 presents several
similarities of shape. A linear part, occurring for small strains (ε < 0.01, see Fig6(b)), and a nonlinear
part where an elbow is visible.

The first analysis corresponds to the apparent elastic moduli at small strain. Denoting by E and E the
modulus of the composite and the matrix respectively, it has been shown in [7] that, if the matrix has an
energy function depending only on the first invariant I1 :

E
E

=
1

(1− f )5/2 (11)

This analytical result has been verified for FEM simulations with volume fractions of fillers up to
f = 30% in [7]. Fig.7(a) shows the evolution of E

E up to a volume fraction of f = 70%. The modu-
lus increases nonlinearly with the filler volume fraction. The analytical function tends to be still valid up
to 70%. Microstructures are considered isotropic, so a comparison with the Voigt, Reuss and Hashin and
Shtrikman (HS+ and HS-) bounds can be made (see [4]). Results presented in Fig.7(b) tend to confirm
the validity of the obtained modulus in the linear elastic phase of the composite behaviors.

(a) (b)

Fig. 7 – (a) Comparison between the analytical model given by [7] and highly-filled propellant FEM data
(b) Comparison between analytical model and Voigt, Reuss, and HS- and HS+ bounds. AB model is used
for the matrix behavior
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The next question concerns the apparition of the nonlinearity characterized by the "elbow" in the
representation of the apparent modulus versus the strain (see Fig.6(b)). Under a certain strain value, the
apparent modulus is constant. But over this limit, the material becomes stiffer, and the modulus increases
strongly. We shall explore the influence of the matrix behavior on the onset of the nonlinearity. Two
mechanical behaviors are focused on, a Neo-Hookean model and an Arruda-Boyce model.

First, let us consider that the matrix follows an Arruda-Boyce model (see Equation 5). The supposed
inside propellant matrix behavior is linear up to a very large strain (for ε = 75%). After this phase an
elbow occurs. That implies a constant modulus until the end of the linear phase, and an increase of the
modulus value at higher strains. In unfilled elastomers, this limit appears for large strain (for ε = 75%).
In the case of filled composites, macroscopic behavior follows the same outline and a strong stiffening
takes place. The strain at which the nonlinearity appears decreases when the filler fraction increases (see
Fig.6(a)). The shape of the curve for filled composites is the same as the one for the unfilled matrix, but
it seems to undergo an homothety along the strain axis.

Now, suppose the inside propellant matrix can be modeled by a Neo-Hookean model. After a certain
limit value, the "elbow" appears again. The stiffening effect is independent of the choice of the matrix
behavior. This is a microstructural effect. To compare between the two models, computation for the 30%
filled microstructure is shown in. Fig.8. When the matrix behavior is naturally not stiffening (typically
a Neo-Hookean model), the composite behavior is stiffening. When the matrix behavior is stiffening
(for example an Arruda-Boyce model) the composite behavior is also stiffening. The difference appears
only to the strain value of the stiffening effect. For the Neo-Hookean model, the stiffening occurs at a
larger strain than for the Arruda-Boyce model. Whatever the matrix behavior, the composite behavior
will present an increase of the modulus value with respect to the strain. Calculations are made with
a stiffening polynomial energy function (Arruda-Boyce) for the matrix in order to observe this effect
for reasonable strain value. A different choice of the matrix behavior affects the composite mechanical
behavior only by a shift of the stress/strain curve along the strain axis.

(a) (b)

Fig. 8 – Results of the computation for the 30% filled composite. (a) represents the response of the
matrix only, for an uniaxial tensile simulation, modeled with a NH model and an AB model. (b) shows
the behavior of the 30% filled composite with a NH model and an AB model for the matrix behavior

Another question concerns the strain distribution in the matrix for a given macroscopically applied
strain. It is well known that, due to the high contrast in elastic moduli between the filler and the binder,
only the binder will support the applied strain. The imposed macroscopic strain or stretch (εM or λM)
is not the microscopic strain or stretch (εm or λm) of each component of the composite. Fig.9 presents
the distribution of the strain inside the matrix. The volume of each discrete finite element of the matrix
and the associated stretch in the Gauss point of this element are recorded. A volume distribution of the
microscopic strain can be built. The same recording is made for all the microstructures, with an imposed
macroscopic stretch of 1.13. The distributions seem to follow a Gaussian Law and the average of the
microscopic stretch increases with the filler volume fraction.

Defining the ratio <εm>
εM

, a comparison between macroscopic (imposed) strain (εM) and the average
of the microscopic strain (< εm >) can be made with respect to the percentage of filler. The evolution of
this ratio is plotted in Fig.10. A fit is made to find an empirical model given the evolution of this ratio
in function of the volume fraction of filler f , see Equation (12). The model is empiric, but presents the
same form as the previous analytical model Equation (11).

6



(a)

(b)

(c)

Fig. 9 – Microscopic stretch distribution λm inside the matrix for a macroscopic stretch λM of 1.13 in the
microstructures with (a) 30% of filler (b) 50% of filler (c) 70% of filler

Fig. 10 – <εm>
εM

with respect to the volume fraction of filler and its model

< εm >

εM
=

1

(1− 3 f
4 )

2 (12)
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4 Conclusion

The principal performances of propellants are energetic, but the mechanical behavior must be known
to design an efficient motor. Due to the high volume ratio of filler, some nonlinearities appear, more
especially dynamical nonlinearities in function of the prestrain of the propellant sample. Although it is
possible to measure those nonlinearities with DMA tests, explaining why they occur is not trivial. One
approach consists in using numerical simulations. Microstructures are generated, and following some
simplifying assumptions (considering an hyperelastic problem, choosing the propellant matrix behavior),
uniaxial tensile simulations are performed. Modeling the propellant matrix behavior with either a Neo-
Hookean or an Arruda-Boyce model, the resulting strain/stress curve shows two parts. In the linear part,
the apparent modulus is constant with respect to strain and increases according to the filler volume frac-
tion. In the nonlinear part, the apparent modulus exhibits an "elbow" and increases with respect to strain.
Since the stiffening effect does not qualitatively depend on the chosen matrix constitutive law, the results
prove that the nonlinear macroscopic behavior originates from the heterogeneity of the microstructure.
Finally, the microscopic matrix strain is not equal to the imposed macroscopic strain. Since the fillers are
rigid, the binder undergoes the entire displacement. Numerically, the average of the microscopic stretch
can be 1.6 times the macroscopic stretch of 1.13.
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