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Abstract: 

Methylation of mercury (Hg) is the crucial process that controls Hg biomagnification along the aquatic 
food chains. Aquatic sediments are of particular interest because they constitute an essential reservoir 
where inorganic divalent Hg (Hg

II
) is methylated. Methylmercury (MeHg) concentrations in sediments

mainly result from the balance between methylation and demethylation reactions, two opposite natural 
processes primarily mediated by aquatic microorganisms. Thus, Hg availability and the activity of 
methylating microbial communities control the MeHg abundance in sediments. Consistently, some 
studies have reported a significant positive correlation between MeHg and Hg

II
 or total Hg (HgT), taken

as a proxy for Hg
II
, in aquatic sediments using enzyme-catalyzed methylation/demethylation

mechanisms. By compiling 1,442 published and unpublished HgT–MeHg couples from lacustrine, 
riverine, estuarine and marine sediments covering various environmental conditions, from deep 
pristine abyssal to heavily contaminated riverine sediments, we show that a Michaelis–Menten type 
relationship is an appropriate model to relate the two parameters: MeHg = aHgT/(K m  + HgT), with 
a = 0.277 ± 0.011 and K m  = 188 ± 15 (R 

2
 = 0.70, p < 0.001). From K m variations, which depend on

the various encountered environmental conditions, it appears that MeHg formation and accumulation 
are favoured in marine sediments compared to freshwater ones, and under oxic/suboxic conditions 
compared to anoxic ones, with redox potential and organic matter lability being the governing factors. 
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1. Introduction 
 
Methylmercury (MeHg), mercury (Hg) most toxic form, bioconcentrates in organisms and 
biomagnifies along the aquatic food chains (Clarkson and Magos 2006). Although MeHg 
concentrations in sediments can be affected by exchanges with the water column, the main 
controlling factor of these concentrations appears to be the balance between HgII in situ 
methylation and MeHg demethylation reactions, two opposite natural processes primarily 
mediated by aquatic microorganisms (e.g., Ullrich et al. 2001; Barkay et al. 2011; Gilmour et 
al. 2011; Yu et al. 2012). Despite some early laboratory experiments which suggested that 
HgII methylation results from the activity of many aerobic and anaerobic microorganisms 
(Jensen and Jernelöv 1969; Vonk and Sijpesteijn 1973), more recent researches showed 
that methylation capacity in aquatic sediments is limited to anaerobic bacteria, including 
sulfate-reducing bacteria (SRB) (Compeau and Bartha 1984 and 1985; Choi et al. 1994; 
Baldi 1997), iron-reducing bacteria (IRB) (Fleming et al. 2006; Kerin et al. 2006; Yu et al. 
2012) and methanogens (Hamelin et al. 2011). Furthermore, environmental incubations also 
suggested that SRB and IRB are the main mercury methylators in natural environments 
(Gilmour et al. 1992, 2011; Yu et al. 2010, 2012; Acha et al. 2012), with SRB being the 
dominant community (Choi et al. 1994; Baldi 1997; Pak and Bartha 1998; Yu et al. 2010). On 
the other hand, MeHg demethylation results from numerous types of microorganisms in both 
aerobic and anoxic environments (Oremland et al. 1991; Dahlberg and Hermansson 1995; 
Pearson et al. 1996; Marvin-Dipasquale and Oremland 1998; Marvin-Dipasquale et al. 2000), 
either by reductive or oxidative demethylation (Barkay et al. 2011; Mason 2012). In oxidative 
demethylation, active in SRB and methanogens, MeHg is converted into HgII, whereas in 
reductive demethylation, more extensively distributed throughout microbial communities, 
MeHg is converted into Hg0. 
 
For bacterial HgII methylation, Parks et al. (2013) recently reported a two-gene cluster (HgcA 
and HgcB), suggesting a common Hg pathway in all methylating bacteria hitherto 
sequenced, including SRB, IRB and methanogen strains. Radiolabelled experiments 
suggested that a methyl group of methyltetrahydrofolate, from the acetyl-CoA pathway, is 
transferred to HgcA as CH3

+, consistently with the enzyme-catalyzed methylation pathway 
earlier proposed by Choi et al. (1994). For MeHg demethylation, multiple enzymatic 
pathways coexist. The oxidative demethylation, primarily producing CO2, seems ubiquitous in 
anaerobic sediments (Oremland et al. 1991), whereas reductive pathway, producing mainly 
CH4 (via the organomercurial-lyase pathway, Begley et al. 1986), dominates in aerobic 
sediments or under anaerobic incubations of highly contaminated sediments (Marvin-
Dipasquale et al. 2000; Schaefer et al. 2002; Segade et al. 2010). 
 
All these proposed pathways suggested that an enzymatic model between MeHg net 
formation and its substrate concentration (HgII) should be shared in every sedimentary 
situation. Indeed, Gilmour et al. (2011) found a strong positive relationship between MeHg 
production and the log of the total Hg concentration obtained in a controlled experiment 
involving a SRB, Desulfovibrio desulfuricans. King et al. (1999) also found a nonlinear 
relationship between rates of MeHg formation as a function of HgII added in sediment 
slurries, consistent with a first-order Michaelis-Menten model. Besides the results of these 
experimental approaches, several field studies converged to find significant positive 
relationships between HgII or HgT, and MeHg in freshwater, brackish and marine sediments 
(e.g., Benoit et al. 2003; Hammerschmidt and Fitzgerald 2006; Drott et al. 2008; Marvin-
Dipasquale et al. 2009; Gilmour et al. 2011). These empirical relationships also suggested 
that net MeHg production in aquatic sediments is limited by HgII availability, if HgT is 
assumed as a proxy for HgII substrate for methylation, which is reasonable since MeHg, in 
most cases, represents less than 1% of sedimentary HgT. Testing various substratum 
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including cinnabar, metacinnabar, HgII bound to mackinavite or organic matter (OM), Jonsson 
et al. (2012) reported Hg methylation rates spanning over 2 orders of magnitude, increasing 
with HgII dissolution or desorption from solids. Besides mobilization from solid, OM was also 
suggested as a key-parameter of Hg sediment-water partitioning and bioavailability, which 
seems to constrain MeHg/HgT in surface sediments (e.g., Sunderland et al., 2006; 
Hammerschmidt and Fitzgerald, 2006; Schartup et al., 2013). Lastly, large differences 
between estimations of Hg methylation rates exist, depending on environmental conditions, 
which are not directly related to HgII bioavailability, but rather to changes in the present 
microbial communities (Ranchou-Peyruse et al. 2009; Segade et al. 2010; Mason 2012; 
Husu-Kim et al. 2013).  
 
In order to further examine the environmental conditions that control net Hg methylation and 
limit MeHg accumulation in aquatic sediments, we propose the use of a model resembling 
Michaelis–Menten kinetics synthesizing the enzymatic methylation and demethylation 
reactions. We thus applied this type of model to 1442 MeHg/HgT couples, collected in 
scientific literature or from our unpublished works. The gathered data cover sedimentary 
environments from surface to deep layers including abyssal, coastal, lagoonal, estuarine, 
lacustrine and riverine sediments, and range from pristine to heavily polluted areas and from 
aerobic to sulfidic environments. It appears that a Michaelis-Menten equation significantly (p< 
0.001) relates MeHg to HgT concentrations accordingly to the converging hypotheses of Benoit 
et al. (2003), Drott et al. (2007, 2008), Hammerschmidt et al. (2008), Sparling (2009), Frohne 
et al. (2012) and others. Apparent half-saturation value (Km) of the model depends on the 
various encountered environmental conditions, with redox potential and organic matter 
lability as the governing factors.  
 

2. Material and methods 
 
Unpublished data (N=602) originated from sediment cores collected from Mediterranean 
environments, including near-shore environments (Pierre-Blanche lagoon and Toulon bay), 
continental shelf (Rhone pro-delta), canyon (Cap de Creus), abyssal plain (Algero-Provencal 
and Ionian basins), and Arctic Ocean margin and deep basins.  HgT and MeHg 
determinations were performed according to Abi-Ghanen et al. (2011).  
 
The gathered data (N=840) used here originated from published works mentioned in Table 1. 
When figure data were not available, the DigiSoft program (available for free, download at: 
http://gss.srce.hr/pithos/rest/omanovic@irb.hr/files/Software/) software was used to convert 
data points of the published graphs into numerals.   
 
The Michaelis-Menten equation is frequently used to describe enzyme-catalyzed processes, 
as it relates to the metabolic conversion of a compound. The Michaelis-Menten fitting has 
successively described the methylation rate vs HgII concentration from experiments 
performed either on isolated bacteria strain (e.g. the Desulfovibrio desulfuricans LS isolated 
from salt marsh sediment, Choi et al. 1994), or directly on bulk sediments (e.g. King et al. 
1999). Although normally used to model kinetic results (i.e. product formation rate vs 
substrate concentration), some authors also used such relationships between product and 
substrate concentrations. For instance, MeHg or HgT contents in fish tissues vs aqueous HgT 
were properly depicted using Michaelis-Menten curves by Brent and Kain (2011) and 
Mathews et al. (2013), respectively. Even empirical, such fits offer the advantage of a 
mechanistic foundation (i.e. enzymatic processes governing Hg methylation) and provide 
benchmarks for maximum methylation and half-saturation constant, parameters which can 

http://gss.srce.hr/pithos/rest/omanovic@irb.hr/files/Software/
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be confronted to laboratory or field experiments. Michaelis-Menten model was fit using 
SigmaPlot 10.0 software. 
 
3. Results and discussion 
 
The data couples spanned over six and five orders of magnitude for HgT and MeHg, 
respectively: from 3.1×10-3 to 1.1×103 nmol g-1 and from 3.9×10-5 to 3.6×10-1 nmol g-1, thus 
going from pristine to heavily contaminated sediments. Considering the entire data set, we 
achieved a highly significant (R2 = 0.70, N = 1442, p < 0.001) overall relationship with the 
following equation:  

Tm

T

HgK

Hga
MeHg




 , 

where “a” is the saturation MeHg concentration (0.277 ± 0.011 nmol g-1) and “Km” estimates 
the HgT concentration, which corresponds to MeHg half-saturation (188 ± 15 nmol g-1) (Fig. 
1). As Km increases, methylation efficiency decreases. 
 
This Michaelis-Menten function corroborates that sediment MeHg concentrations are directly 
dependent of HgT concentration taken as a proxy of the methylation substrate (HgII), with an 
asymptotic MeHg concentration (a) mainly defined by data from Sweden riverine and 
estuarine sediments heavily contaminated by chlor-alkali activities (Drott et al. 2008). Such a 
saturation point was already noticed for contaminated sediments by Benoit et al. (2003). This 
maximum, theoretically due to HgII saturation of the methylation enzymatic systems, 
illustrates a more complex situation earlier qualified as “mercury accumulation paradox” 
(Schaefer et al. 2004). The Michaelis-Menten type relationship calculated here is the 
combination of multiple counteracting enzymatic reactions. As suggested by several authors 
(Marvin-Dipasquale and Oremland 1998; Marvin-Dipasquale et al. 2000; Segade et al. 2010), 
the asymptotic MeHg concentration can be interpreted as a modification of the reductive 
demethylation pathways in contaminated sediments, resulting from a methanogen to SRB 
demethylation shift when HgII or MeHg contents exceed a threshold value. Oxidative or 
reductive demethylation pathways would have indeed striking different consequences in the 
mercury cycling in the sediment. As quoted by Segade et al. (2010), the end-product of the 
reductive demethylation is gaseous Hg0, a species which can escape from the sediment 
allowing its real detoxification, whereas the oxidative demethylation generates an HgII end-
product which may be recycled in the methylation pathway. 
 
The Km value (188 ± 15 nmol g-1) constitutes a relatively stable estimate, as the coefficient of 
variation falls below 8%. However, keeping the asymptotic a value of the equation fixed at 
0.277 nmol g-1, peculiar Km values exhibit large variations (Table 2) depending on the 
environmental characteristics and sites, illustrated by the Km increase when methylation 
efficiency decreases. Ranking the 1442 HgT-MeHg couples according to their Km values, it 
appears that (i) 5% of HgT-MeHg couples are lower than 26.5, with 93% and 75% of them 
are from surface sediments (≤ 2 cm) and pristine sediment, respectively, and that (ii)  5% 
highest Km values are higher than 825, with 97% of them correspond to deep (> 10 cm) 
contaminated sediments. In addition, relatively low Km values (139 ± 12 nmol g-1) 
characterizes surface sediments (≤ 2 cm) compared to that of sediments collected below 10 
cm depth (223 ± 10 nmol g-1, Table 2). Furthermore, the Km values for the samples collected 
in open ocean are much lower than those for the river samples, whereas intermediate values 
characterized coastal and lagoonal samples (Table 2).  
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Interestingly, the Michaelis-Menten model can be simplified, for HgT << Km, as a simple 

ratio: THgbMeHg   with 100
mK

a
b . The calculated b value is 0.15% for our entire 

data set, and ranges from 0.03 to1.05% for the lowest and highest methylation efficiencies, 
respectively (see Supplementary information Fig. SI1). This is consistent with previous 
observations showing that MeHg/HgT ratios are a good proxy for net Hg methylation rates 
(e.g. Benoit et al.  2003; Hammerschmidt and Fitzgerald 2004, 2006; Guimarães et al. 2006; 
Drott et al. 2008). However, for the highest HgT values, the MeHg/HgT ratios notably 
decrease (Fig. SI2). This suggests that a “ratio model” does not fit the entire data set and, 
consequently, the diversity of the encountered environmental situations, as the Michaelis-
Menten model does. 
 
In summary, (i) sediments collected at depth > 10 cm (N=228) exhibit higher Km than surface 
ones (0-2 cm), and (ii) freshwater and contaminated coastal sediments exhibit higher Km than 
marine sediments. In other words, oxic/suboxic sediments and those originating from 
autochthonous marine settling material present higher net methylation rates than anoxic 
and/or continental derived sediments. It also suggests that authigenic particles from the 
water column may be MeHg-enriched before being deposited and incorporated in surficial 
sediment, as earlier suggested by Muresan et al. (2007) for a lagoonal environment. Gilmour 
et al. (1998) and Benoit et al. (2003) already noticed that highest MeHg/Hg ratios were found 
in sediments where sulfate reduction was high but sulfide accumulation was low, such as 
sediments' upper layers and continental slopes. Han et al. (2010) also concluded from 
experiments with sulfate-limited sediments that HgII active methylation “possibly occurred by 
syntrophic processes arising between methanogens and sulfidogens”. It has been 
recognized that in mildly reductive conditions, HgS0

(aq), Hg(SH)0
(aq) and uncharged mercury 

molecules such as Hg-cysteine complexes or even HgS particles facilitate mercury uptake in 
methylator microorganisms (Benoit et al. 1999; Drott et al. 2007; Schaefer and Morel 2009; 
Graham et al. 2012). Conversely, enhancement of dissolved sulfide in anoxic sediments may 
inhibit MeHg production (Benoit et al. 1999; Hammerschmidt et al. 2008). It is interesting to 
note that high Km values for contaminated sediments are in agreement with the results of 
Drott et al. (2008) and Hines et al. (2000) showing that demethylation of MeHg progressively 
increases with depth in such sediments. 
 
The differences between freshwater and marine sediments Km values are likely to be 
interpreted in terms of OM reactivity since the organic carbon (OC) taken as a whole does 
not seem to be an overall explanatory factor for MeHg concentration. Indeed, from the 617 
HgT-MeHg couples associated with OC contents, the significance of the MeHg vs OC 
relationship is not better than that of the HgT vs OC, and the MeHg/HgT ratio appeared not 
to be related to OC (Fig. SI3 A, B and C). It is generally observed that OM is more abundant 
in river and near-shore sediments than in open ocean sediments. However, it is also 
generally accepted that the continental OM accumulated in rivers and estuaries is more 
mature than the freshly deposited OM in the high productive area of the ocean margins 
(Arnost and Holmer 2003). This suggests that labile fresh OM present at the shelf margin is 
more effective in fuelling the microbial methylating activity than refractory OM, consistently 
with the hypothesis of Ravichandran (2004). To check the involvement of OM degradability in 
determining the relative MeHg abundance, we compared the MeHg/HgT ratios with the 
amino acid concentrations available from the sediment of Cap de Creus canyon (Fig. 2). 
Considering nitrogenous compounds, especially amino acid, as the most hydrolysable OM 
present at the N.W. Mediterranean margin (Buscail and Germain 1997), it can be deduced 
from Figure 2 that the OM lability is a limiting factor of the Hg methylation. This evidence 
agrees with an earlier study on MeHg distribution in harbour marine sediments which stated 
that allochthonous organic material attenuates gross and net rates of MeHg production 
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(Hammerschmidt et al. 2008). Drott et al. (2008) likewise showed that differences in the 
primary production and subsequent availability of easily degradable OM (serving as electron 
donor for methylating bacteria) was indicated to be the most important factor behind the 
observed differences in MeHg/HgT ratios and so Km values among sites.  
 
We conclude that, in sulfidic and non sulfidic pristine and heavily polluted sediments from 
both freshwater and marine environments, the abundance of MeHg relative to HgT depens 
on Hg availability and OM reactivity. Oxic and suboxic sediments receiving both fresh OM and high 

Hg deposition, such as oceanic margins, favor MeHg accumulation. Only a part of MeHg is preserved 

in deep anoxic sediments leading to low MeHg/HgT ratios. We can speculate furthermore that a 

Michaelis-Menten type model linking MeHg to inorganic Hg
II
 could also be valid for the oceanic 

water column. 
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Tables 
 

Table 1. Sources of published data used in the Michaelis-Menten model. 1Data compilation. 

 

Area Reference 

Lebanese coast Abi-Ghanem et al. (2011) 
Patuxent estuary  Benoit et al. (1998) 
Rivers, lakes, wetlands and marine margins Benoit et al. (2003)1 
Karlshäll, Köpmanholmen and Skutskär 
estuaries 

Drott et al. (2008) 

Venice lagoon Han et al. (2007), Guédron et al. (2012) 
Long Island sound Hammerschmidt and Fitzgerald (2004) 
New England shelf Hammerschmidt and Fitzgerald (2006) 
Elbe river  Hintelmann and Wilken (1995) 

Western Atlantic shelf and slope 
Hollweg et al. (2010) 

Kastela bay, Krka and Öre estuaries Kwokal et al. (2002), Mikac et al. (2004) 
Chesapeake bay Mason and Lawrence (1999), Mason et al. 

(1999) 
Seine estuary Mikac et al. (1999) 
Rupel, Deule, Seine and Soča rivers Mikac et al. (2004) 
Scheldt estuary Muhaya et al. (1997) 
Thau lagoon Muresan et al. (2007) 
Berre lagoon Rigaud et al. (2013) 
Passamaquoddy bay Sunderland et al. (2006) 
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Table 2. Km values for Michaelis-Menten type relationships between MeHg (nmol g-1) and  
HgT (nmol g-1) within various sediment types (values obtained keeping the asymptotic a 
parameter of the equation fixed at 0.277 nmol g-1). (1) data defining the asymptotic value of 
the equation, i.e.  from Sweden riverine and estuarine sediments, heavily contaminated by 
chlor-alkali activities (Drott et al. 2008). 
 
 

Type of sediment Km R
2
  (n)       

p 

Location HgT level 

(nmol g
-1

) 

Highest points 
(5%) 

14 ± 2 0.94 (72) 
<0.0001 

Surface sediment from various 
region (and heavily 

contaminated sediments)1  

< 1               
(and > 100)1 

Lowest points (5%) 1870 ± 
70 

0.93 (72) 

<0.0001 

Toulon and Kastela bays, Venice 

and Berre lagoons, Elbe, Seine and 

Soča rivers and estuaries 

10-1000 

Surface (< 2 cm) 139 ± 12 0.41 (226) 

<0.0001 

All sites < 1 - 1000 

Deep (> 10 cm) 223 ± 10 0.75 (550)  

<0.0001 

All sites < 1 - 1000 

Rivers 327 ± 38 0.38 (149) Deule, Elbe, Rupel, Seine, Soča > 1 

Estuaries 159 ± 20 0.64 (171) 

<0.0001 

Krka, Karlshäll, Köpmanholmen, 

Öre, Patuxent, Seine, Scheldt and 

Skutskär estuaries 

> 0.1 

Lagoons 223 ± 16 0.10 (201) 

<0.10 

Berre, Pierre-Blanche, Thau and 

Venice (Mediterranean lagoons) 

0.1-10 

Bays and shelves 168 ± 5 0.79 (642) 

<0.0001 

Chesapeake, Kastela, 

Passamaquoddy and Toulon bays, 

Lebanese coast, Rhone delta, Long 

Island Sound 

< 1 - 1000 

Open sea 89 ± 8 0.31 (277) 

<0.0001  

Abyssal plains and slope (Arctic 

Ocean, Mediterranean Sea , 

Atlantic Ocean) 

< 1 

Abyssal plain  24.7 ± 
0.2 

0.99 (260) 

<0.0001 

Mediterranean Sea and Arctic 

Ocean  

< 0.5 
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Figures 
 

Figure 1. Overall Michaelis-Menten type relationship (p < 0.001) between 1442 couples of 
MeHg and HgT concentrations in aquatic sediments. MeHg/HgT couples from various 
aquatic sediments including marine abyssal, coastal, lagoonal, estuarine, lacustrine and 
riverine sediments ranging from pristine environments to heavily polluted ones, and from 
aerobic to sulfidic environments. The gathered data used here originate from published 
(Table 1) and present authors’ unpublished works. When figure data were not available the 
DigiSoft program (available free for download at  
http://gss.srce.hr/pithos/rest/omanovic@irb.hr/files/Software/) software was used to convert 
data points of the published graphs into numerals. 
 

 
 
 
 
 
 
 
 
 

http://gss.srce.hr/pithos/rest/omanovic@irb.hr/files/Software/
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Figure 2. Relationship (p < 0.001) between MeHg/HgT ratios and amino acid (proxy of labile 
organic matter) in the sediment of the Cap de Creus canyon (NW Mediterranean). 
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Supplementary informations 
 
 
Figure SI 1. The Michealis-Menten model with upper and lower ratio lines in gray 
(see text for more explanation) 
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Figure SI 2. Variation of MeHg/HgT ratio vs HgT concentration (N=1442)  
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Figure SI 3. Variation of (A) HgT, (B) MeHg and (C) MeHg/HgT ratio vs organic carbon 
content (N=617) 

 
 




