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ABSTRACT: Half-Heusler alloys based on TiNiSn are promising thermoelectric
materials characterized by large power factors and good mechanical and thermal
stabilities, but they are limited by large thermal conductivities. A variety of strategies
have been used to disrupt their thermal transport, including alloying with heavy,
generally expensive, elements and nanostructuring, enabling figures of merit, ZT ≥ 1
at elevated temperatures (>773 K). Here, we demonstrate an alternative strategy
that is based around the partial segregation of excess Cu leading to grain-by-grain
compositional variations, the formation of extruded Cu “wetting layers” between
grains, andmost importantlythe presence of statistically distributed interstitials
that reduce the thermal conductivity effectively through point-defect scattering. Our
best TiNiCuySn (y ≤ 0.1) compositions have a temperature-averaged ZTdevice =
0.3−0.4 and estimated leg power outputs of 6−7 W cm−2 in the 323−773 K
temperature range. This is a significant development as these materials were
prepared using a straightforward processing method, do not contain any toxic,
expensive, or scarce elements, and are therefore promising candidates for large-scale production.
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1. INTRODUCTION

Thermoelectric (TE) generators directly convert waste heat
into electricity and could become an important component of a
sustainable energy future.1 Large-scale application has so far
been limited by their moderate efficiencies and relatively high
cost, which derives from the scarcity of material resources.2

Great progress has been made in improving the efficiency of
thermoelectric materials over the past 2 decades, guided by
several successful design strategies including the phonon-glass
electron-crystal concept, band engineering, and nanostructur-
ing.3−6 These have led to the design of many materials with
peak ZT values above 1, which is generally seen as an indication
of viability; in some cases, ZT can exceed 2.6,7 Here, ZT = (S2/
ρκ)T is the thermoelectric figure of merit, where S is the
Seebeck coefficient, ρ is the electrical resistivity, κ is the sum of
the lattice (κlat) and electronic (κel) thermal conductivities, and
T is the absolute temperature. Another practical measure of
performance is the power output, which is linked to the
magnitude of the power factor (S2/ρ), the dimensions of the
legs, and the magnitude of κ.8,9

Half-Heusler (HH) materials are highly promising for mid-
temperature waste heat recovery because they balance the
complex commercial trade-off between performance, cost,
mechanical strength, and stability.10 The best n-type materials
are based on XNiSn,11−14 while good p-type performance can
be extracted from compositions based on XCoSb and X′FeSb
(with X = Ti, Zr, and Hf and X′ = V and Nb).15−18 In terms of
the individual thermoelectric parameters, the HH materials are
characterized by large S2/ρ = 3−6 mW m−1 K−2 and are, in
effect, limited by their large κlat, which is typically κlat = 3−4 W
m−1 K−1 for optimized compositions. This has stimulated
several approaches to reduce κlat, including alloying at the X-site
to increase point scattering of phonons, reduction of grain sizes
to enhance boundary scattering of phonons, and segregation of
full-Heusler (FH) XNi2Sn phases in metal-rich XNi1+ySn
compositions.19,20 The segregation of FH phases is of interest
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because the similar crystal structure and lattice parameters of
the HH and FH phases facilitate lattice coherence and thereby
offer a means to effectively scatter phonons while maintaining
charge carrier mobility.21,22 Theoretical studies point toward
the instability of metal-rich XNi1+ySn compositions with
segregation into HH and FH phases being favored.23,24 Several
experimental studies have used this instability to produce sub-
10 nm FH inclusions21,22,25,26 that in some instances lead to
carrier filtering and enhancement of the thermoelectric
properties,21,22 but the formation of such inclusions is
process-dependent, and other studies yield larger FH domains
rather than obvious inclusions in the HH matrix.27−30

Developing a reliable, scalable production process for optimized
nanostructuring remains problematic.
Here, we report on another manifestation of phase

segregation that does not involve the formation of FH
inclusions. The introduction of excess Cu to form the
TiNiCuySn HH alloys instead produces relatively uniform
HH structures on the nanoscale, where most of the excess
metals randomly occupy interstitial sites and produce
significant point scattering of phonons. Only small amounts
of excess Cu (y < 0.1) are needed to achieve the optimal
performance with power factors S2/ρ = 2−4 mW m−1 K−2 and
low lattice thermal conductivities κlat = 4−5 W m−1 K−1.
Segregation is instead observed as grain-by-grain compositional
variations, leading to the formation of a low fraction of grains
with FH composition. Furthermore, extrusion of excess Cu
from the HH matrix produces Cu-rich interfacial wetting layers
between grains that appear to facilitate the formation of
coherent grain boundaries. The best samples have a temper-
ature-averaged ZTdevice = 0.3−0.4 and calculated power outputs
of 6−7 W cm−2 from a 323−773 K gradient. The latter are
comparable to the leading HfNiSn-based compositions.11−13

These results are intriguing because they do not follow the
prevailing trend to optimize HH systems toward boundary

scattering from inclusions but suggest the alternative strategy of
employing interstitial point-defect scattering to be viable.
Coupled with the use of inexpensive elements, this develop-
ment could lead to commercially viable TE generator
manufacture.

2. EXPERIMENTAL METHODS
2.1. Synthesis. TiNiCuySn (0 ≤ y ≤ 0.25) samples were prepared

on a 3 g scale using standard solid-state methods. Stoichiometric
amounts of elemental starting materials (Alfa Aesar; Ti, 325 mesh; Ni,
120 mesh; Cu, 625 mesh; and Sn, 100 mesh; all ≥99.8% purity) were
mixed together using a mortar and pestle and cold-pressed into 13 mm
diameter pellets. The samples were wrapped in 0.025 mm thick Ta foil
(Sigma-Aldrich) and initially annealed in evacuated quartz tubes at 900
°C for 24 h. The mixtures were then reground to improve
homogeneity, cold-pressed, wrapped in Ta foil, and annealed for a
further 2 weeks at 900 °C. In the first step, the heating rate was 10 °C/
min and the cooling rate was 20 °C/min. In the second step, the
samples were inserted directly into the furnace at 900 °C and air-
quenched from 900 °C. These samples are referred to as “before hot
pressing”. In the final synthesis step, each composition was hot-pressed
for 20 min at 875 °C and 80 MPa using a homebuilt hot-press. These
samples are referred to as “after hot pressing”. The densified Cu
containing ingots were found to have >98% of the theoretical density,
whereas the TiNiSn sample was 92% dense.

2.2. Structural Studies. Laboratory X-ray powder diffraction
(PXRD) data were collected on a Bruker D8 ADVANCE
diffractometer with Cu Kα1 radiation. Long scans (8 h) suitable for
Rietveld analysis were collected between 10 ≤ 2θ ≤ 120° and binned
with a 0.01° step size. Neutron powder diffraction (NPD) data were
collected on the Polaris instrument at the ISIS facility, Rutherford
Appleton Laboratory, UK. Finely ground powders (1−2 g) were
loaded into cylindrical V cans, and data were collected for 200−400
μA h proton beam current to the ISIS target, corresponding to 1.5−3 h
measurement time. The neutron scattering lengths are bTi = −3.4 fm,
bNi = 10.3 fm, bCu = 7.72 fm, and bSn = 6.2 fm. Rietveld analysis was
undertaken using the GSAS and EXPGUI programs.31,32 Scanning

Figure 1. Comparison of the crystal structure before and after hot pressing: (a) close-up of the main HH and FH reflection in PXRD, (b) lattice
parameters before and after hot pressing, and (c,d) close-up of the high-resolution (422) HH reflection before and after hot pressing, respectively.
The inset in the panel (b) illustrates the HH structure, including the “vacant” tetrahedral site that is partially occupied in the TiNiCuySn samples.
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electron microscopy and elemental mapping were done using a
Quanta 650 FEG scanning electron microscope operated at 20 kV and
equipped with an energy-dispersive X-ray spectroscopy (EDX) Oxford
Instruments X-Max 150N detector. Prior to analysis, the samples were
polished using fine Al2O3 sandpaper down to 0.3 μm roughness.
Transmission electron microscopy (TEM) and scanning TEM
(STEM) were performed on a JEOL JEM-ARM200cF instrument
equipped with a cold field-emission gun operating at 200 kV. Cross-
sectional samples for TEM were milled directly from the hot-pressed
pellets using an FEI Nova NanoLab focused ion beam system, yielding
lamella that were typically 50−100 nm thick. These were then
mounted onto Cu support grids that produced a weak Cu signal in
EDX spectra because of secondary scattering; in contrast, the sample
described in Figure S6 was mounted on an Al grid to avoid this
problem so that the Cu content could be determined more accurately.
STEM-EDX analysis was performed using a Bruker X-Flash detector,
and background-subtracted Kα peaks were used for compositional
analysis. The microscope is also equipped with a Gatan 965 Quantum
ER spectrometer for electron energy loss spectroscopy (EELS). EELS
elemental analysis was performed using the L2,3 edges of Ti, Ni, and
Cu and the M4,5 edge of Sn. Spectra were deconvolved to remove
plural scattering effects, background-subtracted, and analyzed using the
cross-sectional data within DigitalMicrograph. The accuracy of
absolute quantification of compositions using EELS is estimated to
be of order 5%.
2.3. Thermoelectric Properties. The temperature dependence of

S and ρ was measured using a Linseis LSR-3 instrument. The thermal
conductivity (κ) was calculated from the measured thermal diffusivity
(α), specific heat capacity (Cp), and density (d) using the relation κ =
αCpd. The temperature dependence of α and Cp was measured using
NETZSCH LFA 457 and PerkinElmer DSC 8500 instruments,
respectively.

3. RESULTS

3.1. Crystal Structure from Diffraction. Structural
information on the average structure of the TiNiCuySn samples
was obtained from PXRD and NPD, whereas the spatial
distribution of the excess metals was investigated using STEM.
The crystal structure of TiNiSn (F4 ̅3m space group; lattice
parameter, a ≈ 5.95 Å) consists of a face centered cubic Sn
lattice with Ni occupying half the available tetrahedral sites and
Ti in all octahedral sites (inset of Figure 1b). Filling the vacant
tetrahedral sites fully results in the FH structure (e.g., TiNi2Sn
with a ∼6.1 Å and a higher Fm3 ̅m space group symmetry).
The PXRD data show only HH reflections for y ≤ 0.10,

whereas both HH and FH peaks are present for larger y values
(Figures 1a and S1). The samples of thermoelectric interest
have y ≤ 0.10 and therefore have all excess metals fully
accommodated within the HH matrix. The HH lattice
parameter was found to have decreased after the hot pressing
that was used to consolidate the samples (Figure 1b). This is
most pronounced for samples with y ≥ 0.15 and reduces for
samples with less Cu content. A comparison of the X-ray peak
widths shown in Figure 1c,d reveals considerable broadening
after hot pressing. Peak broadening is often attributed to a
reduction in grain size, which is not observed by microscopy
here. Instead, we attribute the peak broadening (and reduction
in the lattice parameter) to the segregation of Cu. This leads to
grain-by-grain compositional variations, with individual grains
tending toward either HH or FH compositions. The kinetically
arrested nature of the samples with varying amounts of excess
Cu trapped in HH grains leads to the distribution of HH lattice
parameters, and the observed diffraction peaks arise from an
incoherent summation over all diffracting grains. By contrast,
the FH reflections sharpen and increase in intensity (Figure
1a), signaling that the FH grains become more homogenous

and abundant during hot pressing. NPD was used to obtain
information on the average composition of the HH phases.
NPD is suited to this because of the good scattering contrast
between Ti, Ni, Cu, and Sn. Rietveld analysis of the NPD data
not only reveals the spontaneous presence of 2−3% of excess
Ni in all samples but also indicates limits on the incorporation
of Cu in the HH matrix. A summary of the fit results is
presented in Tables S1 and S2, and the final fits are shown in
Figures S2 and S3. For example, the fitted Cu content for y =
0.05 changes from 0.054(1) to 0.033(1), a 20% reduction upon
hot pressing. Similar reductions were observed for the other
samples. The STEM analysis below reveals that the excess Cu is
extruded from HH grains with individual grains tending toward
either a HH or FH composition. Large area SEM-EDX
elemental maps confirm the overall unchanged compositions of
the samples after hot pressing (Figure S4).

3.2. Microstructure Analysis. A typical STEM image of a
thin lamella selected from the center of the y = 0.25 hot-pressed
sample is presented in Figure 2a. We choose this sample for
discussion because the higher Cu content is easier to map, but
similar structural features are observed for other samples and an
analysis of the y = 0.1 sample is presented in the Supporting
Information (Figures S5 and S6).

Figure 2. Analysis of the microstructure after hot pressing. STEM
analysis of a hot-pressed y = 0.25 sample. (a) In dark-field STEM,
grain boundaries and strain-inducing defects appear bright. The
lamella has been selected from the center of the as-prepared sample
and thinned using focused ion beam techniques (the material to the
lower half of the image has been thinned further than that above). (b)
Elemental analysis, by EELS, across a typical grain boundary and spot-
features with (inset) maps of the distribution Ti, Cu, Ni, and Sn within
the indicated region. Both the boundary and the spots are copper-rich.
The approximate location of image (b) is indicated in image (a).
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Contrast in the dark-field image of Figure 2a derives
principally from thickness variations and strain due to the
presence of crystallographic defects, including grain boundaries
and dislocations. The image clearly reveals the boundaries
between grains that are typically several microns in diameter.
There is no evidence of voids between grains, consistent with
full densification. Also visible is a relatively small number of
white streaks and spots, some of which are analyzed further in
Figure 2b. The inset in Figure 2b shows the EELS signals which
reveals that both the grain boundary (running vertically
through the middle of the inset panels) and the occasional
brighter spots are Cu-rich, although we stress that these spots
are at too low a density to account for a significant fraction of
the Cu. High-resolution TEM imaging (not shown) suggests
the arcs linking these spots to the boundary to be dislocations
and it is tempting to interpret these as providing a low-energy
diffusion pathway to facilitate Cu extrusion during hot pressing.
The relative intensities of Ti, Ni, and Sn on either side of the
grain boundary are similar, and we conclude that the grains are
both of HH composition, with the Cu content around ∼2%,
the estimated EELS detectability limit in this case. An
important conclusion from the TEM analysis is that we do
not find evidence for nanoscale FH inclusions, apart from these
infrequent Cu-rich spots. There is no obvious splitting of
diffraction spots from within an individual grain, or contrast
variations in TEM or STEM, that would suggest nanoscale
HH−FH segregation. Instead, elemental mapping indicates that
individual micron-sized grains have a relatively uniform
composition but can differ from their neighbors, producing
what we term here as grain-by-grain compositional variations
and the formation of Cu-rich grain boundaries. One such grain
boundary is presented in Figure 3a, where the boundary runs
vertically across the center of the image. The sample is oriented
to view the grain in the left half of the image along a (111)
direction, consistent with the indexed spots in the selected area
electron diffraction pattern (inset). The material in the right
half of the image is aligned along a (1n0)-type direction,
contributing the circled spots to the diffraction pattern. The
grain boundary itself appears (in projection) to be of order 2
nm wide but is coherent, with the lattice lines in the two grains
meeting at 135° and without obvious dislocations within the
field of view.
EELS elemental analysis of a much wider region across the

same boundary is presented in Figure 3b,c, which suggests
compositions of Ti1.0Ni1.04Sn1.09 in the right grain and
Ti1.0Ni1.22Cu0.33Sn1.02 in the left grain (again noting the
estimated 2% detectability limit for EELS). There is no obvious
texture in the elemental maps on either side of the grain
boundary, suggesting a very uniform composition within each
grain. A similar analysis of a grain boundary for the y = 0.1
sample is presented in Figure S6. In this case, EDX was used
and more accurate compositions were obtained. An almost
identical boundary structure was observed with approximate
compositions on the either side of Ti1.0Ni1.09Cu0.09Sn1.04 and
Ti1.0Ni0.99Cu0.04Sn1.02, again demonstrating the tendency of the
excess metals to segregate into grains with FH compositions. As
observed in Figures 2 and 3, the grain boundary is Cu-rich,
indicating the formation of a Cu “wetting layer” that high-
resolution imaging suggests is coherent with the surrounding
lattices.
The main conclusion from the TEM is therefore that the

composition of individual grains differs with segregation of
excess metals (Ni and Cu) toward a small number of FH grains.

There is no evidence of nanoscale-texturing of the Cu content
to form an appreciable number of nanoscale Cu inclusions that
would affect the bulk thermal transport.

3.3. Thermoelectric Properties. The temperature de-
pendence of the electrical resistivity ρ, Seebeck coefficient S,
and power factor S2/ρ is shown in Figure 4. All samples are n-
type semiconductors, as indicated by the negative values of
S(T). The magnitudes of both S(T) and ρ(T) decrease
sequentially with increasing Cu content (Figure 4a,b), and
there is a clear change in their temperature-dependent trends
upon even low Cu doping. The TiNiSn sample is a non-
degenerate semiconductor with decreasing ρ(T). Introduction
of excess Cu results in a transition to a metallic ρ(T), indicative
of high levels of doping and degenerate semiconducting
behavior. Efficient n-type doping is confirmed by Hall
measurements, which show an order of magnitude increase in
the carrier concentration between y = 0 and y = 0.075 without
degradation of the carrier mobility (from n = 1.03 × 1020 cm−3

to n = 1.46 × 1021 cm−3, respectivelysee Table S3). As a

Figure 3. Evaluation of a grain boundary. (a) High-resolution STEM
image with (inset) selected area diffraction of a boundary between a
Cu-rich (left) and a Cu-deficient grain (right). Diffraction spots from
the lower grain are circled. The two lattices meet coherently. (b) EELS
analysis across the boundary indicates uniform composition within
each of the grains and a clear Cu enrichment at the boundary. (c)
Approximate composition of the two regions is Ti1.0Ni1.04Sn1.09 in the
right region and Ti1.0Ni1.22Cu0.33Sn1.02 in the left region.
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result, ρ300K decreases by a factor of eight, from 3.4 mΩ cm (for
y = 0) to 0.4 mΩ cm (for y = 0.075).
In the degenerate limit, conductivity is expected to follow an

inverse power law with temperature, that is, ρ ≈ Tz and carriers
are usually scattered by acoustic phonons for a homogenous
matrix without disorder, for which z = 3/2. Using the exponent
z to determine the dominant carrier scattering mechanism, a
log−log plot of ρ(T) yields z = 0.5 for our samples with y ≥
0.025 (Figure 4a), which is consistent with the presence of
interstitial metals.33 The resulting S2/ρ is greatly increased and
attains maximum values of ∼2 mW m−1 K−2 at 323 K and ∼4
mW m−1 K−2 at 700 K for 0.05 ≤ y ≤ 0.1 (Figure 4c). The 323
K and 700 K peak values are ∼100 and ∼60% improved,
respectively, compared to TiNiSn. Increasing y above 0.1 results
in the reduction of the measured S2/ρ, which correlates with
the observation of distinct metallic FH phases in PXRD and
NPD.
The κtotal(T) for the 0 ≤ y ≤ 0.1 compositions was calculated

from experimental heat capacity and thermal diffusivity data
(Figure S7) and is shown in Figure 4d. The y = 0 sample shows
a clear increase in κ(T) above 550 K because of the onset of
minority conduction, but the trend is gradually suppressed as y
increases and is not evident for y ≥ 0.075. At 323 K, κtotal = 6.2

W m−1 K−1 for y = 0, which decreases to κtotal = 5.2 W m−1 K−1

for y = 0.05 and then increases to a similar κtotal = 6.2 W m−1

K−1 for y = 0.1. The increase for y > 0.05 is caused by the
metallic nature of the samples and the rapid increase in κel =
LT/ρ, where L is the Lorenz number. The transition to
degenerate conducting behavior that is evident in ρ(T) and
S(T) suggests a single dominant carrier type. On the basis of
this observation, S(T) was evaluated using the single parabolic
band (SPB) model in the degenerate limit.34 The result of this
analysis is shown in Figure S8a and results in an overestimate of
S(T) at higher temperatures. This suggests either that multiple
bands contribute to the electronic transport or that the bands
are nonparabolic, such as, for example, the Kane model applied
to ZrNiSn-based HH materials.35 To obtain a reliable estimate
of the Lorenz number, the empirical expression in ref 36 was
used. This is estimated to be within 20% accuracy for
thermoelectric materials with non-SPB carrier transport. The
calculated L(T) and κel(T) values are given in Figure S8b,c. The
extracted κtotal(T) − LT/ρ values are shown in Figure 4e. These
values correspond to κlat below the onset of bipolar thermal
transport, which is ∼550 K for y = 0, increasing to ∼700 K for y
= 0.05 and above the upper limit of the measurement for y ≥
0.075. This reveals a substantial reduction from 6.0 W m−1 K−1

Figure 4. TE properties: temperature dependence of (a) electrical resistivity, ρ, (b) Seebeck coefficient, S, (c) thermoelectric power factor, S2/ρ, (d)
total thermal conductivity, κ, (e) thermal conductivity with the Wiedemann−Franz electronic component subtracted, κ − LT/ρ, and (f) figure of
merit, ZT, for the TiNiCuySn samples.
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(y = 0) to 4.5 W m−1 K−1 (y = 0.025) at 323 K, while similar
values are observed for larger y values. The observed κlat,323K = 6
W m−1 K−1 for TiNiSn is much smaller than the expected
values with κlat,323K = 10−15 W m−1 K−1 for the XNiSn (X = Ti,
Zr, and Hf) parent materials.37,38

Calculations of the phonon mean free path (MFP) for HH
materials suggest that 90% of the thermal transport occurs by
phonons with a MFP <1 μm.39 TEM reveals the presence of
large relatively uniform grains of 2−5 μm dimensions,
indicating that the main reduction in κlat must be caused by
the interstitial metals within the HH grains. The results of the
Callaway fits are given in Table 1, and the final fits are shown in

Figure 4e. In these fits, the phonon−phonon scattering strength
(BU) was kept the same for all samples and the boundary
scattering parameter was fixed at B = 5 μm.
The experimental point-defect scattering strength Γexp = 0.06

for y = 0, increasing to Γexp = 0.15(1) for 0.05 ≤ y ≤ 0.10,
which have identical κlat. The calculated point-defect scattering
strengths, Γ, are found to be in good agreement on the

assumption that the interstitials form bonds and that these
enhance the phonon scattering beyond that expected based on
simple mass effects. Full details of the Callaway analysis are
given in the Supporting Information.
The temperature dependence of the figure of merit, ZT is

shown in Figure 4f. For y = 0, ZT = 0.05 at 323 K and increases
to ZT = 0.35 at 673 K. The increase in S2/ρ and reduction of
κlat due to the introduction of excess Cu lead to ZT ≈ 0.1 at 323
K (0.025 ≤ y ≤ 0.1), while the peak ZTs = 0.5−0.6 are
observed at 650−773 K. The reduction in κlat upon the
introduction of excess Cu is partially offset by the increased
electronic contribution (LT/ρ), thereby limiting the ZT values.
Nevertheless, the reported ZT values represent a 100%
improvement over TiNiSn near room temperature and a
∼50% improvement in terms of peaks ZT.

3.4. Efficiency and Power Output. The efficiency and the
power output are important considerations for application of a
material in a TE device. The efficiency (η) of a TE material is
given by9

η =
− + −

+ +

T T
T

ZT

ZT

1 1

1 T
T

h c

h

device

device
c

h (1)

Here, ZTdevice is the average of ZT over the temperature
gradient being exploited, Th is the hot-side temperature, and Tc
is the cold-side temperature. The power output of a
thermoelectric material can be estimated using8

ω
κ
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Δ

+ + + ̅κ( )
T h

T

PF ( ) /2

1 1 PF /T
device

2

PF
2 device device
device hot

device (2)

Here, PFdevice and κdevice are the averages of S
2/ρ and κ over the

exploited temperature gradient, respectively, h is the length of
the thermoelectric leg, ΔT = Th − Tc, and T̅ is the average

Table 1. Thermal Conductivity Modeling: Callaway Fit
Parameters for the TiNiCuySn Samplesa

composition
4d-site

occupancy
κ323K‑LT/ρ

(W m−1 K−1) Γ Γexp

TiNiSn Ni0.030 6.0 0.07 0.06
TiNiCu0.025Sn Ni0.03Cu0.018

b 4.5 0.11 0.12
TiNiCu0.05Sn Ni0.03Cu0.033 4.0 0.14 0.16
TiNiCu0.075Sn Ni0.03Cu0.053

b 4.2 0.17 0.14
TiNiCu0.1Sn Ni0.03Cu0.073 4.2 0.21 0.15

aThe 4d-site occupancy was taken from Rietveld fits to the NPD data
(see Table S2). Γ and Γexp are the calculated and experimental point-
defect scattering parameters, respectively. bFor all fits: B = 5 μm and
BU = 2.1 × 10−18 s K−1.

Figure 5. Leg efficiencies and power outputs: temperature dependence of (a) ZTdevice, (b) the efficiency, (c) PFdevice, and (d) the power output for
the TiNiCuySn samples as a function of hot-side temperature. The data for the Zr0.4Hf0.6NiSn0.995Sb0.005 sample is representative of the best samples
in the literature and was taken from ref 13.
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temperature. The temperature dependence of ZTdevice, PFdevice,
the leg efficiencies, and leg power outputs are shown in Figure
5. This reveals that ZTdevice = 0.25 and the leg efficiency is 4%
from a 450 K gradient for TiNiSn with Tc = 320 K. For the
samples with excess Cu, the performance improves to ZTdevice =
0.3−0.4 and ∼6% conversion efficiency from the same
temperature gradient (Figure 5a,b).
The PFdevice increases by 50% from 2 mW m−1 K−2 from a

450 K gradient for TiNiSn to ∼3 mW m−1 K−2 for the excess
Cu samples (Figure 5c). This enables an improved leg power
output, increasing from 5 W cm−2 (y = 0) to 7 W cm−2 (y =
0.1) with a 450 K gradient and using h = 2 mm (Figure 5d).
For comparison, the ZTdevice, leg efficiency, PFdevice, and leg
power output for a representative state-of-the-art
Zr0.4Hf0.6NiSn0.995Sb0.005 alloy are also shown in Figure 5.11−13

This reveals that the TiNiCuySn materials are competitive with
the best HH materials in terms of power output (ω ≈ 7 W
cm−2) but are characterized by a lower efficiency (6 vs 9%)
because of the competing requirements for efficiency and
power output. The former is linked to having a high ZTdevice for
which a low κ(T) is essential, while the power output relies on
having a large PFdevice but also on the magnitude of κ(T)
because of the coupled nature of the flow of heat and charge.8

This illustrates that other performance indicators, such as
power output, should be considered along with ZT in judging
the suitability of a thermoelectric material. We tested the
thermoelectric properties under repeated cycling and did not
observe any changes, which is critical for the construction of
viable devices. Furthermore, a test where a large current density
was forced through a TiNiCu0.1Sn sample at room temperature
did not produce any changes in the sample composition (e.g.,
migration of Cu to the surface).

4. CONCLUSIONS

Significant improvements in S2/ρ and reductions in κlat near
room temperature have been achieved in TiNiCuySn HH
alloys. These samples are characterized grain-by-grain composi-
tional variations with a tendency toward the formation of either
HH or FH compositions. No evidence for nanoscale FH
inclusions is observed, and the grains contain randomly
distributed excess metals instead. Some Cu segregation occurs
at grain boundaries and this leads to the formation of “wetting
layers”, enabling full densification and facile electronic trans-
port. The observed segregation agrees with the widely reported
thermodynamic instability of metal-rich HH compositions.
Pisarenko analysis (Figure S9) indicates an increase in the
effective carrier mass from ∼3me (y = 0) to ∼5me (y = 0.075),
which suggests a substantial modification of the electronic band
structure. This is in keeping with the strong impact of the
interstitials on the thermal transport. The improvements in the
individual thermoelectric parameters enable viable efficiencies
and leg power outputs. Our results are particularly significant as
these HH materials do not contain any toxic or expensive
elements (such as Hf) and are produced using a simple
processing route. These materials are therefore promising
candidates for large-scale production. The present results
demonstrate a new route to control the nanostructure of HH
alloys through phase segregation, which should transfer to
other HH material systems under investigation for thermo-
electric waste heat recovery.
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M.; Tarantik, K.; König, J. Thermoelectric Modules Based on Half-

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.7b14525
ACS Appl. Mater. Interfaces 2018, 10, 4786−4793

4792

http://pubs.acs.org/doi/suppl/10.1021/acsami.7b14525/suppl_file/am7b14525_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acsami.7b14525
http://pubs.acs.org/doi/suppl/10.1021/acsami.7b14525/suppl_file/am7b14525_si_001.pdf
mailto:j.w.g.bos@hw.ac.uk
mailto:dmaclaren@physics.org
http://orcid.org/0000-0003-3947-2024
http://dx.doi.org/10.5525/gla.researchdata.572
http://dx.doi.org/10.5525/gla.researchdata.572
http://dx.doi.org/10.1021/acsami.7b14525


Heusler Materials Produced in Large Quantities. J. Electron. Mater.
2013, 43, 1775−1781.
(11) Yu, C.; Zhu, T.-J.; Shi, R.-Z.; Zhang, Y.; Zhao, X.-B.; He, J.
High-performance half-Heusler thermoelectric materials
Hf1‑xZrxNiSn1‑ySby prepared by levitation melting and spark plasma
sintering. Acta Mater. 2009, 57, 2757−2764.
(12) Joshi, G.; Yan, X.; Wang, H.; Liu, W.; Chen, G.; Ren, Z.
Enhancement in Thermoelectric Figure-Of-Merit of an N-Type Half-
Heusler Compound by the Nanocomposite Approach. Adv. Energy
Mater. 2011, 1, 643−647.
(13) Chen, L.; Gao, S.; Zeng, X.; Dehkordi, A. M.; Tritt, T. M.; Poon,
S. J. Uncovering high thermoelectric figure of merit in (Hf,Zr)NiSn
half-Heusler alloys. Appl. Phys. Lett. 2015, 107, 041902.
(14) Gürth, M.; Rogl, G.; Romaka, V. V.; Grytsiv, A.; Bauer, E.; Rogl,
P. Thermoelectric high ZT half-Heusler alloys Ti1‑x‑yZrxHfyNiSn (0 ≤ x
≤ 1; 0 ≤ y ≤ 1). Acta Mater. 2016, 104, 210−222.
(15) Yan, X.; Joshi, G.; Liu, W.; Lan, Y.; Wang, H.; Lee, S.;
Simonson, J. W.; Poon, S. J.; Tritt, T. M.; Chen, G.; Ren, Z. F.
Enhanced Thermoelectric Figure of Merit of p-Type Half-Heuslers.
Nano Lett. 2011, 11, 556−560.
(16) Fu, C.; Bai, S.; Liu, Y.; Tang, Y.; Chen, L.; Zhao, X.; Zhu, T.
Realizing high figure of merit in heavy-band p-type half-Heusler
thermoelectric materials. Nat. Commun. 2015, 6, 8144.
(17) Fu, C.; Zhu, T.; Liu, Y.; Xie, H.; Zhao, X. Band engineering of
high performance p-type FeNbSb based half-Heusler thermoelectric
materials for figure of merit zT > 1. Energy Environ. Sci. 2015, 8, 216−
220.
(18) Rausch, E.; Balke, B.; Stahlhofen, J. M.; Ouardi, S.; Burkhardt,
U.; Felser, C. Fine tuning of thermoelectric performance in phase-
separated half-Heusler compounds. J. Mater. Chem. C 2015, 3, 10409−
10414.
(19) Bos, J.-W. G.; Downie, R. A. Half-Heusler thermoelectrics: a
complex class of materials. J. Phys.: Condens. Matter 2014, 26, 433201.
(20) Zhu, T.; Fu, C.; Xie, H.; Liu, Y.; Zhao, X. High Efficiency Half-
Heusler Thermoelectric Materials for Energy Harvesting. Adv. Energy
Mater. 2015, 5, 1500588.
(21) Makongo, J. P. A.; Misra, D. K.; Zhou, X.; Pant, A.; Shabetai, M.
R.; Su, X.; Uher, C.; Stokes, K. L.; Poudeu, P. F. P. Simultaneous Large
Enhancements in Thermopower and Electrical Conductivity of Bulk
Nanostructured Half-Heusler Alloys. J. Am. Chem. Soc. 2011, 133,
18843−18852.
(22) Liu, Y.; Sahoo, P.; Makongo, J. P. A.; Zhou, X.; Kim, S.-J.; Chi,
H.; Uher, C.; Pan, X.; Poudeu, P. F. P. Large Enhancements of
Thermopower and Carrier Mobility in Quantum Dot Engineered Bulk
Semiconductors. J. Am. Chem. Soc. 2013, 135, 7486−7495.
(23) Kirievsky, K.; Gelbstein, Y.; Fuks, D. Phase separation and
antisite defects in the thermoelectric TiNiSn half-Heusler alloys. J.
Solid State Chem. 2013, 203, 247−254.
(24) Page, A.; Uher, C.; Poudeu, P. F.; Van der Ven, A. Phase
separation of full-Heusler nanostructures in half-Heusler thermo-
electrics and vibrational properties from first-principles calculations.
Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 92, 174102.
(25) Chai, Y. W.; Kimura, Y. Nanosized precipitates in half-Heusler
TiNiSn alloy. Appl. Phys. Lett. 2012, 100, 033114.
(26) Chai, Y. W.; Kimura, Y. Microstructure evolution of nano-
precipitates in half-Heusler TiNiSn alloys. Acta Mater. 2013, 61,
6684−6697.
(27) Douglas, J. E.; Birkel, C. S.; Miao, M.-S.; Torbet, C. J.; Stucky,
G. D.; Pollock, T. M.; Seshadri, R. Enhanced thermoelectric properties
of bulk TiNiSn via formation of a TiNi2Sn second phase. Appl. Phys.
Lett. 2012, 101, 183902.
(28) Birkel, C. S.; Douglas, J. E.; Lettiere, B. R.; Seward, G.; Verma,
N.; Zhang, Y.; Pollock, T. M.; Seshadri, R.; Stucky, G. D. Improving
the thermoelectric properties of half-Heusler TiNiSn through inclusion
of a second full-Heusler phase: microwave preparation and spark
plasma sintering of TiNi1+xSn. Phys. Chem. Chem. Phys. 2013, 15,
6990−6997.
(29) Douglas, J. E.; Birkel, C. S.; Verma, N.; Miller, V. M.; Miao, M.-
S.; Stucky, G. D.; Pollock, T. M.; Seshadri, R. Phase stability and

property evolution of biphasic Ti-Ni-Sn alloys for use in thermo-
electric applications. J. Appl. Phys. 2014, 115, 043720.
(30) Downie, R. A.; Smith, R. I.; MacLaren, D. A.; Bos, J.-W. G.
Metal Distributions, Efficient n-Type Doping, and Evidence for in-Gap
States in TiNiMySn (M = Co, Ni, Cu) half-Heusler Nanocomposites.
Chem. Mater. 2015, 27, 2449−2459.
(31) Larson, A. C.; Von Dreele, R. B. General Structure Analysis
System (GSAS). Los Alamos National Laboratory Report LAUR 86-748,
2000.
(32) Toby, B. H. EXPGUI, a graphical user interface for GSAS. J.
Appl. Crystallogr. 2001, 34, 210−213.
(33) Xie, H.; Wang, H.; Pei, Y.; Fu, C.; Liu, X.; Snyder, G. J.; Zhao,
X.; Zhu, T. Beneficial Contribution of Alloy Disorder to Electron and
Phonon Transport in Half-Heusler Thermoelectric Materials. Adv.
Funct. Mater. 2013, 23, 5123−5130.
(34) Downie, R. A.; Barczak, S. A.; Smith, R. I.; Bos, J. W. G.
Compositions and thermoelectric properties of XNiSn (X = Ti, Zr,
Hf) half-Heusler alloys. J. Mater. Chem. C 2015, 3, 10534−10542.
(35) Xie, H.; Wang, H.; Fu, C.; Liu, Y.; Snyder, G. J.; Zhao, X.; Zhu,
T. The intrinsic disorder related alloy scattering in ZrNiSn half-
Heusler thermoelectric materials. Sci. Rep. 2014, 4, 6888.
(36) Kim, H.-S.; Gibbs, Z. M.; Tang, Y.; Wang, H.; Snyder, G. J.
Characterization of Lorenz number with Seebeck coefficient measure-
ment. APL Mater. 2015, 3, 041506.
(37) Eliassen, S. N. H.; Katre, A.; Madsen, G. K. H.; Persson, C.;
Løvvik, O. M.; Berland, K. Lattice thermal conductivity of
TixZryHf1‑x‑yNiSn half-Heusler alloys calculated from first principles:
Key role of nature of phonon modes. Phys. Rev. B: Condens. Matter
Mater. Phys. 2017, 95, 045202.
(38) Uher, C.; Yang, J.; Hu, S.; Morelli, D. T.; Meisner, G. P.
Transport properties of pure and doped MNiSn (M=Zr, Hf). Phys.
Rev. B: Condens. Matter Mater. Phys. 1999, 59, 8615−8621.
(39) Shiomi, J.; Esfarjani, K.; Chen, G. Thermal conductivity of half-
Heusler compounds from first-principles calculations. Phys. Rev. B:
Condens. Matter Mater. Phys. 2011, 84, 104302.

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.7b14525
ACS Appl. Mater. Interfaces 2018, 10, 4786−4793

4793

http://dx.doi.org/10.1021/acsami.7b14525

