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Abstract. The Graph Edit Distance (GED) problem is a well-known
graph matching problem. Solving the GED problem implies minimizing
a dissimilarity measure between graphs that normally represent objects
and patterns. It is known to be very flexible and can work on any type of
graphs. GEDEnA (Edges no Attributes) is a sub-problem of GED that
deals with a special type of graphs where edges do not carry attributes.
Both are modeled as minimization problems and proven to be NP-Hard.
Many heuristics are defined in the literature to give approximated so-
lutions in a reasonable CPU time. Some other work have used mathe-
matical programming to come up with Mixed Integer Linear Program
(MILP) models. The present work proposes the use of Local Branching
heuristic over a powerful MILP model to solve the GEDEnA problem.
Mainly, a MILP model is iteratively modified by adding additional con-
straints to define neighborhoods in the solution space which are explored
using a black-box solver. A problem-dependent exploration is performed
to find efficient solutions. Lastly, the proposed heuristic is evaluated w.r.t
literature heuristics.
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1 Introduction

Graph-based representations can efficiently model objects and patterns. The
graphs provide a structural representation of an object, by defining the main
components that form the object using vertices, and drawing the relations be-
tween them using edges. The structural information provided by the topology
of the graph can be enriched by attributes (labels). Attributes are assigned to
vertices and edges to carry information about subparts of the object. Attributed
graphs have been actively used in many fields, such as Pattern Recognition to
perform object recognition, image registration, tracking and many other appli-
cations [12]. Also, attributed graphs form a natural representation of the atom-
bond structure of molecules, therefore they have also applications in Cheminfor-
matics field [10].
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The Graph Edit Distance (GED) problem is an error-tolerant graph matching
problem. It provides a dissimilarity measure between two graphs, by minimizing
the edit operation costs to transform one graph into another. The set of edit
operations are substitution, insertion and deletion, and can be applied on both
vertices and edges. Solving the GED problem consists in finding the set of edit
operations that minimizes the total cost of matching one graph into another. The
GED problem, by concept, is known to be flexible because it has been shown that
changing the edit cost properties can result in solving other matching problems
like maximum common subgraph, graph and subgraph isomorphism [3]. GED is
a NP-hard problem [14], so its optimal solution cannot be obtained in polyno-
mial time, unless P = NP . Nevertheless, many heuristics have been proposed
to compute good solutions in reasonable amount of time. The works in [11, 13]
presented fast algorithms that mainly solve the linear sum assignment problem
between two sets of vertices, and then deduce the edges assignment. The vertices
cost matrix includes information about the edges, through an estimation of the
edges assignment cost implied by assigning two vertices. However, one drawback
in this approach is that it takes into account only local structures in the graph.
Other algorithms based on beam search are presented in [4, 9]. The first one
explores a truncated search tree built from all vertices assignments. The second
algorithm solves the vertices assignment problem and then, by using a beam
search, it tries to improve the initial assignment by switching vertices. The GED
problem has been also addressed by the means of mathematical programming.
Two types of mathematical formulations can be found in the literature: linear
models as in [7] and quadratic as in [2]. A sub-problem of GED is GEDEnA,
where input graphs do not have attributes on their edges, implying a null cost
for edge substitution operations. The same aforementioned heuristics and exact
solution methods can be applied to the GEDEnA problem. In addition, a very
efficient MILP JH model is proposed in [6], works only for the GEDEnA prob-
lem. This problem is also NP-hard [14] and has many applications, notably in
Cheminformatics field.

In the present work, a Local Branching (LocBra) heuristic is proposed to
solve the GEDEnA problem, with the intent to strongly outperforms the avail-
able literature heuristics. LocBra was originally introduced by Fischetti and Lodi
[5], as a general metaheuristic based on MILP formulations. Typically, a local
branching heuristic is a local search algorithm, which improves an initial solu-
tion by exploring a series of defined neighborhoods via the solution of restricted
MILP formulations. As well, it involves techniques such as intensification and di-
versification during the exploration process. LocBra depends on a MILP model:
MILP JH is chosen in the implementation of LocBra, because it is one of the
most efficient models for the GEDEnA problem [7]. The remainder is organized
as follows: Section 2 presents the definition of the GEDEnA problem, followed
with a review of MILP JH model. Then, Section 3 details the proposed heuris-
tic. And Section 4 shows the results of the computational experiments. Finally,
Section 5 highlights some concluding remarks.
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2 GEDEnA definition and MILP JH model

Before introducing the general Graph Edit Distance (GED) problem, the defini-
tion of attributed and directed graph is given first.

Definition 1. An attributed graph is a 4-tuple G = (V,E, µ, ξ) where, V is the
set of vertices, E is the set of edges, such that E ⊆ V × V , µ : V → LV (resp.
ξ : E → LE) is the function that assigns attributes to a vertex (resp. an edge),
and LV (resp. LE) is the label space for vertices (resp. edges).

Given two graphs G = (V,E, µ, ξ) and G′ = (V ′, E′, µ′, ξ′), solving the GED
problem consists in transforming the source graph G into the graph target G′.
To accomplish this, vertices and edges edit operations are introduced: (u → v)
is the substitution of two nodes, (u → ε) is the deletion of a node in G, and
(ε → v) is the insertion of a node in G, with u ∈ V, v ∈ V ′ and ε refers to the
empty node. The same logic goes for the edges. The set of operations that reflects
a valid transformation of G into G′ is called a complete edit path, defined as
λ(G,G′) = {o1, ..., om} where oi is an elementary vertex (or edge) edit operation
and m is the number of such operations.

Definition 2. The Graph Edit Distance between two graphs G and G′ is defined
by:

dmin(G,G′) = min
λ∈Γ (G,G′)

∑
oi∈λ

`(oi) (1)

where Γ (G,G′) is the set of all complete edit paths, dmin represents the
minimal cost obtained by a complete edit path λ(G,G′), and ` is the cost function
that assigns the costs to elementary edit operations.

For the GEDEnA problem, the graphs are the same as in Definition 1, except
that the attribute set for edges is empty (i.e. LE = {φ}). Consequently, the costs
of edge edit operations are 0 for substitution and a constant for insertion and
deletion (i.e. `(e → f) = 0, `(e → ε) = `(ε → f) = τ , ∀e ∈ E; f ∈ E′ and
τ ∈ R+).

MILP JH is a model proposed in [6] that solves the GEDEnA problem. The
main idea consists in determining the permutation matrix minimizing the L1

norm of the difference between the adjacency matrix of the input graph and the
permuted adjacency matrix of the target one. The details about the construction
of the model can be found in [6]. The model is as follows:

min
x,s,t∈{0,1}N×N

(
f(x, s, t) =

N∑
i=1

N∑
j=1

`
(
µ(ui), µ

′(vj)
)
xij +

(
1

2
· τ · (sij + tij)

))
(2)

such that

N∑
k=1

Aikxkj −
N∑
c=1

xicA
′
cj + sij − tij = 0 ∀i, j ∈ {1, 2, ..., N} (3)
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Fig. 1. Local branching flow. a) depicts the left and right branching. b) shows the
neighborhoods in the solution space

N∑
i=1

xik =

N∑
j=1

xkj = 1 ∀k ∈ {1, 2, ..., N} (4)

where A and A′ are the adjacency matrices of graphs G and G′ respectively,
` : (µ(ui), µ

′(vj))→ R+ is the cost function that measures the distance between
two vertices attributes. Variables x, s and t, are permutation matrices of size
N × N , and of boolean type, with N = |V | + |V ′|. Matrix x represents the
vertices matching, i.e. xij = 1 means a vertex i ∈ V ∪ {ε} is matched with
vertex j ∈ V ′ ∪ {ε}. While s and t are for edges matching. Hence, the objective
function (Eq. 2) minimizes both, the cost of vertices and edges matching. As
for constraint 3, it is to make sure that when matching two couples of vertices,
the edges between each couple have to be mapped. Constraint 4 guarantees the
integrity of x i.e. every row and column contains precisely a single 1. Therefore,
one vertex in G can be only matched with one vertex in G′.

3 A Local Branching Heuristic for the GEDEnA problem

In this section, the main features of the local branching heuristic are explained
as presented originally in [5], with improvements suggested to the GEDEnA

problem outlined when appropriate.
Local branching is a metaheuristic that involves the solution of a MILP model

to perform a local search and explore the neighborhoods of promising solutions
by means of a branching scheme. In addition, it involves mechanisms such as
intensification and diversification. Starting from an initial solution x0, it defines
the k-opt neighborhood N(x0, k), with k a given integer: the neighborhood set
N(x0, k) contains the solutions that are within a distance no more than k from
x0 (in the sense of the Hamming distance). This implies adding the following
local branching constraint to the base MILP JH model:

∆(x, x0) =
∑

(i,j)∈S0

(1− xij) +
∑

(i,j)/∈S0

xij ≤ k (5)
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with, S0 = {(i, j) : x0ij = 1}. This new model is then solved leading to the

search of the best solution in N(x0, k). This phase corresponds to intensifying
the search in a neighborhood, e.g. node 2 in Fig. 1-a. If a new solution x1 is
found, the constraint (5) is replaced by ∆(x, x0) ≥ k+1 (node 3 in Fig. 1-a). This
constraint makes sure that visited solutions (e.g. x0) will not be selected twice.
Next, a new constraint 5 is added but now with x1 to explore its neighborhood.
The process is repeated until a stopping criterion is met, e.g. a total time limit
is reached. Moreover, Solving the restricted MILP (with constraint 5) might
not return a better solution because the search neighborhood is still big and
the node time limit imposed, is reached. For instance, assuming that at node
6 (Fig. 1-a) the solution of model MILP JH plus equation ∆(x, x2) ≤ k does
not lead to a feasible and improved solution in the given time limit. Then, it
might be interesting to apply a complementary intensification phase, by adding
constraint ∆(x, x2) ≤ k/2 and by solving the new model. If again, no feasible
solution is found (e.g. node 7 of Fig. 1-a), then a diversification phase is applied
to skip the current region and find another in the solution space (e.g. node 8).
The diversification step applied here is different from the original one proposed
in [5] and is detailed in the next paragraph. Fig. 1-b shows the evolution of
the solution search and the neighborhoods. It is worth mentioning that in the
original local branching version, the local branching constraint includes all the
binary variables. However in this version, only xij variables in MILP JH , which
represent only the vertices matching, are considered. This is due to the fact that
matching vertices is the core problem in the GEDEnA, and edge matching can
easily be deduced after the vertices are matched.

Another improvement to the heuristic is the diversification mechanism, in
which only a subset of important xij ’s is included in the local branching con-
straint:

∆′(x, xp) =
∑

(i,j)∈Sp
imp

(1− xij) +
∑

(i,j)/∈Sp
imp

xij ≥ k dv (6)

with Bimp the index set of binary important variables and Spimp = {(i, j) ∈
Bimp : xpij = 1}. The selection of these variables is based on the assumption that
one variable is considered important if changing its value from 1 → 0 (or the
opposite) highly impacts the objective function value. Forcing the solver to find
a new solution that changes the values of these variables, enables changing the
explored search space. Consequently, Bimp is defined as follows: i) it computes
a special cost matrix [Mij ] for each possible assignment of a vertex ui ∈ V ∪{ε},
to a vertex vj ∈ V ′∪{ε}. Each value Mij = cij + θij , where cij is the vertex edit
operation cost induced by assigning vertex ui to vertex vj , and θij is the cost of
assigning the set of edges Ei = {(ui, w) ∈ E} to Ej = {(vj , w′) ∈ E′}. This as-
signment problem, of size max(|Ei|, |Ej |)×max(|Ei|, |Ej |), is solved by the Hun-
garian algorithm [8] which requires O(max(|Ei|, |Ej |)3) time. ii) the standard
deviation is computed at each row of [Mij ], resulting in a vector σ = [σ1, ..., σ|V |].
Basically, the σi’s with high values indicate that the variables that represent
assignments with vertex ui have impact on the objective function value more
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than the other variables. iii) To select ui vertices, the values of the vector σ
are split into two clusters Cmin and Cmax, using a simple clustering algorithm.
iv) Finally, for every σi belonging to Cmax cluster, the indices of all the bi-
nary variables xij that correspond to the assignments of vertex ui are added to
Bimp. Consequently, the local structure of a vertex is considered to assess its
influence on the objective function value. This version of the diversification is
more efficient that the original one proposed by [5], because mainly it includes
information about the instance at hand.

S 10 20 30 40 50 60 70 Mixed
LocBra tavg 0.17 1.12 212.36 364.86 580.04 753.48 751.44 332.32

davg 0.00 0.00 0.00 0.06 0.02 0.17 0.59 0.04
ηI 100 100 100 98 99 93 79 95

CPLEX-900 tavg 0.13 1.02 141.07 247.80 451.40 723.68 745.91 305.72
davg 0.00 0.00 0.00 0.00 0.30 0.55 1.05 0.12
ηI 100 100 100 100 90 81 68 95

BeamSearch-5 tavg 0.00 0.00 0.01 0.03 0.07 0.11 0.18 0.09
davg 15.17 36.60 47.21 58.69 72.13 62.96 68.71 21.20
ηI 35 10 10 10 10 10 10 12

SBPBeam-5 tavg 0.01 0.10 0.45 1.37 3.19 5.56 10.72 3.38
davg 20.43 44.90 76.45 82.54 98.90 95.02 94.62 27.16
ηI 15 10 10 10 10 10 10 10

IPFP-10 tavg 0.01 0.06 0.20 0.30 0.39 0.66 1.05 0.46
davg 3.44 10.84 18.31 21.34 22.59 25.9 27.63 7.45
ηI 69 28 14 11 10 10 10 19

GNCCP-0.1 tavg 0.16 1.30 4.77 11.78 22.08 72.29 111.30 28.53
davg 13.29 22.00 26.93 21.69 31.46 21.99 27.61 10.66
ηI 57 35 6 6 5 9 4 17

Table 1. LocBra vs. literature heuristics on MUTA instances

4 Computational Experiments

Instances and experiment settings. The conducted experiments have been
done on reference databases from the Pattern Recognition community, where re-
searches have introduced the graph matching problems. One database of chem-
ical molecules is selected: MUTA [1]. It contains different subsets of small and
large graphs and is known to be difficult to solve. It has 7 subsets, each of which
has 10 graphs of same size (10 to 70 vertices), plus one more subset of 10 graphs of
mixed sizes. Each pair of graphs is considered as an instance. Therefore, MUTA
has a total of 800 instances (100 per subset).

To solve the MILP JH , solver CPLEX 12.6.0 is used, and LocBra algorithm
is implemented in C language. The tests were executed on a machine with the
following configuration: Windows 7 (64-bit), Intel Xeon E5 4 cores and 8 GB
RAM.

Comparative heuristics. LocBra is evaluated against the following heuris-
tics from the literature: BeamSearch-α [9], SBPBeam-α [4], IPFP-it and GNCCP-
d [2]. In addition and since LocBra uses CPLEX with a time limit, it is interesting
to study the performance of the solver itself with the same time limit in order to
see whether the proposed heuristic actually improves the solution of the problem:
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S 10 20 30 40 50 60 70 Mixed
LocBra tavg 0.17 1.12 212.36 364.86 580.04 753.48 751.44 332.32

davg 0.00 0.00 0.00 0.02 0.02 0.13 0.54 0.04
ηI 100 100 100 99 99 94 80 97

BeamSearch-15000 tavg 8.57 80.65 167.48 279.11 439.68 640.29 938.66 828.52
davg 1.35 26.66 47.45 52.29 63.98 62.51 63.71 -
ηI 88 12 10 10 10 10 10 -

SBPBeam-400 tavg 0.84 10.02 47.65 139.75 322.43 590.86 1155 326.64
davg 20.43 44.90 76.45 82.45 98.90 94.94 94.54 26.95
ηI 15 10 10 10 10 10 10 10

IPFP-20000 tavg 1.20 9.62 48.90 115.14 240.54 528.82 903 303.21
davg 3.44 10.18 16.45 17.17 19.00 18.99 20.70 6.03
ηI 69 29 14 11 10 10 10 21

GNCCP-0.03 tavg 0.55 6.41 29.80 81.24 195.89 396.37 946.25 185.55
davg 3.23 6.67 17.20 15.74 18.38 16.12 18.17 5.13
ηI 81 34 4 6 5 9 5 17

Table 2. LocBra vs. literature heuristics with extended running time on MUTA in-
stances

this heuristic is referred to as CPLEX-t. LocBra is applied on all instances with
the following parameter values: k = 20, k dv = 30, total time limit = 900s,
node time limit = 180s. Similarly, t is set to 900s for CPLEX-t. For the liter-
ature heuristics, which are known to converge fast without having a time limit
parameter, two versions are considered. The default versions are the heuristics
with the default parameter values as they were originally defined, while the ex-
tended versions are with different parameter values that extend their running
time to reach about 900s on the average. The reason behind this, is to evaluate
the quality of the solutions computed by the heuristics when giving the same
running time as LocBra. Therefore, the heuristics with default parameters are:
BeamSearch-5, SBPBeam-5, IPFP-10 and GNCCP-0.1. The extended versions:
BeamSearch-15000, SBPBeam-400, IPFP-20000 and GNCCP-0.03. All param-
eter values are set based on preliminary experiments that are not shown here.

For each heuristic, the following values are computed for each subset of
graphs: tavg is the average CPU time in seconds for all instances, davg is the
deviation percentages between the solutions obtained by one heuristic, and the
best solutions found. Given an instance I and a heuristic H, the deviation per-

centage is equal to
solutionH

I −bestSolutionI

bestSolutionI
× 100, with bestSolutionI the smallest

solution value found by all heuristics for I. Lastly, ηI is the number of instances
for which a given heuristic has found the best solutions.

Results and analysis. Table 1 shows the results of the heuristics with their
default parameter values. Considering the davg metric, LocBra and CPLEX-900
seem to have scored the lowest values among the heuristics. LocBra performed
better on hard instances (subsets 50, 60 and 70), than CPLEX-900. The highest
value obtained by LocBra is 0.59%, which means it computed the best/smallest
solutions. The same conclusion is seen when looking at the ηI values. The litera-
ture heuristics are strongly outperformed by LocBra with very high davg values.
However, in terms of CPU time, BeamSearch-5 seems to be the fastest with
smallest tavg values. On the other hand, Table 2 reports the results obtained by
the extended versions of the heuristics. Again, LocBra appears to be the best
heuristic in terms of of deviations (always less than 0.6%).
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5 Conclusions

This work presents a local branching heuristic for the GEDEnA problem, which
significantly improves the literature heuristics and provides near optimal so-
lutions. An important factor is the diversification procedure that is problem
dependent and really helps escaping local optima. Next, more techniques will
be investigated in order to boost the solution of the method and also to allow
dealing with graphs that have attributes on their edges.
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