
HAL Id: hal-01717680
https://hal.science/hal-01717680

Submitted on 8 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analytical expressions for primary Bjerknes force on
inertial cavitation bubbles

Olivier Louisnard

To cite this version:
Olivier Louisnard. Analytical expressions for primary Bjerknes force on inertial cavitation bubbles.
Physical Review E , 2008, 78 (3, 2), �10.1103/PhysRevE.78.036322�. �hal-01717680�

https://hal.science/hal-01717680
https://hal.archives-ouvertes.fr


ar
X

iv
:1

30
2.

58
38

v1
  [

ph
ys

ic
s.

fl
u-

dy
n]

  2
3 

Fe
b 

20
13

Analytical expressions for primary Bjerknes force on inertial cavitation bubbles.
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(Dated: September 22, 2018)

The primary Bjerknes force is responsible for the quick translational motion of radially oscillating
bubbles in a sound field. The problem is classical in the case of small-amplitude oscillations, for
which an analytical expression of the force can be easily obtained, and predicts attraction of sub-
resonant bubbles by pressure antinodes. But for high-amplitude sound fields, the bubbles undergo
large amplitude nonlinear oscillations, so that no analytical expression of the force is available in
this case. The bubble dynamics is approximated on physical grounds, following the method of
Hilgenfeldt et al. [J. Fluid Mech., 365, 171 (1998)], but carefully accounting for surface tension.
The analytical expression of the maximum radius of the bubble is recovered, the time of maximum
expansion is noticeably refined, and an estimation of the collapse-time is found. An analytical
expression for the time-varying bubble volume is deduced, and the Bjerknes force is obtained in
closed form. The result is valid for any shape of the sound field, including purely standing or purely
traveling waves, and is ready to use in a theoretical model of bubble clouds evolution. Besides, the
well-known sign inversion of the Bjerknes force for large standing waves is recovered and the inversion
threshold in the parameter space is obtained analytically. The results are in good agreement with
numerical simulation and allow a quantitative assessment of the physical parameters effect. It
is found that either reducing surface tension, or increasing the static pressure, should produce a
widening of the bubble-free region near high-amplitude pressure antinodes.

PACS numbers: 47.55.dd, 43.35.Ei

I. INTRODUCTION

When excited by a sinusoidal sound field, gas bubbles
undergo radial oscillations. Most of the practical appli-
cations of this phenomenon, known as acoustic cavita-
tion, use high-amplitude sound fields, of typical ampli-
tude greater than the static pressure, so that the liq-
uid is under tension for some part of the cycle. In such
conditions, whatever the frequency, two distinct dynamic
bubble behaviors can be clearly divided by the so-called
Blake threshold [1–4]: in the tension phase, very small
bubbles are retained to grow by surface tension. Con-
versely, larger ones suffer an explosive expansion followed
by a violent collapse, responsible for chemical [5], me-
chanical effects [6, 7] and sonoluminescence [8–10]. The
latter oscillation regime is known as “inertial cavitation”.

Bubbles in liquids experience various hydrodynamic
forces. The buoyancy force is the most familiar one, and
is the pressure force that an sphere of liquid replacing
the bubble would experience. This remains true in a ac-
celerating liquid [11], and the generalized buoyancy force
experienced by the bubble is −V∇P where P(r, t) is the
pressure that would exist at the center of the bubble if it
were absent, and V (t) the bubble volume. For a bubble
oscillating radially in a sound field, both P(r, t) and V (t)
are oscillatory quantities so that the time-average of the
product over one cycle is not zero. The bubbles experi-
ences therefore a net force known as “primary Bjerknes
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force” [12, 13]:

FB = −〈V∇P〉 (1)

The Bjerknes force can be easily calculated from the
knowledge of both the shape of the sound field and the
bubble dynamics. A classical result is that for low-
amplitude standing waves, sub-resonant bubbles are at-
tracted by pressure antinodes, while bubbles larger than
resonant size are repelled [14–16]. For the case of strong
driving pressures, sub-resonant inertial bubbles can also
be attracted by pressure antinodes, which constitutes the
basic principle of SBSL levitation cells [8, 17]. How-
ever it has been shown by numerical calculations that
above a given threshold, the primary Bjerknes force on
sub-resonant inertial bubbles undergoes a sign change
[18]. This behavior is due to the resonance-like re-
sponse curve (termed as “giant resonance” by Lauterborn
and co-workers [19]) of the bubble just above the Blake
threshold, which is a physical consequence of the effect
of surface tension. Experiments indeed demonstrate that
above a certain driving level, no bubbles are visible in the
neighborhood of large pressure antinodes [20].
Quantitative agreement between theory and experi-

ment has been found in the case of linear or quasi-linear
oscillations [15]. Particle simulations [20, 21] were also
found in excellent agreement with recent experiments in-
volving inertial bubbles [22]. While the Bjerknes force
can be calculated analytically for linear bubble oscilla-
tions, only numerical results can yet be found for inertial
bubbles [18, 23]. An analytical expression for the latter
would first be helpful in particle or continuum models,
describing the self-organization of bubbles, in order to
get more efficient calculations. Furthermore, analytical
results allow a direct assessment of the sensitivity of the
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force to the physical parameters, and the establishment of
scaling laws. These two objectives motivated this study.

Owing to the strong nonlinearity of the bubble dynam-
ics equations, inertial cavitation has long been thought
intractable analytically, up to the seminal papers of
Löfstedt et al. [24] and Hilgenfeldt et al. [1], who demon-
strated that several terms of the Rayleigh-Plesset equa-
tion (RP) could be neglected during the explosive ex-
pansion of the bubble. This theoretical breakthrough
allowed to obtain scaling laws for the maximum radius
of the bubble and the time of maximum expansion. In
this paper, we closely follow the approach of Hilgenfeldt
et al. [1] and refine their analytical solutions in order to
account more precisely for the effect of surface tension.
The approximate dynamics found are then used to ob-
tain an analytical expression of the bubble volume. The
latter are then conveniently recast in order to obtain the
Bjerknes force (1) in closed form, in any acoustic field,
including the two extreme cases of traveling and standing
waves. Finally, in the latter case, we seek an approximate
expression of the Bjerknes force inversion threshold, evi-
dencing the role of surface tension.

II. PRIMARY BJERKNES FORCE

A. Acoustic field

We assume that the acoustic field in the liquid is mono-
harmonic at angular frequency ω, and defined in any
point r by

P(r, t) = P (r) cos [ωt+ φ(r)] . (2)

This expression may represent a traveling wave, a stand-
ing wave, or any combination of both. We also define the
pressure gradient in general form as

∂P
∂xi

(r, t) = Gi(r) cos [ωt+ ψi(r)] , (3)

where the fields Gi and ψi can be expressed as functions
of P and φ once the acoustic field is known. The following
two extreme cases deserve special consideration:

• for a standing wave, φ(r) = φ0, so that Gi(r) =
∂P/∂xi and ψi(r) = φ0,

• for a traveling wave, P (r) = P0 and φ(r) = −k.r
so that Gi(r) = kiP0 and ψi(r) = φ(r)− π/2.

B. Bubble model

The radial oscillations of a gas bubble in a liquid under
the action of the sound field can be described by the

Rayleigh-Plesset (RP) equation [1, 25–27]:

RR̈+
3

2
Ṙ2 =

1

ρ

[

pg +
R

cl

dpg
dt

− 4µ
Ṙ

R

− 2σ

R
− (p0 + P(t))

]

,

(4)

where p0 is the hydrostatic pressure, pg(t) is the gas pres-
sure, ρ, µ and cl are the density, viscosity and sound
speed of the liquid, respectively, and σ is the surface ten-
sion. The ambient radius of the bubble R0 is the radius
that would have the gas the in absence of the sound field.

Time is non-dimensionalized by the angular frequency
ω, and in order to obtain a formulation consistent with
Ref. 1, we set

p0 + P(r, t) = p0(1− p cosx), (5)

so that

p = P (r)/p0 (6)

x = ωt+ φ(r)− π. (7)

Using x as the time-variable, and non-dimensionalizing
pressure with p0, equation (4) can be written as:

RR′′ +
3

2
R′2 =

R2
res

3

[

p∗g +
Rω

cl

dp∗g
dx

− 4µω

p0

R′

R

− αS
R0

R
+ p cosx− 1

]

,

(8)

where primed variables denotes d/dx,

Rres = ω−1(3p0/ρ)
1/2 (9)

is the resonance radius, and

αS = 2σ/p0R0 (10)

is the dimensionless Laplace tension.

Several models can be used for the bubble internal
pressure pg, [10, 28–32]. As will be seen below, we are
mainly interested here in the expansion phase of the bub-
ble, during which the density of the gas in the bubble
remains weak, so that the precise choice of the thermal
bubble interior’s model is unimportant. However, in or-
der to assess the validity of the approximate expressions
developed hereafter, simulations will be performed by us-
ing the Keller equation [33, 34]. The bubble interior
is modeled by using a thermal diffusion layer following
Ref. 32, neglecting water evaporation and condensation
through the bubble wall. In the remaining part of the
paper, we will consider air bubbles in water (σ = 0.072
N.m−1, p0 = 101300 Pa, ρ = 1000 kg.m−3, cl = 1498
m.s−1, µ = 10−3 Pa.s).
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C. The Bjerknes force

The primary Bjerknes force acting on a bubble is de-
fined as

FB = −〈V (t)∇P〉 , (11)

where V (t) is the instantaneous bubble volume. The av-
erage is taken over one acoustic period, so that, using
Eq. (3):

FBi = −Gi(r)
1

T

∫ T

0

V (t) cos [ωt+ ψi(r)] dt. (12)

Using the dimensionless time x defined by (7) and the
periodicity of V , the latter expression becomes

FB i = Gi(r)
1

2π

∫ 2π

0

V (x) cos [x− φ(r) + ψi(r)] dx.

(13)
The generic problem is therefore to obtain an approx-

imate analytical expression for the integral

I =
1

2π

∫ 2π

0

V (x) cos (x− x0) dx, (14)

valid for any bubble dynamics, and for any value of x0.
The problem can be easily solved for small-amplitude lin-
ear oscillations [16]. Here, we focus on the case of inertial
oscillations, that is for any combination of parameters
(p,R0) above the Blake threshold. The special cases of
standing waves and traveling waves can be simply recov-
ered by setting, respectively, x0 = 0 and x0 = π/2.

III. APPROXIMATE EXPRESSIONS

A. Bubble radius

The method used to obtain analytical formula for the
bubble radius are mainly inspired from the approach of
Hilgenfeldt et al. [1]. For self-consistency, we will recall
in this section the main lines of the method, and, where
convenient, specify the refinements obtained by our ap-
proach.
Figure 1 displays the dimensionless bubble radius (1a),

bubble volume (1b), and driving pressure (1c) in a typical
case of inertial cavitation of (f = 20 kHz, R0 = 3 µm,
and p = 1.4). With the choice of the dimensionless time-
variable Eq. (5), x = 0 represents the time of maximum
tension of the liquid. We set

x+ = acos
1

p
, (15)

and we denote by xm the time of maximum expansion of
the bubble, and by xc the time of its maximum compres-
sion (see Fig. 1).
It is shown in Ref. 1 that, during the expansion phase

and most of the collapse phase, the dominant terms in
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FIG. 1: (a) Dimensionless bubble radius R/R0; (b) Dimen-
sionless bubble volume (R/R0)

3; (c) Dimensionless driving
pressure 1− p cos x. The case considered is a 3 µm air bubble
in water and p = 1.4. The times −x+ and x+ are the two in-
stants of zero-crossing of the driving pressure, xm is the time
of maximum expansion of the bubble, and xc the time of max-
imum compression. The dashed curve in (a) represents the
approximate dynamics given by Eqs. (21), (22). The dashed
line in (b) is the final approximation of the bubble volume
(36)-(42).

the right-hand-side of Rayleigh equation are the driving
term p cosx−1 and also the surface tension term αSR0/R
for ambient radii just above the Blake threshold. Fol-
lowing Ref. 1, we neglect the dependence of the surface
tension term in R , and replace αSR0/R by αS/K(p),
where K(p) will be determined later. The approximate
Rayleigh equation becomes

RR′′ +
3

2
R′2 =

R2
res

3

[

p cosx−
(

1 +
αS

K(p)

)]

. (16)

We set, for further use

A = 1 +
αS

K(p)
. (17)

Besides, noting that

RR′′ +R′2 = 1/2
d2(R2)

dx2
, (18)

the right-hand side of Rayleigh equation can be written
in two different forms:

RR′′ +
3

2
R′2 =

1

2

d2(R2)

dx2
+

1

2
Ṙ2

=
3

4

d2(R2)

dx2
− 1

2
RR̈.
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Numerical simulations show that Ṙ2 ≫ RR̈ on the
interval [−x+, x+], while Ṙ2 ≪ RR̈ holds on the inter-
val [x+, xm] [1]. Additionally, we found that the latter
property still holds in fact during almost all the collapse,
except in its ultimate phase, where the gas and acoustic
terms become significant again. This could be expected
since the main part of the collapse is inertially driven
and that Ṙ becomes significant only when the liquid has
acquired enough kinetic energy. We therefore obtain the
following equations for the bubble radius, over the inter-
val [−x+, xc]:

d2(R2)

dx2
=

4

9
R2

res (p cosx−A) on [−x+, x+], (19)

d2(R2)

dx2
=

2

3
R2

res (p cosx−A) on [x+, xc]. (20)

These equations are the same as the ones of Hilgenfeldt
et al. [1], except that the validity of the second is ex-
tended up to xc. The first equation can be solved with
the initial condition R(−x+) = ζR0,where ζ ≃ 1.6 and

Ṙ(−x+) ≃ R(−x+) [1]. The second equation is solved
by requiring continuity of R(x) and R′(x) at x = x+.
Integrating both equations twice, we obtain:

R2
−
(x) =

4

9
R2

res

[

1− p cosx+ p(x+ x+) sinx+

− A

2
(x+ x+)

2

]

+ ζ2R2
0 [1 + 2 (x+ x+)] ,

(21)

and

R2
+(x) =

2

3
R2

res

[

1− p cosx+ p
(x

3
+ x+

)

sinx+

− A

2

(

x2 + x2+ +
2

3
x+x

)]

+ ζ2R2
0 [1 + 2 (x+ x+)] .

(22)

The point (xm, Rmax) of maximum expansion is ob-
tained by setting d(R2

+)/dx = 0, so that xm is given in
implicit form by

p sinxm − xm +
1

3
(p sinx+ − x+)

− αS

K(p)

(

xm +
1

3
x+

)

+ 3ζ2
(

R0

Rres

)2

= 0,

(23)

and Rmax reads

R2
max = R2

0f(p, xm)

+R2
res

[

g(p, xm)− 2

3

αS

K(p)
h(p, xm)

]

,
(24)

where

f(p, xm) = ζ2 [1 + 2 (xm + x+)] , (25)

g(p, xm) =
2

3

[

1− p cosxm + p
(xm

3
+ x+

)

sinx+

−1

2

(

x2m + x2+ +
2

3
x+xm

)]

, (26)

h(p, xm) =
1

2

(

x2m + x2+ +
2

3
x+xm

)

. (27)

In order to obtain xm, the implicit equation (23) should
be solved. To avoid this, Hilgenfeldt and co-workers [1]
developed this equation near π/2 at first order, neglecting
on the one hand αS/K(p), and also (R0/Rres)

2, which
is appropriate for driving the bubble at low frequencies.
They obtain

xm0
= p+

1

3
(p sinx+ − x+) , (28)

which can be further simplified as xm = p, if p is small
enough. Plugging the latter into Eqs. (24)-(27), they
obtain an expression of Rmax which depends on R0 only
through the αS term in (24). The expression of K(p) is
then determined by using the fact, confirmed numerically,
that the maximum of the response curve (Rmax/R0)(R0)
is obtained for an ambient radius RC

0 very close to the
Blake threshold

∂

∂R0

(

Rmax(p,R0)

R0

)

= 0

for R0 = Rc
0 =

4
√
3

9

σ

p0

1

p− 1
. (29)

This scheme yields a good approximation for Rmax, which
was the main objective of Hilgenfeldt and co-workers [1],
but the approximation (28) of xm yields a rather large
error (see dotted line in Fig. 2 and [41]). Since the value
of the integral (14) is found to be very sensitive to the
precise location of xm, we seek a better approximation.
We therefore revert to the original equations (23)-(27).

The main difficulty lies in the presence of the αS term
in (23), which makes rigorously xm a function of both
p and R0. Thus Rmax depends not only on R0 through
αS but also through xm in the expressions of f , g and h.
The condition (29) therefore becomes more complex, and
should be solved simultaneously with (23). We initially
followed this complex process, but finally found that a
better approximation of xm could be obtained by using
a simple trick. First, as was done in Ref. 35, we neglect
the αS term in (23) and develop the latter near π/2, but
up to second order :

xm1
=

π

2
− 1

p
+

1

p

{

1 + 2p

×
[

xm0
− π

2
+ 3ζ2

(

R0

Rres

)2]}1/2

. (30)
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For low frequency driving, R0 ≪ Rres, and xm1
depends

only slightly on R0. We then plug (30) in Eqs (24)-(27)
and express the condition (29), neglecting ∂xm/∂R0, to
obtain

K1(p) =
x2m1

+ x2+ + 2

3
x+xm1

g(p, xm1
)

9

4
√
3
(p− 1). (31)

We now expand again (23) near π/2, but keeping the αS

term, in which we set K = K1(p), to obtain

xm2
=

π

2
− A1

p
+

1

p

{

A2
1 + 2p

×
[

xm0
−A1

π

2
+ (1−A1)

x+
3

+

3ζ2
(

R0

Rres

)2]}1/2

, (32)

where

A1 = 1 +
αS

K1(p)
. (33)

Setting A1 = 1 in xm2
, that is, neglecting the effect of

surface tension, the result of Ref. 35, Eq. (30), is recov-
ered.
Figure 2 represents the variations of xm for a bub-

ble of ambient radius R0 = 1 µm (fig. 2.a) and R0 = 3
µm (fig. 2.b) in water. The thick solid lines are the ex-
act value obtained numerically, and the thin solid lines
represent xm2

. The agreement is seen to be excellent,
although a noticeable difference can be seen for R0 = 1
µm, which originates from the over-simplification done
when accounting for surface tension by the simple term
αS/K(p) in Eq. (16). Also shown is the approximation
xm1

(dash-dotted line), which does not take surface ten-
sion into account. This clearly introduces an noticeable
error on xm, reasonably corrected by Eq. (32). Finally,
the approximation xm = p proposed in Ref. [1] is dis-
played (dotted line).
Finally, the approximation of Rmax can then easily

be obtained by plugging an approximation of xm into
Eq. (24). This was done in Ref. 35 using xm1

, and an ex-
cellent agreement was found. The gain brought by using
xm2

instead of xm1
in (24) remains unimportant, and for

brevity, we do not present the comparison between the
analytical and numerical expressions of Rmax here.

B. Bubble volume

Approximations of the bubble volume could readily be
obtained from the approximations (21), (22) of the bub-
ble radius. However, such expressions do not yield ana-
lytical expressions of the integral (14) in closed form, and
further approximations are therefore required. First, we
consider frequencies low enough to have Rres ≫ R0, so
that the ζ term can be safely neglected in equations (21)-
(22).

1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

4

1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

4
ba

p

xc

xm

p

FIG. 2: Thick solid line: xm calculated from numerical so-
lutions of equation (4); Thin solid line: xm2

from Eq. (32);
Dash-dotted line: xm1

from Eq. (30) (ref. [35]); dotted line :
xm = p (ref. [1]). Thick dashed line: xc calculated from nu-
merical solutions of equation (4); Thin dashed line: xc from
Eq. (43). The results are calculated for a bubble of ambient
radius R0 = 1 µm (a), and R0 = 3 µm (b).

1. Approximate expression on [−x+, x+]

Numerical simulations demonstrate that R− is almost
linear between 0 and x+ (Fig. 1.a), which suggests that
Eq. (21) is almost a perfect square in this interval. We
then develop the cos term in (21) near x = 0 up to second
order, and write the result as

R2
−
(x) =

4

9
R2

res

{

p−A

2

[

x+
p sinx+ −Ax+

p−A

]2

+ px+ sinx+ − A

2
x2+ + 1− p

− (p sinx+ −Ax+)
2

2(p−A)

}

(34)

For R− to be linear in x, the constant term in the bracket
must be negligible, so that R− can be simplified as

R−(x) =
2

3
Rres

√

p−A

2

(

x− Ax+ − p sinx+
p−A

)

. (35)

The expression of the bubble volume on [−x+, x+] there-
fore reads

V−(x) =

(

2

3
Rres

√

p−A

2

)3

(x− x1)
3, (36)

where

x1 =
Ax+ − p sinx+

p−A
, (37)

which allows to calculate integral (14) in closed form.
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2. Approximate expression on [x+, xc]

Using equations (23) and (24), it can be easily checked
that, setting y = x − xm, the expression (22) of R+ can
be recast as:

R2
+ = R2

max +
2

3
R2

resL(y), (38)

where

L(y) = 2p cosxm sin2
y

2
− A

y2

2
+p sinxm (sin y − y) . (39)

The bubble volume on [x+, xc] becomes therefore

V+ = R3
max

[

1 +
2

3

(

Rres

Rmax

)2

L(y)

]3/2

, (40)

which unfortunately does not yield an explicit integration
of (14). Further progress can be done by noting that,
from Eq. (24), Rres and Rmax are of the same order of
magnitude, and that from (39), L(y) = O(y2) near y = 0.
Equation (40) can therefore be approximated by

V+ = R3
max

[

1 +

(

Rres

Rmax

)2

L(y) +O(y4)

]

. (41)

Thus, to the same order of approximation, L(y) can
be replaced by any equivalent expression up to order
4 in y, and the choice must be directed by the ability
of V+ cos(x − x0) to be integrable in closed form. We
therefore choose to set y2/2 = sin2(y/2) + O(y4) and
sin y − y = −1/6 sin3 y + O(y5) in Eq. (39) to finally
obtain:

V+(x) = R3
max +RmaxR

2
res

[

2(p cosxm −A) sin2
y

2

−1

6
p sinxm sin3 y

]

+O(y4), (42)

which can now yield an explicit expression for integral
(14).

It can further be noted that neglecting the sin3 y term
in the square bracket, and setting sin2 y

2
≃ y2/4, V+ is

found to be zero for

yc = xc − xm =
Rmax

Rres

(

2

A− p cosxm

)1/2

, (43)

which constitutes a simple approximation of the collapse-
time. The comparison between this expression and the
exact instant of minimum radius is visible in Fig. 2
(dashed lines). Here again, an excellent agreement is
found, but deteriorates toward small bubble radii.

IV. BJERKNES FORCE

A. Analytical expression

With the expressions of the bubble volume (36)
and (42) at hand, the integral (14) can be calculated
in analytical form, keeping the contribution of the inte-
grand only in the intervals [0, x+] and [x+, xc], since V
can be neglected in the other regions (see Fig. 1.b). The
integral is thus the sum of the two contributions:

I = I− + I+, (44)

where

I− =

∫ x+

0

V−(x) cos (x− x0) dx

, I+ =

∫ xc

x+

V+(x) cos (x− x0) dx.

Using the approximate expressions (36) and (42) of the
bubble volume, integration yields

I− =
8

27
R3

res

(

p−A

2

)3/2

×
[

∆x(∆x2 − 6) sin(x+ − x0)

+3(∆x2 − 2) cos(x+ − x0)

+x1(6 − x21) sinx0 + 3(2− x21) cosx0

]

, (45)

with

∆x = x+ − x1.

The contribution I+ reads

I+ = R3
max [sin(xc − x0)− sin(x+ − x0)]

+RmaxR
2
res

{

1

4
(p cosxm −A)

×
[

f2(yc)− f2(y+)
]

− 1

192
p sinxm [f3(yc)− f3(y+)]

}

, (46)

where

f2(y) = 4 sin(y − y0)− sin(2y − y0)− 2y cos y0,

f3(y) = 2 cos(2y + y0) + cos(4y − y0)

+12y sin y0 − 6 cos(2y − y0),

and

y0 = x0 − xm, y+ = x+ − xm.

The value of I from (44)-(46) is displayed in figure 3
(thick lines) forR0 = 1 µm (Fig. 3a), 3 µm (Fig. 3b), and
6 µm (Fig. 3c), in the case of a standing wave (x0 = 0),
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for drivings ranging from the Blake threshold to p = 2.5.
In order to get a clear picture, I is drawn in logarithmic
scale, the solid part of the curves representing a posi-
tive sign and the dashed part a negative sign. The thin
lines are the results obtained by solving (4) and calcu-
lating (14) numerically, for f = 20 kHz. It is seen that
an excellent agreement is obtained, except for R0 = 1
µm (Fig 3a). Particularly, the point of inversion of the
Bjerknes force is shifted toward large drivings. This fea-
ture originates from the errors induced on the values of
xm, xc (see Fig. 2) and Rmax for small ambient radii,
by replacing the surface tension in the RP equation by
αS/K(p) in (16). It should be noticed that even the small
errors visible on the curves of Fig. 2.a yields large differ-
ences on the estimation of I. This could be expected since
the phase between V and cos(x−x0) crucially influences
the value of integral I.
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FIG. 3: Thick lines: value of I predicted by approximation
(44)-(46), for x0 = 0 (standing wave), for an air bubble in
water, of radius R0 = 1 µm (a), 3 µm (b) and 6 µm (c). The
solid parts of the curves correspond to I > 0 and the dashed
parts to I < 0.

B. Bjerknes force inversion threshold in standing

waves

We consider the case of a standing wave x0 = 0, and
look for an approximate locus in the parameter space
where the Bjerknes force changes sign. Summing equa-

tions (45) and (46), it is seen that integral (14) is zero
for

a3X
3 + a1X + a0 = 0 (47)

where

X =
Rmax

Rres

,

and the coefficients ai depend on

• x+, which is just acos(1/p),

• x1, which from (37) depends on p and αS ,

• xc, which from (43) depends on p, xm, X and αS ,

• xm, which from (32), only depends on p and αS ,
for R0/Rres ≪ 1.

Furthermore, looking at Eq. (24), for R0 ≪ Rres, X =
Rmax/Rres can be written as

X =

[

g(p, xm)− 2

3

αS

K(p)
h(p, xm)

]1/2

, (48)

and from Eqs. (25)-(27) and (30)-(33), still under the
assumption R0 ≪ Rres, the terms g, h in the above
equation depend on R0 only through αS . We conclude
that, provided that R0 ≪ Rres, equation (47) becomes
frequency independent, and can in fact be written in im-
plicit form as

I(αS , p) = 0. (49)

This equation can easily be solved for αS(p), in order to
find the approximate, frequency-independent threshold
for inversion of the Bjerknes force. The solution is pre-
sented in the inset of Fig. (4). Below the curve, I > 0,
so that the Bjerknes force attracts the bubble toward
pressure antinodes, while it becomes repulsive above.
From αS = 2σ/(p0R0), the inversion threshold can also

be plotted in the (R0, p) plane in the case of water at
ambient pressure (σ = 0.072 N.m−1, p0 = 101300 Pa).
The result is displayed in Fig. 4 (thick solid line) and
compared to the exact inversion thresholds calculated
from numerical simulation for three driving frequencies
20 kHz (dash-dotted line), 40 kHz (dashed line), and
80 kHz (thin solid line). The labels on the two latter
curves represent the value of R0/Rres. It is seen that the
above procedure yields a good estimation of the inversion
threshold, up to R0/Rres = 0.1, above which it starts to
diverge from the exact value. The reasons for this dis-
agreement comes from the neglected R0/Rres term in all
expressions, and also from the fact that for increasing
frequency, the bubble rebounds become more important,
so that the bubble dynamics for x > xc also contributes
to expression (14). Besides, a cascade of period-doubling
bifurcations and chaos [19, 36, 37] appear in some cases
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(and are responsible for the noisy oscillations on the 80
kHz curve), so that the correct averaging of the Bjerknes
force in such cases should be carried out over more than
a single acoustic period. We did not pursue further this
issue, since analytical predictions for these bifurcations
are out of the scope of the present paper.
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FIG. 4: Threshold of Bjerknes force inversion in the (R0, p)
plane, for a bubble in water in ambient conditions (σ = 0.072
N.m−1, p0 = 101300 Pa, µ = 10−3 Pa.s). The region I > 0
corresponds to attraction by the pressure antinode, and I < 0
to repulsion. The thin lines are calculated from numerical
simulations of the RP equation. Thin solid line: f = 80
kHz; dashed line: f = 40 kHz; dash-dotted line:f = 20 kHz.
The labels on the curves indicate the ratio R0/Rres (triangles:
f = 80 kHz; filled circles: f = 40 kHz). Thick solid line:
universal threshold calculated from approximate dynamics by
solving (49). Thick dashed line: Blake threshold. The inset
represent the solution of (49) in the (αS, p) plane.

Marginally, it can be seen that the inversion threshold
in the (αS , p) plane is almost linear, so that the following
linear fit (represented by a dashed line in the inset of
Fig. 4) can be proposed for practical applications:

p = 0.269 αS + 1.62. (50)

These results suggest that the inversion threshold is inde-
pendent of frequency, and of the properties of the gas and
liquid other than surface tension, as long as R0/Rres ≪ 1.
This astonishing result originates from the fact that the
Bjerknes force mainly depends on the expansion phase of
the bubble, which, within the approximations leading to
Eq. (16), is merely governed by the driving pressure am-
plitude and surface tension. The reasonably good agree-
ment found in Figs. 2-4 partially supports this analysis.
In order to further investigate this issue, we first recal-

culated the three inversion thresholds of Fig. 4 (f = 20,
40, 80 kHz), replacing the thermal model of Ref. 32 by
an isothermal behavior for the bubble interior. Figure 5

displays the results obtained (thick solid lines) and re-
calls the thresholds calculated in Fig. 4 (thin solid lines).
It can be seen that the thresholds slightly diverge for
increasing R0, but remain almost indistinguishable for
R0/Rres < 0.15 We also repeated the calculations with
the thermal model of Ref. 32, but for argon bubbles (not
shown), and found a negligible deviation from the air
curves. We therefore conclude that the detailed bub-
ble interior has a very weak influence on the expansion
phase, at least for low enough values of R0/Rres, so that
Eq. (50) indeed constitutes a gas-independent law, within
its range of validity.
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2.1

R0 (µm)

p

I < 0

I > 0

FIG. 5: Same as Fig. 4. The thin solid lines are the numerical
curves of Fig. 4 (f = 20, 40, 80 kHz). The thick solid lines
are calculated in the same conditions, except that the gas
behavior is considered isothermal. The thin dashed line is
the analytical threshold calculated from Eq. (49).

Another issue is the sensitivity of the results to the
liquid viscosity. The latter has been neglected in the
analytical approach, when approximating the RP equa-
tion (8) by Eq. (16). The good agreement found in Fig. 4
between analytical and numerical results, calculated for
water at ambient temperature (µ = 10−3 Pa.s), suggests
that for such low values, viscosity indeed plays a minor
role during the bubble expansion. One should however
check whether it is still the case for larger viscosities.
We therefore repeated the calculation of the inversion
threshold for viscosities 10 and 20 times larger than the
one of water (Fig. 6, thick dashed line and thick dash-
dotted line). It is clearly seen that the threshold increases
noticeably with viscosity. Conversely, we also checked
that the result was unaffected by decreasing the viscos-
ity below the water’s one, by computing the threshold
for µ = 0.1µwater (thick solid line). This indicates that
viscous friction plays a non-negligible role in the bubble
expansion for viscosities above some critical value. As al-
ready mentioned in Ref. 1, increasing viscosity decreases
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Rmax, and we also checked that it decreases xm too, so
that, strictly speaking, the Bjerknes force and its inver-
sion threshold are viscosity-dependent. Following our re-
sults, this influence is negligible for viscosities near or
lower than the water’s one, but for slightly larger values,
the viscous term should be kept in the RP equation.

0 2 4 6 8 10
1.5

1.7

1.9

2.1

p

R0 (µm)

FIG. 6: Same as Fig. 4, only for f = 20 kHz, and for different
liquid viscosities. Thin solid line: water (same as dash-dotted
line of Fig. 4); Thick solid line: µ = 0.1µwater; Thick dashed
line: µ = 10µwater; Thick dash-dotted line µ = 20µwater.
The thin dashed line is the analytical threshold calculated
from Eq. (49).

V. DISCUSSION

Important conclusions can be drawn from these re-
sults. Figure 4 shows that the inversion thresholds for
all frequencies (thin lines) asymptotically merge with the
Blake threshold (thick dashed line) for small bubble radii,
and in reasonable agreement with the analytical approx-
imation (thick solid line). Thus, as the driving pressure
reaches, say 1.8 bar, the range of ambient radii of iner-
tial bubbles attracted toward the antinode is suddenly
reduced, with an upper limit lower than 2 µm. This ex-
plains why a well-defined bubble-free region can be ob-
served around the pressure antinode for high amplitude
standing waves [21]. The range of attracted bubbles is
however not void, which suggests that the zone around
the antinode could still be filled with inertial bubbles, of
ambient radii very close to the Blake threshold, but too
small to be visible. As noticed in Ref. [18], in a high am-
plitude standing wave, the Bjerknes force acts as a sorter
of inertial bubbles, leaving the smallest ones approaching
or even reaching the pressure antinodes. The advantage

of the present analysis is that it yields, through Eq. (49),
or its simpler form (50), an explicit classification of the
bubble sizes as a function of the local acoustic pressure,
parametrized by the ratio σ/p0.

As the increasingly small bubbles approach the pres-
sure antinode, they may coalesce or quickly grow by rec-
tified diffusion [35]. Increasing their size, they may again
enter the repulsion zone in the (R0, p) plane and move
back again. This picture is still complicated by the poten-
tial appearance of surface instabilities. Thus, the appar-
ently void region observed around large pressure antin-
odes may be in fact the locus of the complex evolution of
very small bubbles, of sizes close to the Blake threshold.

Finally, it is seen from the inset of Fig. 4 that decreas-
ing αS lowers the driving at which the pressure antinode
becomes repulsive. The dimensionless parameter αS can
be varied experimentally by modifying the surface ten-
sion σ (for example adding ionic salts or surfactants),
or by changing the static pressure p0. The present re-
sults suggest that, for identical bubble ambient radii, the
Bjerknes force would become repulsive for lower drivings,
when either decreasing σ or increasing p0. This should
have an observable effect on the size of the bubble-free
region around the pressure antinode. However, it should
be noted that surface tension also plays a crucial role
for bubbles surface instabilities [10, 38, 39], and also for
rectified diffusion [35], through the same dimensionless
parameter αS . Thus, changing αS may also directly in-
fluence these two processes, with probable consequences
on the bubble cloud behavior. The present result just
demonstrates that surface tension can influence the shape
of the bubble cloud through its direct effect on the bubble
dynamics, and on the primary Bjerknes force.

Figure 6 also indicates that the size of the bubble-
free region around the pressure antinode would decrease
noticeably when increasing viscosity slightly above the
one of water. As mentioned in Ref. 1, this may be eas-
ily achieved experimentally by adding glycerin in water.
Here again, such a macroscopic effect is mediated by the
sensitivity of the bubble dynamics to the physical prop-
erties. To account analytically for this dependence on
viscosity, the viscous term should be kept in the Rayleigh
equation, which renders the approximation scheme more
involved. A generalization of our analytical results to
this case may be addressed in a future study.

Finally, it is highly probable that the same effect of sur-
face tension could be observed on the secondary Bjerknes
force, as suggested by numerical simulations [40]. The
extension of the present analytical method to the lat-
ter effect is difficult, first because the expression of the
secondary Bjerknes force also involves the bubbles veloc-
ities, which are much more sensitive to approximations
than the bubble radius itself, and secondly because the
dynamics equation of the two bubbles must be coupled
by a radiation term.
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