
HAL Id: hal-01717647
https://hal.science/hal-01717647

Submitted on 26 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An ASM Thesis for BSP
Yoann Marquer, Frédéric Gava

To cite this version:
Yoann Marquer, Frédéric Gava. An ASM Thesis for BSP. [Technical Report] Laboratoire
d’Algorithmique, Complexité et Logique, Université Paris-Est Créteil. 2018. �hal-01717647�

https://hal.science/hal-01717647
https://hal.archives-ouvertes.fr

An ASM Thesis for BSP

Yoann Marquer and Frédéric Gava

Laboratory of Algorithms, Complexity and Logic (LACL)
University of Paris-East, Créteil, France

dr.marquer@gmail.com and gava@u-pec.fr

Abstract. The gurevich’s thesis stipulates that sequential abstract state
machines (asms) capture the essence of sequential algorithms. On another
side, the bulk-synchronous parallel (bsp) bridging model is a well known
model for hpc algorithm design. It provides a conceptual bridge between
the physical implementation of the machine and the abstraction available
to a programmer of that machine. The assumptions of the bsp model are
thus provide portable and scalable performance predictions on hpc sys-
tems. We follow gurevich’s thesis and extend the sequential postulates
in order to intuitively and realistically characterise the bsp algorithms.
Key words: bsp, asm, parallel algorithm, hpc, postulates, cost model.

1 Introduction

1.1 Context of the work

Nowadays, hpc (high performance computing) is the norm in many areas but
it remains as difficult to have well defined paradigms and a common vocabulary
as it is in the traditional sequential world. The problem arises from the difficulty
to get a taxonomy of computer architectures and frameworks: there is a zoo of
definitions of systems, languages, paradigms and programming models. Indeed,
in the hpc community, several terms could be used to designate the same thing,
so that misunderstandings are easy. We can cite parallel patterns [5,10] ver-
sus algorithmic skeletons [9]; shared memory (pram) versus thread concurrency
and direct remote access (drma); asynchronous send/received routines (mpi,
http://mpi-forum.org/) versus communicating processes (π-calculus).

In the sequential world, it is easier to classify programming languages within
their paradigm (functional, object oriented, etc.) or by using some properties of
the compilers (statically or dynamically typed, abstract machine or native code
execution). This is mainly due to the fact that there is an overall consensus on
what sequential computing is. For them, formal semantics have been often stud-
ied and there are now many tools for testing, debugging, cost analyzing, software
engineering, etc. In this way, programmers can implement sequential algorithms
using these language. And they characterize well the sequential algorithms.

This consensus is only fair because everyone informally agrees to what con-
stitutes a sequential algorithm. And now, half a century later, there is a growing
interest in defining formally the notion of algorithms [11]. Gurevich introduced
an axiomatic presentation (largely machine independent) of the sequential algo-
rithms in [11]. The main idea is that there is no language that truly represents
all sequential algorithms. In fact, every algorithmic book presents the algorithm

http://mpi-forum.org/

2 Yoann Marquer and Frédéric Gava

in its own way and programming languages give too much detail. An axiomatic
definition [11] of the algorithms has been mapped to the notion of abstract state
machine (asm, a kind of Turing machine with the appropriate level of abstrac-
tion): Every sequential algorithm can be computed by an asm. This allows a
common vocabulary about sequential algorithms. This has been studied by the
asm community for several years.

A parallel computer, or a multi-processor system, is a computer composed
of more than one processor (or unit of computation). It is common to clas-
sify parallel computers (flynn’s taxonomy) by distinguishing them by the way
they access the system memory (shared or distributed). Indeed, the memory
access scheme influences heavily the programming method of a given system.
Distributed memory systems are needed for computations using a large amount
of data which does not fit in the memory of a single machine.

The set of postulates for sequential algorithms has been widely accepted by
the scientific community. Nevertheless, to our knowledge, there is not such a
work for hpc frameworks. First, due to the zoo of (informal) definitions and
second, due to a lack of realistic cost models of common hpc architectures. In
hpc, the cost measurement is not based on the complexity of an algorithm but
is rather on the execution time, measured using empirical benchmarks. Program-
mers are benchmarking load balancing, communication (size of data), etc. Using
such techniques, it is very difficult to explain why one code is faster than an-
other and which one is more suitable for one architecture or another. This is
regrettable because the community is failing to obtain some rigorous definitions
of what hpc algorithms are. There is also a lack of studying algorithmic com-
pleteness of hpc languages. This is the basis from which to specify what can or
cannot be effectively programmed. Finally, taking into account all the features
of all hpc paradigms is a daunting task that is unlikely to be achieved [10].
Instead, a bottom up strategy (from the simplest models to the most complex)
may be a solution that could serve as a basis for more general hpc models.

1.2 Content of the work

Using a bridging model [23] is a first step to this solution because it simplifies
the task of the algorithm design, their programming and simplifies the reasoning
of cost and ensures a better portability from one system to another. In computer
science, a bridging model is thus an abstract model of a computer which provides
a conceptual bridge between the physical implementation of the machine and the
abstraction available to a programmer of that machine. We conscientiously limit
our work to the bulk-synchronous parallel (bsp) bridging model [2,21] because
it has the advantage of being endowed with a simple model of execution. We
leave more complex models to future work. Moreover, there are many different
libraries and languages for programming bsp algorithms. The best known are
the bsplib for c [12] or java [20], bsml [13], pregel [14] for big-data, etc.

Concurrent asms try to capture the more general definition of asynchronous
and distributed computations. We promote a rather different “bottom-up” ap-
proach consisting of restricting the model under consideration, so as to better

An ASM Thesis for BSP 3

take into account the physical architectures and in particular to highlight the
algorithm execution time, which is often too difficult to assess for general models.

As a basis to this work, we must give first an axiomatic definition of bsp
algorithms in the spirit of [11,15]. Basically, four postulates will be necessary.
With such postulates, we can extend the asms of [11] to take into account the
bsp model of computation. Our goal is to define a convincing set of parallel al-
gorithms running in a predictable time and construct a model computing these
algorithms only. This can be summarized by the algoBSP=asmBSP. An inter-
esting and novel point of this work is that the bsp cost model is preserved.

1.3 Outline

The remainder of this paper is structured as follows: In Section 2 we first recall
the bsp model of computation and define the postulates; Secondly, in Section 3,
we give the operational semantics of asmBSP and finally, we give the main re-
sult. Section 4 concludes the paper by giving some questions with their answers
(notably about the related work) and a brief outlook on future work.

2 Characterizing BSP algorithms

2.1 The BSP bridging model of computation

As the ram model provides a unifying approach that can bridge the worlds of
sequential hardware and software, so valiant sought [23] for a unifying model
that could provide an effective (and universal) bridge between parallel hardware
and software. A bridging model [23] allows to reduce the gap between an abstract
execution (programming an algorithm) and concrete parallel systems (using a
compiler and designing/optimizing a physical architecture).

The direct mode bsp model [2,21] is a bridging model that simplifies the pro-
gramming of various parallel architectures using a certain level of abstraction.
The assumptions of the bsp model are to provide portable and scalable perfor-
mance predictions on hpc systems. Without dealing with low-level details of
parallel architectures, the programmer can thus focus on algorithm design. The
bsp bridging model describes a parallel architecture, an execution model, and
a cost model which allows to predict the performance of a bsp algorithm on a
given architecture. We now recall each of them.

A bsp computer can be specified by p computing units (processors), each
capable of performing one elementary operation or accessing a local memory
in one time unit. Processors communicate by sending a data to every other
processor in g time units (gap which reflects network bandwidth inefficiency),
and a barrier mechanism is able to synchronise all the processors in L time
units (“latency” and the ability of the network to deliver messages under a
continuous load). Such values, along with the processor’s speed (e.g. Mflops)
can be empirically determined for each architecture by executing benchmarks.

4 Yoann Marquer and Frédéric Gava

local
computations

p0 p1 p2 p3

communication

barrier

next super-step
...

...
...

...
Fig. 1. A bsp super-step.

The time g is thus for collectively deliv-
ering a 1-relation which is a collective ex-
change where every processor receives/sends
at most one word. The network can deliver
an h-relation in time g × h. A bsp compu-
tation is organized as a sequence of super-
steps (see Fig. 1). During a superstep, the
processors may perform computations on lo-
cal data or send messages to other processors.

Messages are available for processing at their destinations by the next superstep,
and each superstep is ended with the barrier synchronisation of the processors.

The execution time (cost) of a super-step s is the sum of the maximal of
the local processing, the data delivery and the global synchronisation times.
It is expressed by the following formula: Cost(s) = ws + hs × g + L where
ws=max0≤i<p(w

s
i) is the local processing time on processor i during super-step

s and hs = max0≤i<p(h
s
i) and hsi is the maximal number of words transmitted

or received by the processor i. Some papers rather use the sum of words for hsi
but modern networks are capable of sending while receiving data. The total cost
(execution time) of a bsp algorithm is the sum of its super-step costs.

More comments on bsp are available in the appendix (Section B).

2.2 Axiomatic characterization of BSP algorithms

We follow [11] in which states are full instantaneous descriptions of an algorithm
that can be conveniently formalized as first-order structures.

Definition 1 (Structure). A (first-order) structure X is given by:

1. A (potentially infinite) set U(X) called the universe (or domain) of X
2. A finite set of function symbols L(X) called the signature (language) of X
3. For every symbol s ∈ L(X) an interpretation sX such that:

(a) If c has arity 0 then cX is an element of U(X)

(b) If f has an arity α > 0 then f
X

is an application: U(X)α → U(X)

In order to have a uniform presentation [11], we considered constant symbols
in L(X) as 0-ary function symbols, and relation symbols R as their indicator
function χR. Therefore, every symbol in L(X) is a function. Moreover, partial
functions can be implemented with a special symbol undef , and we assume in
this paper that every L(X) contains the boolean type (¬, ∧) and the equality.

Definition 2 (Term). A term of L(X) is defined by induction :

1. If c has arity 0, then c is a term
2. If f has an arity α > 0 and t1, . . . , tα are terms, then f (t1, . . . , tα) is a term

The interpretation t
X of a term t in a structure X is defined by induction on t:

1. If t = c is a constant symbol, then t
X def

= cX

2. If t = f (t1, . . . , tα) where f is a symbol of the language L(X) with arity α > 0

and t1, . . . , tα are terms, then t
X def

= f
X

(t1
X
, . . . , tα

X
)

An ASM Thesis for BSP 5

A formula F is a term with the particular form true | false |R (t1, . . . , tα) |¬F
|(F1∧F2) where R is a relation symbol (ie a function with output true

X or false
X

)

and t1, . . . , tα are terms. We say that a formula is true (resp. false) in X if F
X

=

true
X (resp. false

X
). These notions are fully detailed in the appendix (Section A).

We now define the bsp algorithms as the objects verifying four postulates.
The computation for every processor is done in parallel and step by step.

Postulate 1 (Sequential Time) A bsp algorithm A is given by:

1. A set of states S(A);

2. A set of initial states I(A) ⊆ S(A);

3. A transition function τA : S(A)→ S(A).

An execution of A is a sequence of states
99K
S = S0, S1, S2, . . . such that S0 is an

initial state and for every t ∈ N, St+1 = τA(St).

Instead of defining a set of final states for the algorithms, we will say that
a state St of an execution is final if τA(St) = St. Indeed, in that case the
execution is: S0, S1, . . . , St−1, St, St, So, from an external point of view, the
execution will seem to have stopped. We will say that an execution is terminal
if it contains a final state. In that case, its duration is defined by:

time(A,S0)
def
=

{
min

{
t ∈ N | τ tA(S0) = τ t+1

A (S0)
}

if the execution is terminal
∞ otherwise

The bsp model defines the machine with multiple processors which have
their own memory. Therefore, a state St of the algorithm must be a p-tuple(
X1
t , . . . , X

p
t

)
1. Notice that p is not fixed for the algorithm, so A can have states

using different number of processors. In this paper, we will simply consider that
this number is preserved during a particular execution. In other words: the num-
ber of processors is fixed by the initial state.

If
(
X1, . . . , Xp

)
is a state of the algorithm A, then the structures X1, . . . , Xp

will be called processor memories or local memories. The set of the local mem-
ories of A will be denoted by M(A). Moreover, we are interested in the algorithm
and not a particular implementation (for example the name of objects), therefore
in the following postulate we will consider the states up to multi-isomorphism.

Definition 3 (Multi-Isomorphism).
−→
ζ is a multi-isomorphism between two states

(
X1, . . . , Xp

)
and

(
Y 1, . . . , Y q

)
if

p = q and
−→
ζ is a p-tuple of applications ζ1, . . . , ζp such that for every 1 ≤ i ≤ p,

ζi is an isomorphism between Xi and Y i.

Postulate 2 (Abstract States) For every bsp algorithm A:

1. The states of A are p-tuples of structures with the same finite signature L(A)

2. S(A) and I(A) are closed by multi-isomorphism;

3. The transition function τA preserves the universes and the numbers of pro-
cessors, and commutes with multi-isomorphisms.

1 To simplify, we annotate units from 1 to p and not, as usual in hpc, from 0 to p−1.

6 Yoann Marquer and Frédéric Gava

For a bsp algorithm A, let X be a local memory of A, f ∈ L(A) be a dynamic
α-ary function symbol, and a1, . . . , aα, b be elements of the universe U(X). We
say that (f, a1, . . . , aα) is a location of X, and that (f, a1, . . . , aα, b) is an update
on X at the location (f, a1, . . . , aα). For example, if x is a variable then (x, 42) is
an update at the location x. But symbols with arity α > 0 can be updated too.
For example, if f is a one-dimensional array, then (f, 0, 42) is an update at the
location (f, 0). If u is an update then X⊕u is a new structure of signature L(A)
and universe U(X) such that the interpretation of a function symbol f ∈ L(A) is:

f
X⊕u

(−→a)
def
=

{
b if u = (f,−→a , b) (we note −→a = a1, . . . , aα)

f
X

(−→a) otherwise

For example, in X ⊕ (f, 0, 42), every symbol has the same interpretation than in

X, except maybe for f because f
X⊕(f,0,42)

(0) = 42 and f
X⊕(f,0,42)

(a) = f
X

(a) oth-

erwise. We precised “maybe” because it may be possible that f
X

(0) is already 42.

If f
X

(−→a) = b then the update (f,−→a , b) is said trivial in X, because nothing
has changed. Indeed, if (f,−→a , b) is trivial in X then X ⊕ (f,−→a , b) = X.

If ∆ is a set of updates then ∆ is consistent if it does not contain two
distinct updates with the same location. Notice that if ∆ is inconsistent, then
there exists (f,−→a , b), (f,−→a , b′) ∈ ∆ with b 6= b′. We assume in that case that
the entire set of updates clashes:

f
X⊕∆

(−→a)
def
=

{
b if (f,−→a , b) ∈ ∆ and ∆ is consistent

f
X

(−→a) otherwise

If X and Y are two local memories of the same algorithm A then there exists
a unique consistent set ∆ = {(f,−→a , b) | fY (−→a) = b and f

X
(−→a) 6= b} of non trivial

updates such that Y = X ⊕∆. This ∆ is called the difference between the two
local memories, and is denoted by Y 	X.

Let
−→
X =

(
X1, . . . , Xp

)
be a state of A. According to the transition function

τA, the next state is τA(
−→
X), which will be denoted by (τA(

−→
X)1, . . . , τA(

−→
X)p). We

denote by ∆i(A,
−→
X)

def
= τA(

−→
X)i	Xi the set of updates done by the i-th processor

of A on the state
−→
X , and by

−→
∆(A,

−→
X)

def
= (∆1(A,

−→
X), . . . ,∆p(A,

−→
X)) the “multiset”

of updates done by A on the state
−→
X . In particular, if a state

−→
X is final, then

τA(
−→
X) =

−→
X , so

−→
∆(A,

−→
X) =

−→
∅ .

Let A be a bsp algorithm and T be a set of terms of L(A). We say that
two states

(
X1, . . . , Xp

)
and

(
Y 1, . . . , Y q

)
of A coincide over T if p = q and for

every 1 ≤ i ≤ p and for every t ∈ T we have tX
i

= t
Y i

.
Postulate 3 (Bounded Exploration for Processors) For every bsp algo-

rithm A there exists a finite set T (A) of terms such that for every state
−→
X

and
−→
Y , if they coincide over T (A) then

−→
∆(A,

−→
X) =

−→
∆(A,

−→
Y), i.e. for every

1 ≤ i ≤ p, we have ∆i(A,
−→
X) = ∆i(A,

−→
Y).

T (A) is called the exploration witness [11] of A. The interpretations of
the terms in T (A) are called the critical elements, and we prove, in Section C
of the appendix, that every value in an update is a critical element:
Lemma 1 (Critical Elements). For every state

(
X1, . . . , Xp

)
of A, ∀i 1≤ i≤

p, if (f,−→a , b)∈∆i(A,
−→
X) then −→a , b are interpretations in Xi of terms in T (A).

An ASM Thesis for BSP 7

That implies that for every step of the computation, for a given processor, only a
bounded number of terms are read or written (amount of work). In other words,
each processor individually is a sequential algorithm.

Lemma 2 (Bounded Set of Updates). For every state
(
X1, . . . , Xp

)
of the

bsp algorithm A, for every 1 ≤ i ≤ p, #∆i(A,
−→
X) is bounded, where #U is the

number of elements of the set U .

Notice that for the moment we make no assumption on the communication
between processors. Moreover, these three postulates are a “natural” extension
of the ones of [11]. And by “natural”, we mean that if we assume that p = 1
then our postulates are exactly the same:

Lemma 3 (A Single Processor is Sequential). An algorithm verifying the
first three postulates and with only one processor is a sequential algorithm.

We organize the sequence of states into supersteps. The communication
between the processor memories occurs only during a communication phase. In
order to do so, a bsp algorithm A will use two functions compA and commA in-
dicating if A runs computations or runs communications (followed by a barrier).

Postulate 4 (Supersteps phases) For every bsp algorithm A there exists
two applications compA : M(A) → M(A) commuting with isomorphisms, and
commA : S(A)→ S(A), such that for every state

(
X1, . . . , Xp

)
:

τA
(
X1, . . . , Xp

)
=

{(
compA(X1), . . . , compA(Xp)

)
if there exists 1 ≤ i ≤ p
such that compA(Xi) 6= Xi

commA

(
X1, . . . , Xp

)
otherwise

A BSP algorithm is an object verifying these four postulates, and we denote
by algoBSP the set of the bsp algorithms. A state

(
X1, . . . , Xp

)
will be said in

a computation phase if there exists 1 ≤ i ≤ p such that compA(Xi) 6= Xi.
Otherwise, the state will be said in a communication phase.

This requires some remarks. First, not only one processor performs the local
computations but all who can. Second, we do not specified the function commA

in order to be generic about which bsp library is used. We discuss in Section 3.3
the difference between commA and the usual communication routines in the bsp
community. The communication function commA keeps p.

Remembering that a state
−→
X is said to be final if τA(

−→
X) =

−→
X . Therefore,

according to the fourth postulate,
−→
X must be in a communication phase which

is like a final phase that would terminate the whole execution as found in mpi.

We prove that the bsp algorithms satisfy, during a computation phase, that
every processor computes independently of the state of the other processors:

Lemma 4 (No Communication during Computation Phases). For every
states

(
X1, . . . , Xp

)
and

(
Y 1, . . . , Y q

)
in a computing phase, if Xi and Y j have

the same critical elements then ∆i(A,
−→
X) = ∆j(A,

−→
Y).

8 Yoann Marquer and Frédéric Gava

3 BSP-ASM captures the BSP algorithms

The four previous postulates define the bsp algorithms from an axiomatic view-
point but that does not mean that they have a model, or in, other words, that
they are defined from an operational point of view. In the same way that the
model of computation asm captures the set of the sequential algorithms [11], we
prove in this section that the asmBSP model captures the bsp algorithms.

3.1 Definition and operational semantics of ASM-BSP

Definition 4 (ASM Program [11]).

Π
def
= f (t1, . . . , tα) := t0
| if F then Π1 else Π2 endif

| par Π1‖ . . . ‖Πn endpar

where: f has arity α; F is a formula; t1, . . . , tα, t0 are terms of L(X).

Notice that if n = 0 then par Π1‖ . . . ‖Πn endpar is the empty program. If
in if F then Π1 else Π2 endif the program Π2 is empty we will write simply
if F then Π1 endif. An asm machine [11] is a kind of Turing machine using
not a tape but an abstract structure X:

Definition 5 (ASM Operational Semantics).

∆(f (t1, . . . , tα) := t0, X)
def
=
{

(f, t1
X
, . . . , tα

X
, t0

X
)
}

∆(if F then Π1 else Π2 endif, X)
def
= ∆(Πi, X)

where

{
i = 1 if F is true on X
i = 2 otherwise

∆(par Π1‖ . . . ‖Πn endpar, X)
def
= ∆(Π1, X) ∪ · · · ∪∆(Πn, X)

Notice that the semantics of the par is a set of updates done simultaneously,
which differs from an usual imperative framework. A state of a asmBSP machine
is a p-tuple of memories (X1, . . . , Xp). We assume that the asmBSP programs
are spmd (single program multiple data) which means that at each step of com-
putation, the asmBSP program Π is executed individually on each processor.

Therefore Π induces a multiset of updates
−→
∆ and a transition function τΠ :

−→
∆(Π,

(
X1, . . . , Xp

)
)

def
=
(
∆(Π,X1), . . . ,∆(Π,Xp)

)
τΠ
(
X1, . . . , Xp

) def
=
(
X1 ⊕∆(Π,X1), . . . , Xp ⊕∆(Π,Xp)

)
If τΠ(

−→
X) =

−→
X , then every processor has finished its computation steps. In

that case we assume that there exists a communication function to ensure the
communications between processors.
Definition 6. An asmBSP machine M is a triplet (S(M), I(M), τM) such that:

1. S(M) is a set of tuples of structures with the same finite signature L(M);

S(M) and I(M) ⊆ S(M) are closed by multi-isomorphism;
2. τM : S(M) 7→ S(M) verifies that there exists a program Π and an application

commM : S(M) 7→ S(M) such that:

τM (
−→
X) =

{
τΠ(
−→
X) if τΠ(

−→
X) 6=

−→
X

commM (
−→
X) otherwise

An ASM Thesis for BSP 9

3. commM verifies that:
(1) For every state

−→
X such that τΠ(

−→
X) =

−→
X , commM preserves the universes

and the number of processors, and commutes with multi-isomorphisms
(2) There exists a finite set of terms T (commM) such that for every state

−→
X

and
−→
Y with τΠ(

−→
X) =

−→
X and τΠ(

−→
Y) =

−→
Y , if they coincide over T (commM)

then
−→
∆(M,

−→
X) =

−→
∆(M,

−→
Y).

We denote by asmBSP the set of such machines. As before, a state
−→
X is said

final if τM (
−→
X) =

−→
X . So if

−→
X is final then τΠ(

−→
X) =

−→
X and commM (

−→
X) =

−→
X .

The last conditions about the communication function may seem arbitrary,
but they are required to ensure that the communication function is not a kind
of magic device. For example, without these conditions, we could imagine that
commM may compute the output of the algorithm in one step, or solve the halt-
ing problem. Moreover, we presented in this definition the conditions required to
prove the main theorem, but we discuss some issues in Section 3.3, and we con-
struct an example of such communication function in the appendix (Section D).

3.2 The BSP-ASM thesis

We prove that asmBSP captures the computation phases of the bsp algorithms in
three steps. First, we prove that during an execution, each set of updates is the in-
terpretation of an asm program (Lemma 8 p.16). Then, we prove an equivalence
between these potentially infinite number of programs (Lemma 9 p.17). Finally,
by using the third postulate, we prove in Lemma 10 p.18 that there is only a
bounded number of relevant programs, which can be merged into a single one.

Proposition 1 (BSP-ASMs capture Computations of BSP Algorithms).
For every bsp algorithm A, there exists an asm program ΠA such that for every
state

−→
X in a computation phase:

−→
∆(ΠA,

−→
X) =

−→
∆(A,

−→
X).

Theorem 1. algoBSP = asmBSP

Proof. (Sketch). The full proof available in the appendix p.33. It is made by mu-
tual inclusion. On the one hand, let A be the bsp algorithm (S(A), I(A), τA). According
to the fourth postulate, there exists compA and commA such that for every state

−→
X :

τA(
−→
X) =

{ −−−−→compA(
−→
X) if −−−−→compA(

−→
X) 6=

−→
X

commA(
−→
X) otherwise

where −−−−→compA
(
X1, . . . , Xp

)
=
(
compA(X1), . . . , compA(Xp)

)
. Then, we use the the

Proposition 1 to prove that:

τA(
−→
X) =

{
τΠA(

−→
X) if τΠA(

−→
X) 6=

−→
X

commA(
−→
X) otherwise

According to the Lemma 5 p.13, commA preserves the universes, the number of
processors, and commutes with multi-isomorphisms. And the other properties are im-
mediately true according to the first three postulates. Therefore A is a asmBSP machine.

On the other hand, let M be the asmBSP machine (S(M), I(M), τM). By definition,
there exists an asm program Π and an application commM such that:

τM (
−→
X) =

{
τΠ(
−→
X) if τΠ(

−→
X) 6=

−→
X

commM (
−→
X) otherwise

10 Yoann Marquer and Frédéric Gava

We prove that M is a bsp algorithm by proving that it verifies the four postulates.
The first postulate is straightforward. The second requires the Lemma 7 p.15. For the
third, we prove that T (Π) = {true} ∪ Read (Π) ∪Write (Π) (Definition 4 p.17) is an
exploration witness for τΠ so T (M) = T (Π)∪T (commM) is for M . For the fourth, we

set compM (X) = X ⊕∆(Π,X) for every local memory X. So τΠ(
−→
X) = −−−−→compM (

−→
X),

and we have:
τM (
−→
X) =

{ −−−−→compM (
−→
X) if −−−−→compM (

−→
X) 6=

−→
X

commM (
−→
X) otherwise

Therefore M is a bsp algorithm. �

3.3 Cost model property and the function of communication

There is two more steps in order to claim that asmBSP objects are the bsp
bridging model algorithms: (1) To ensure that the duration corresponds to the
standard cost model and; (2) To solve issues about the communication function.

Cost model. If the execution begins with a communication, we assume that
no computation is done for the first superstep. We remind that a state

−→
Xt is

in a computation phase if there exists 1 ≤ i ≤ p such that compA(Xi
t) 6= Xi

t .
The computation for every processor is done in parallel, step by step, and
these steps are synchronized. So, the cost in time of the computation phase

is w
def
= max1≤i≤p (wi), where wi is the number of steps done by the processor i

(on memory Xi) during the superstep.
Then the state is in a communication phase, when the messages between

the processors are sent and received. Notice that commA may require several
steps in order to communicate the messages, which contrasts with the usual
approach in bsp where the communication actions of a superstep are considered
as one unit. But this approach would violate the third postulate, so we had to
consider a step-by-step communication approach, then consider these actions as
one communication phase. asmBSP exchanges terms and we show in the appendix
how formally define the size of terms. But we can imagine a machine that must
further decompose the terms in order to transmit them (in bits for example).
We just assume that the data are communicable in time g for a 1-relation.

So, during the superstep, the communication phase requires h × g steps.
It remains to add the cost of the synchronization of the processors, which is
assumed in the usual bsp model to be a constant L. Therefore, we obtained a
cost property which is sound with the standard bsp cost model.

A realization of the communication. An example of a communication func-
tion for the standard bsplib’s primitives (described in appendix Section D p.36)
read (bsp_get), write (bsp_put), send (bsp _send) and rcv (bsp_move) is pre-
sented in Section D. The main difficulty is to assign an exploration witness to
the communications.

Proposition 2 (A function of communication). A function of communica-
tion performing h-relation requiring at most h exchanges with routines for distant
readings/writings and point-to-point sending of data can be design using asm.

One may argue that the last postulate allows the communication function
to do computations. To avoid it, we assume that the terms in the exploration

An ASM Thesis for BSP 11

witness T (M) can be separated between T (Π) and T (commM) such that T (Π) is
for the states in a computation phase, and that for every update (f,−→a , b) of a
processor Xi in a communication phase, either there exists a term t ∈ T (commM)

such that b = t
Xi

, or there exists a variable v ∈ T (Π) and a processor Xj such

that b = t
vX

j
Xi

(representation presented in the appendix, section D p.36). To
do a computation, a term like x+1 is required, so the restriction to a variable pre-
vents the computations of the terms in T (Π). Or course, the last communication
step should be able to write in T (Π), and the final result should be read in T (Π).

4 Conclusion and Future Work

4.1 Summary of the Contribution

In computer science, a bridging model provides a common level of understanding
between hardware and software engineers. It provides software developers with
an attractive escape route from the world of architecture-dependent parallel soft-
ware [23]. The bsp bridging model allows the design of “immortal” (efficient and
portable) parallel algorithms using a realistic cost model (and without any over-
specification requiring the use of a large number of parameters) that can fit most
distributed architectures. It has been used with success in many domains [2].

We have given an axiomatic definition of bsp algorithms by adding only one
postulate to the sequential ones for sequential algorithms [11] which has been
widely accepted by the scientific community. Mainly this postulate is the call of
a function of communication. We abstract how communication is performed, not
be restricting to a specific bsp library. We finally answer previous criticisms by
defining a convincing set of parallel algorithms running in a predictable time.

Our work is relevant because it allows universality (immortal stands for bsp
computing): all future bsp algorithms, whatever their specificities, will be cap-
tured by our definitions. So, our asmBSP is not just another model, it is a class
model, which contains all bsp algorithms.

This small addition allows a greater confidence in this formal definition com-
pared to previous work: Postulates of concurrent asms do not provide the same
level of intuitive clarity as the postulates for sequential algorithms. But our work
is limited to bsp algorithms even if it is still sufficient for many hpc and big-data
applications. We have thus revisited the problem of the “parallel ASM thesis”
i.e., to provide a machine-independent definition of bsp algorithms and a proof
that these algorithms are faithfully captured by asmBSP. We also prove that the
cost model is preserved which is the main novelty and specificity of this work
compared to the traditional work about distributed or concurrent asms.

4.2 Questions and answers about this work

Why not use a bsp-Turing machine to simulate a bsp algorithm?
For sequential computing, it is known that Turing machines could simulate

every algorithm or any program of any language but without a constant factor

12 Yoann Marquer and Frédéric Gava

[1]. In this way, there is not an algorithmic equivalence between Turing machines
and common sequential programming languages.

Why do you use a new language asmBSP instead of using asms only? Indeed,
each processor can be seen as a sequential asm. So, in order to simulate one
step of a bsp algorithm using several processors, we could use pids to compute
sequentially the next step for each processor by using an asm.

But if you have p processors, then each step of the bsp algorithm will be
simulated by p steps. This contradicts a temporal dilation [15]: Each step should
be simulated by d steps, where d is a constant depending only on the simulated
program. In that case, the simulation of a bsp algorithm by a sequential asm
would require that p is constant, which means that our simulation would hold
only for a fixed number of processors, and not for every number.

Why are you limited to spmd computations?

Different codes can be run by the processors using conditionals on the “id”
of the processors. For example “if pid=0 then code1 else code2” for running
“code1” (e.g. master part) only on processor 0.

When using bsplib and other bsp libraries, I can switch between sequential
computations and bsp ones. Why not model this kind of command?

The sequential parts can be modeled as purely asynchronous computations
replicated and performed by all the processors. Or, one processor (typically the
first one) is performing these computations while other processors are “waiting”
with an empty computation phase.

What happens in case of runtime errors during communications?

Typically, when one processor has a bigger number of super-steps than other
processors, or when there is an out-of-bound sending or reading, it leads to a
runtime error. The bsp function of communication can return a ⊥ value. That
causes a stop of the operational semantics of the asmBSP.

When using bsplib, messages received at the past superstep are dropped. Your
communication function does not show this fact.

We want to be as general as possible. Perhaps a future library would allow
reading data received n supersteps ago. Moreover, the communication function
may realize some computations and is thus not a pure transmission of data.
But the exploration witness forbids doing whatever. And we provide a realistic
example of such a function which mainly correspond to the bsplib’s primitives.

What about related work?

As far as we know, some work exists to model distributed programs using
asms [17] but none to convincingly characterize bsp algorithms. In [6], authors
model the p3l set of skeletons. That allows the analyze of p3l programs using
standard asm tools but not a formal characterization of what p3l is and is not.

The first work to extend asms for concurrent, distributed, agent-mobile al-
gorithms is [3]. Too many postulates are used making the comprehension hard
to follow or worse (loss of confidence). A first attempt to simplify this work has
been done in [18] and again simplified in [8] by the use of multiset comprehen-
sion terms to maintain a kind of bounded exploration. Then, the authors prove

An ASM Thesis for BSP 13

that asms captures these postulates. Moreover, we are interested in distributed
(hpc) computations more than parallel (threading) asms.

We want to clarify one thing. The asm thesis comes from the fact that se-
quential algorithms work in small steps, that is steps of bounded complexity.
But the number of processors (or computing units) is unbounded for parallel
algorithms, which motivated the work of [3] to define parallel algorithms with
wide steps, that is steps of unbounded complexity. Hence the technicality of the
presentation, and the unconvincing attempts to capture parallel algorithms [4].

In our work, we use the sequence of supersteps of the bsp bridging model
to simplify the approach. Even if the number of processors is unbounded, we
assume that every processor works in small step. Instead of defining a state of
an execution by a meta-finite structure, we assume that a state is a p-tuple of
structures. Instead of using a global program with “forall” commands [8], ev-
ery processor runs its local program with “par” commands. Instead of relaxing
the third postulate, we assume it for every processor. This approach leads to a
simpler presentation, using only ground terms and tuples of ordinary structures.
Notice that the second example of [8] is pram. There is still a last drawback:
Their asms used an implicit share memory which is irrelevant for hpc compu-
tations. This flaw of the pram model was already criticized in [23].

Extending the asms for distributed computing is not new [4]. For example
the works of [7,19] about multi-agents and data-flow programs. We believe that
these postulates are more general than ours but we think that our extension
still remains simple and natural for bsp computing. The authors are also not
concerned about the problem of algorithm completeness using a cost model which
is the heart of our work and the main advantage of the bsp model.

4.3 Future Work

This work leads to many possible work. First, how adapting our work to a
hierarchical extension of bsp [24] which is closer to modern hpc architectures?

Second, we are currently working on extending the work of [15] in order to
give the bsp algorithmic completeness of a bsp imperative programming lan-
guage. There are some concrete applications: There are many languages having
a bsp-like model of execution, for example pregel [14] for writing large-graph
algorithms. An interesting application is proving which are bsp algorithmically
complete and are not. bsplib programs are intuitively bsp. pregel is a good
candidate to be not bsp if we cannot dynamically change the graph (most recent
feature). Indeed, a short-path computation using pregel needs n super-steps
(where n is the shorter path) because a node could only communicate with its
neighborhood, whereas a log(p) super-steps exists [22]. mapreduce is also an
interesting use case [16]. Similarly, on can imagine proving which languages are
too expressive for bsp. mpi is intuitively one of them. Last, the first author is
working on postulates for more general distributed algorithm à la mpi.

References

1. T. C. Biedl, et al. Palindrome Recognition Using a Multidimensional Tape. Theor.
Comput. Sci., 302(1-3):475–480, 2003.

14 Yoann Marquer and Frédéric Gava

2. R. H. Bisseling. Parallel Scientific Computation. A Structured Approach Using bsp
and mpi. Oxford University Press, 2004.

3. A. Blass and Y. Gurevich. Abstract State Machines Capture Parallel Algorithms.
ACM Trans. Comput. Log., 4(4):578–651, 2003.

4. E. Börger and K.-D. Schewe. Concurrent Abstract State Machines. Acta Inf.,
53(5):469–492, 2016.

5. F. Cappello and M. Snir. On Communication Determinism in hpc Applications.
In Computer Communications and Networks (ICCCN), pages 1–8. IEEE, 2010.

6. A. Cavarra and A. Zavanella. A Formal Model for the Parallel Semantics of p3l.
In ACM Symposium on Applied Computing (SAC), pages 804–812, 2000.

7. A. Cavarra. A Data-Flow Approach to Test Multi-agent asms Formal Asp.
Comput., 23(1):21–41, 2011.

8. F. Ferrarotti, K.-D. Schewe, L. Tec, and Q. Wang. A New Thesis Concerning
Synchronised Parallel Computing Simplified Parallel asm Thesis. Theoretical
Computer Science, 649:25–53, 2016.

9. H. González-Vélez and M. Leyton. A Survey of Algorithmic Skeleton Frameworks.
Software, Practrice & Experience, 40(12):1135–1160, 2010.

10. S. Gorlatch. Send-receive Considered Harmful: Myths and Realities of Message
Passing. ACM TOPLAS, 26(1):47–56, 2004.

11. Y. Gurevich. Sequential Abstract-state Machines Capture Sequential Algorithms.
ACM Trans. Comput. Log., 1(1):77–111, 2000.

12. J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao,
T. Suel, T. Tsantilas, and R. Bisseling. bsplib: The bsp Programming Library.
Parallel Computing, 24:1947–1980, 1998.

13. W. Bousdira, F. Gava, L. Gesbert, F. Loulergue and G. Petiot: Functional Parallel
Programming with Bulk Synchronous Parallel ML. ICNC, pages 191–196, 2010

14. G. Malewicz, et al. pregel: A System for Large-scale Graph Processing. In
Management of data, pages 135–146. ACM, 2010.

15. Y. Marquer. Algorithmic Completeness of Imperative Programming Languages.
Fundamenta Informaticae, accepted, pages 1–27, 2017.

16. M. F. Pace. bsp vs mapreduce. In Computational Science (ICCS), volume 9 of
Procedia Computer Science, pages 246–255. Elsevier, 2012.

17. A. Prinz and E. Sherratt. Distributed asm- Pitfalls and Solutions. In ABZ
conference, LNCS, volume 8477, pages 210–215. Springer, 2014.

18. K.-D. Schewe and Q. Wang. A Simplified Parallel asm Thesis. In ABZ conference,
LNCS, volume 7316, pages 341–344. Springer, 2012.

19. K.-D. Schewe, F. Ferrarotti, L. Tec, Q. Wang, and W. An. Evolving Concurrent
Systems: Behavioural Theory and Logic. In Australasian Computer Science Week
Multiconference (ACSW), pages 1–10, 2017.

20. S. Seo, E. J. Yoon, J.-H. Kim, S. Jin, J.-S. Kim, and S. Maeng. hama: An Efficient
Matrix Computation with the mapreduce Framework. In Cloud Computing
(CloudCom), pages 721–726. IEEE, 2010.

21. D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers about
bsp. Scientific Programming, 6(3):249–274, 1997.

22. A. Tiskin. The Design and Analysis of Bulk-Synchronous Parallel Algorithms.
PhD thesis, Oxford University Computing Laboratory, 1998.

23. L. G. Valiant. A Bridging Model for Parallel Computation. Comm. of the ACM,
33(8):103–111, 1990.

24. L. G. Valiant. A Bridging Model for Multi-core Computing. J. Comput. Syst.
Sci., 77(1):154–166, 2011.

Proofs and other comments in http://lacl.fr/gava/tr-asm.pdf

http://lacl.fr/gava/tr-asm.pdf

An ASM Thesis for BSP 15

A Preliminaries of the postulates

In in section, we recall some reminders about fundamental concepts of the for-
malization. We consider states as first-order structures whose vocabulary or sig-
nature is a finite set of function symbols. Furthermore, it is common to say that
all convenient data structures (integers, graphs, sets, etc.) [15] are representable
by first-order structures. See the definitions in Section p.4.

Using structures has also the advantage to sufficiently abstracting algorithms;
Each algorithm can access elementary operations that could be executed. For
example, the Euclid algorithm is different whether we use a (native) division or
simulate it using subtractions. In the same manner, a bsp algorithm could be
different whether a broadcasting primitive exists or is simulated by lower-level
communicating primitives such as point-to-point sending of data. These elemen-
tary operations are also called primitives and depend only on the architecture.
Our work is thus independent of a given architecture as in the spirit of a bridging
model.

In order to have a uniform presentation, as in [11] we considered constant
symbols of the signature as 0-ary function symbols, and relation symbols R as
their indicator function χR. Therefore, every symbol in L(X) is a function. In
practice, the universe will be assumed infinite, for example if the data structure
contains at least integers. We also assume that all the functions are total and
represent partial function as total by using a special symbol undef . The symbols
of the signature L(X) are distinguished between:

1. Dyn X the set of dynamic symbols, whose interpretation can change dur-
ing an execution, like a variable2 x;

2. Stat X the set of static symbols, which have a fixed interpretation during
an execution. They are also distinguished between:
(a) Init(X), the set of parameters, whose interpretation depends only on

the initial state, like an array in a sorting algorithm; The symbols de-
pending on the initial state are the dynamic symbols and the parameters,
so we call them the inputs.

The other symbols have a uniform interpretation in every state (up to iso-
morphism, see the Definition p.17), and they are also distinguished between:
(b) Cons(X) the set of constructors (true and false for the booleans, 0

and S for the unary integers, etc.)
(c) Oper(X) the set of operations (¬ and ∧ for the booleans, + and × for

the integers, etc.)

We assume in this paper that every signature contains the boolean type (true,

false, ¬ and ∧) and the equality. A term t is said well-typed in X if t
X 6= undef

X
.

Example 1 (Booleans B). The constructors are true and false, interpreted by two

distinct values true
X

and false
X

. The basic operations are the unary symbol ¬
2 We assume there is no logical variables and every term is closed, so a “variable” is

a dynamical symbol with arity 0.

16 Yoann Marquer and Frédéric Gava

and the binary symbol ∧, defined by:

¬X(true
X

)
def
= false

X

¬X(false
X

)
def
= true

X

∧X(true
X
, true

X
)

def
= true

X

∧X(true
X
, false

X
)

def
= false

X

∧X(false
X
, true

X
)

def
= false

X

∧X(false
X
, false

X
)

def
= false

X

All of the other logical connectives can be defined with ¬ and ∧.

We assume in this paper that every signature contains the booleans and the

equality, a binary symbol = interpreted as =X(a, a) = true
X

and =X(a, b) =

false
X

otherwise. We also assume that every element a 6= undef
X

of the universe
U(X) is representable, which means that there exists a unique term ta formed

only by constructors such that ta
X

= a. This ta is called the representation
of a. This can be proven for every usual data structure [15] but this is not the
point of this paper. In particular, we must assume that an element has only
one type. For example, the binary integers use a different copy of N than the

decimal integers. In other words 31410
X 6= 1001110102

X
but of course there is

a bijection between the two copies. The size of an element is the length of its
representation, in other words the number of constructors necessary to write it.

For example |31410
X | = 3 and |1001110102

X | = 9. These sizes will be used to
compute the super-steps costs of the bsp algorithms.

Example 2 (Unary integers N1). The constructors are the constant symbol 0 and
the unary symbol S, interpreted respectively by 0 and n 7→ n+1. Therefore, the

terms have the form Sn0, and are interpreted by Sn0
X

= n.

Example 3 (Integers Nb in base b ≥ 2). The constructors are the constant sym-
bols cb0, . . . , cbb−1, and the unary symbols f b0 , . . . , f bb−1, interpreted by :

1. cbi
X def

= i

2. f bi
X

(a)
def
=

{
undef

X
if a = cb0

X

a× b+ i otherwise

Therefore, the terms formed only by constructors have the form f bi0 . . . f
b
in−1

cbn,
which we denote by in . . . i0b and call the expansion of the number in base b.

For example, the decimal expansion of 314 = (3× 10 + 1)× 10 + 4 is 31410 =
f104 f101 c103 , and in the same way its binary expansion is 1001110102. Notice that

because of the condition f bi
X

(cb0
X

) = undef
X

the expansion of a number cannot
begin by a 0.

Operations can be added to the integers data structures, like the multiplica-
tion ×, depending of the basic operations considered for the algorithm.

An ASM Thesis for BSP 17

Definition 7 (Formula). A formula F is a term with a particular form:

F
def
= true | false | R (t1, . . . , tα) | ¬F | (F1∧F2) where R is a relation symbol,

a function with output true
X

or false
X

), and t1, . . . , tα are terms.

We say that a formula is true (resp. false) in X if F
X

= true
X

(resp. false
X

).

Definition 8 (Isomorphism). Let X and Y be two structures with the same
signature L, and let ζ : U(X) → U(Y) be an application. ζ is an isomorphism
between X and Y if :

1. ζ is surjective
2. For every symbol c ∈ L with arity 0, ζ(cX) = cY

3. For every f ∈ L with arity α > 0, and for every a1, . . . , aα ∈ U(X),

ζ(f
X

(a1, . . . , aα)) = f
Y

(ζ(a1), . . . , ζ(aα))

We say that two structures X and Y are isomorphic if there exists an isomor-
phism between them. Notice that if ζ is an isomorphism between X and Y , then

ζ(t
X

) = t
Y

. And because we assumed that every signature contains the equality
symbol then every isomorphism is injective. Therefore, we have that a = b in X
if and only if ζ(a) = ζ(b) in Y . In particular, a formula F is true (resp. false)
in X if and only if F is true (resp. false) in Y . Moreover, because ζ is injective
and by definition surjective, it is bijective. In particular we can introduce ζ−1,
which is also an isomorphism.

18 Yoann Marquer and Frédéric Gava

B The BSP bridging model of computation

B.1 The notion of bridging model.

The traditional von Neumann (ram) model has always served as the main model
for designing sequential algorithm (Fig 2). It has also served as a reference model
for hardware design. In the context of parallel algorithm design, no such ubiqui-
tous model exists. The pram model (shared memory) allows a theoretical rea-
soning about parallel algorithms by highlighting the parallelism’s degree of prob-
lems. Nevertheless, it makes a number of assumptions that cannot be fulfilled
in hpc applications and hardware; mainly because the cost of communication is
greater than that of computation and the number of processors is limited.

Von Neumann’s
bridging model

SoftwareHardware

Quick Sort

FFT

Compiler X

Intel i86 (CPU)

ARM/RISC/etc.

SECD/CAM/etc.

Fig. 2. The sequential model.

In computer science, a bridging
model is thus an abstract model of
a computer which provides a concep-
tual bridge between the physical im-
plementation of the machine and the
abstraction available to the program-
mer of that machine; in other words,

it is intended to provide a common level of understanding between hardware
and software engineers. A bridging model provides software developers with an
attractive escape route from the world of architecture-dependent parallel soft-
ware. A successful bridging model is one which can be efficiently implemented in
reality and efficiently targeted by programmers; in particular, it should be possi-
ble for a compiler to produce good code from a typical high-level language. The
term was introduced in [23], which argued that the strength of the von Neumann
model was largely responsible for the success of computing. The paper goes on
to develop the bsp model as an analogous model for parallel computing. Even
with rapidly changing technology and architectural ideas, hardware designers can
still share the common goal of realizing efficient von Neumann machines, with-
out having to be too concerned about the software that is going to be executed.
Thus, the von Neumann model is the connecting bridge that enables programs
from the diverse and chaotic world of software to run efficiently on machines
from the diverse and chaotic world of hardware. An analogous bridging model
for parallel computation is thus needed.

bsp bridging model

SoftwareHardware

Parallel sorting

Parallel FFT

bsplib

i7 (Multi-cores)

Supercomputer

Nvidia GPU

etc.

Fig. 3. The bsp bridging model.

As the von Neumann model
provides a unifying approach that
can bridge the worlds of sequential
hardware and software, so Valiant
[23] sought for a unifying model
that could provide an effective
bridge between parallel hardware
and software. The bsp model has

been introduced to better reflect the hardware design features of mainstream
parallel computers, through the direct mode of bsp (assumed in this paper,
Fig 3). The bsp model allows for efficient algorithm design without any over-

An ASM Thesis for BSP 19

specification requiring the use of a large number of parameters. The underlying
parallel computer implementation is similarly not overspecified. Each processor
can communicate directly with every other processor, providing complete control
over how the data is distributed between the processors in every superstep.

To evaluate an architecture-independent model of parallel computation such
as bsp is to consider it in terms of all of its properties which means (a) its
usefulness as a basis for the design and analysis of algorithms; (b) its applica-
bility across the whole range of general-purpose architectures and its ability to
provide efficient, scalable performance on them; (c) its support for the design
of fully-portable programs; and (d) software engineering tools such as those for
correctness or debug can be easily adapted to programs of this bridging model.

Take for example, a proof of correctness of a gpu-like program. Although
interesting in itself it cannot be used directly for clusters of pcs. A bridging
model has the advantage that if a program is correct, then this is the case for
“all” physical architectures. Note that it is also the case for portable libraries
such as mpi but algorithm design would be clearly architecture independent,
which will be not the case using a bridging model. Moreover, it is known and
accepted that correctness of programs is more costly in terms of work than just
programming and designing algorithms. Hence the choice in this work of the bsp
bridging model to provide both portability for proofs and a model for algorithmic
design and efficient programs.

There exist other bridging models of parallel computations but only bsp is
widely used and accepted for algorithm design. The bsp model has also been
used with success in a wide variety of problems. A complete book of numerical
algorithms is [2] and many other algorithms can be found in the literature.

B.2 The BSP model

The BSP architecture. We recall that a bsp computer is formed by 3 main
components: (1) A set of p homogeneous pairs of processors-memories (units);
(2) A communication network to exchange messages between these units of com-
putations; (3) A global synchronization unit to execute global synchronization
barriers. A wide range of actual architectures can be seen as bsp computers. Clus-
ters of pcs and multi-cores, gpus, etc. can be thus considered as bsp computers.
Share memory machines could also be used in a way such that each processor
only accesses a sub-part of the shared memory (which is then “private”) and
communications could be performed using a dedicated part of the memory.

The bsp model ignores the particular topology of the underlying machine;
this rules out any use of network locality in algorithm design. The model only
considers two levels of locality, local (inside the processor) and remote (outside
a processor), with remote access usually being more expensive than local ones.

The execution model. A bsp program is logically executed as a sequence
of super-steps, each of which is divided into three successive disjointed phases:
(1) Each unit only uses its local data to perform sequential computations and

20 Yoann Marquer and Frédéric Gava

to request data transfers to other units; (2) The network delivers the requested
data; (3) A barrier occurs, making the transferred data available for the next
super-step. This structured model enforces a strict separation of communication
and computation: during a super-step, no communication between the proces-
sors is allowed apart from transfer requests; only at the synchronization barrier
is information actually exchanged. Messages sent in the previous superstep are
available at the destination only at the start of the next superstep.

For performance, a bsp library can also send messages during the computa-
tion phase, but this is hidden to programmers. The best know examples being
the bsplib for the c language and hama [20] for java. A mpi program using
collective operations only can also be viewed as a bsp program.

The cost model. The bsp model gives us a cost model that is both tractable
and accurate. The performance of a bsp computer is characterized by 4 param-
eters: (1) The local processing speed r; (2) The number of processors p; (3)
The time L required for a barrier; (4) The time g for collectively delivering a
1-relation which is a collective exchange where every processor receives/sends at
most one word. The network can deliver an h-relation in time g × h.

The execution time (cost) of a super-step s is the sum of the maximal local
processing time, the data delivery and the global synchronization times. The
total cost (execution time) of a bsp algorithm is the sum of its super-step costs.

The partitioning of the data is a crucial issue. In fact, the choice of a distri-
bution is one of the main means of influencing the performance of the algorithm.
This leads to an emphasis on problem dependent techniques of data partitioning,
instead of on hardware dependent techniques that take network topologies into
account. The algorithm designer who is liberated from such hardware consider-
ations may concentrate on exploiting the essential features of the problem.

B.3 Advantages and Disadvantages

This structured model of parallelism enforces a strict separation of communica-
tion and computation. This execution policy has three main advantages. Firstly,
it removes non-determinism and guarantees the absence of deadlocks. This is also
simply the most visible aspect of a parallel model that shifts the responsibility for
timing and synchronisation issues from the applications to the communications
library3. Secondly, it allows for an accurate model of performance prediction
based on the throughput and latency of the network, and on the speed of pro-
cessors. This performance prediction model can even be used at runtime to dy-
namically make decisions, for instance to choose whether to communicate in or-
der to re-balance data, or to continue an unbalanced computation. Furthermore,
barriers have also a number of attractions: it is harder to introduce the possibil-
ity of livelock, since barriers do not create circular data dependencies. Barriers
also permit novel forms of fault tolerance. Third, because any bsp algorithm is

3 bsp libraries are generally implemented using mpi or low level routines of the given
specifics architectures.

An ASM Thesis for BSP 21

organized as a sequence of supersteps, this makes it straightforward to extend
techniques for constructing sequential algorithms to/from bsp algorithms.

The bsp model considers communication actions en masse. This is less flexi-
ble than asynchronous messages, but easier to debug since there are many com-
munication actions in a parallel program, and their interactions are typically
complex. Bulk sending also provides better performances since, from an imple-
mentation point of view, grouping communication together in a separate program
phase permits a global optimisation of the data exchange by the communications
library. Moreover it is easy to measure during the execution of a bsp program,
time speeding to communicate and to synchronise by just adding chronos be-
fore and after the primitive of synchronization. This facility is mainly uses to
compare different programs.

However, on most distributed multicore architectures, barriers are often ex-
pensive when the number of processors dramatically increases. Using bsp, pro-
grammers and designers have to keep in mind that some patterns are not bsp
friendly: For example, bsp does not effectively manage pipeline and master/slave
paradigms (farm of processes). Even if the bsp cost analysis proposes a method of
estimating the work of a parallel algorithm, such a technique is not widespread: it
seems that too many programmers still prefer using asynchronous send/received
primitives (with potential data-races, deadlocks, etc.) instead of a structured
model. We follow [10] that this manner of programming, as is the case with the
“goto” statement, will be phased out in time (we can already see this for big-data
frameworks such as pregel [14], mapreduce [20], etc.).

Moreover, the bsp model, as a coarse-grained model of computation, has
been proved to be very appropriate for problems with regular data-structures,
and so, for problems based on domain decomposition. For irregular structures,
some heuristics can improve the balance efficiently. But that is not as natural
as spawning small processes (or threads) of calculation of each irregular part of
the structure. That is the main inconvenient of the model.

B.4 Programming using BSP

bsp is thus defined as a distributed memory model with point-to-point communi-
cation between processors. The computation is divided into supersteps separated
by global synchronization steps, and packets sent in one superstep are assumed
to be delivered at the beginning of the next superstep. Each processor can com-
municate directly with every other processor, providing complete control over
how the data is distributed between the processors in every superstep.

We now present the main libraries for bsp programming. The reader can thus
understand why our communication function in asm presented in Section D is
sufficient to express most (all?) typical bsp algorithms. We do not present all
the primitives but the most important ones only.

22 Yoann Marquer and Frédéric Gava

The standard BSPlib. The bsplib4 [12] is a c library of communication
routines. It aims to support the development of parallel algorithms based on
the bsp model. It offers routines for both message passing (bsmp) and remote
memory access (drma). The development of shared-memory based possibilities
is justified by the intense use of drma routines in numerical algorithms. It is
interesting to note that about 20 routines are available only, compared to the
more than 200 that composed mpi. The bsplib is thus easier to understand and
to use, without lack of expressivity for programming hpc architectures.

Within a bsp computation, we can query some information about the ma-
chine: int bsp_nprocs() returns the number of processors p and int bsp_pid()

returns the processor identifier which belongs to 0, ...,p− 1. The barrier is done
using void bsp_sync() which blocks the node until all other nodes have called
bsp_sync and all messages sent to it have been received.

Sending a packet (in a buffering mode) is done using void bsp_send(int pid,

const void tag,const void payload,int payload_bytes). The routine is
based on the idea of a two-part message. A fixed-length part carries tag informa-
tion that will help the receiver to interpret the message (tag); a variable-length
part contains the main data payload. The length of the tag (payload_bytes) is
required to be fixed during any particular superstep, but can vary between su-
persteps. The destination buffer of a processor may be viewed as a queue where
incoming messages are enqueued in an arbitrary order. If the message is not
accessed within the superstep it is removed from the buffer.

The programmer can know the number of received messages as well as the to-
tal size of received data (in bytes) using the routine void bsp_qsize(int packets,

int accum_nbytes). This routine works on the queue of received messages. To
receive a message, the user should use the procedures void bsp_get_tag(int status,

void tag) and void bsp_move(void payload,int reception_bytes). bsp_get_tag
returns the tag of the first message in the queue and the size of the correspond-
ing payload (status is −1 if the queue is empty). bsp_move copies the payload of
the first message of the system queue, i.e. the buffer call payload, and removes
it from the queue. Then, the system will advance to the next message.

Registering or deleting a variable from global access is done using:
void bsp_push_reg (const void ident, int size) and
void bsp_popregister(const void ident). Due to the spmd structure of bsp
programs, if p instances share the same name, they will not, in general, have the
same physical address. To allow bsp programs to be executed correctly, the
bsplib provides a mechanism for relating these various addresses by creating as-
sociations called registrations (not show here). Now, the two drma routines oper-
ations (Fig 4) are: (1) void bsp_get(int pid,const void src,int offset,

void dst,int nbytes) stands for global reading access; It copies n bytes to the
local memory address —dst from the variable src at offset of the remote pro-
cessor pid; (2) void bsp_put(int pid,const void src,void dst,int offset,

int nbytes) stands for global writing access; It copies n bytes from local mem-
ory src to dst at offset on remote processor pid. It is important to note that

4 http://www.bsp-worldwide.org/

http://www.bsp-worldwide.org/

An ASM Thesis for BSP 23

bsp pid

nbytes

src

pid

nbytes
dst

offset

put

bsp pid

nbytes

dst

pid

nbytessrc

offset

get

Fig. 4. drma bsp operations: “put” and “get”.

the get and put operations are executed during the synchronisation step and all
get are served before a put overwrites a value.

The paderborn university bsp is another library for c which is close to the
bsplib. For bsp computing, the main differences come from sending routines.
Sending a single message (buffer) can be done using void bsp_send(int dest,

void* buffer, int size). After the calling, the buffer may be overwritten or
freed. Each processor can access the received messages of type t_bspmsg. This
can be done using t_bspmsg* bsp_findmsg(t_bsp* bsp, int id, int index)

where id is the “id” of the source-node and index of the message. To access to
the message, we need void* bspmsg_data(t_bspmsg* msg) which returns a
pointer to the sending block of data and int bspmsg_size(t_bspmsg* msg)

which returns its size.

The bsplib has been recently implemented for multi-core5 and gpus 6. The
pub has been implementation for Java7 and in the context of big-data8 [20].

Other libraries Another way is using the standard mpi notably the collective
operations [2]. But it is the responsible of the programmer to follow the bsp
model when using asynchronous sending (potential deadlock). The number of
routines of mpi is huge and understanding all their interactions is for expert.

NestStep9 is a programming language, à la c, dedicated to bsp. It adds
a virtual shared memory where the memory consistency is relaxed (but deter-
ministic) during supersteps. The main method of a program is executed by all
available processors. The main primitives of NestStep are the following: step:
executes a statement in parallel; combine gather the results of the parallel exe-
cution (barrier); forall allows to parallel write (with barrier) to a shard array.

5 http://www.multicorebsp.com/
6 http://www.kunzhou.net/2008/BSGP.pdf
7 http://www.lume.ufrgs.br/bitstream/handle/10183/18662/000731056.pdf;

sequence=1
8 https://hama.apache.org/
9 http://www.ida.liu.se/~chrke55/neststep/index.html

http://www.multicorebsp.com/
http://www.kunzhou.net/2008/BSGP.pdf
http://www.lume.ufrgs.br/bitstream/handle/10183/18662/000731056.pdf;sequence=1
http://www.lume.ufrgs.br/bitstream/handle/10183/18662/000731056.pdf;sequence=1
https://hama.apache.org/
http://www.ida.liu.se/~chrke55/neststep/index.html

24 Yoann Marquer and Frédéric Gava

pregel10 [14] is a powerful (proprietary) language dedicated to graph algo-
rithms. The approach centers around computations on the vertices of the graph.
Each vertex of the graph has a unique “id”, an associated value and a list of out-
going weighted edges. On each superstep, each worker node invokes a procedure
Compute for each active vertex that is under its control. his procedure is respon-
sible for the execution of the algorithm and is allowed, among other actions, to
invoke other methods, compute new values for the vertex, add or remove vertices
and edges, and send messages to other vertices. These messages are exchanged
directly among the vertices, even if the vertices are being executed on differ-
ent machines of the platform. The messages are sent asynchronously in order to
allow the overlapping of computation and communication, but are delivered to
the destination vertex only on the beginning of the next superstep. If a vertex
declares that all its processing was done, it sends a message informing all the
other nodes and deactivates itself. Any change on the topology is only performed
on the next superstep, before the invocation of the Compute procedure.

Last is bsml11 [13], a functional (ocaml extension) language for bsp. It uses
a small set of primitives which are working over parallel data structures called
a parallel vectors. A vector expresses that each of the p processors embeds a
value of any type. There is two primitives for the asynchronous manipulations
of vectors and also two for the communications (barrier). These primitives and
the use of vectors has been used (and adapted) to python12 and c++13.

10 The free version: http://giraph.apache.org/
11 http://traclifo.univ-orleans.fr/BSML/
12 http://dirac.cnrs-orleans.fr/ScientificPython/
13 https://github.com/jfalcou/BSPPP

http://giraph.apache.org/
http://traclifo.univ-orleans.fr/BSML/
http://dirac.cnrs-orleans.fr/ScientificPython/
https://github.com/jfalcou/BSPPP

An ASM Thesis for BSP 25

C Proofs of technical lemmas

C.1 Replacement in a Structure

Definition 9 (Replacement in a Structure). Let X be a structure, and let
U1 ⊆ U(X) and U2 be two sets such that there exists a bijection ϕ from U1 to U2.
The structure Y obtained by replacing in X the elements of U1 by the elements
of U2 is defined by:

1. L(Y) = L(X)
2. U(Y) = (U(X) \ U1) ∪ U2

3. If c ∈ L(X) is a 0-ary symbol then:

cY
def
=

{
ϕ(cX) if cX ∈ U1

cX otherwise

If f ∈ L(X) is a α-ary symbol with α > 0, and a1, . . . , aα ∈ U(Y), then:

f
Y

(a1, . . . , aα)
def
=

{
ϕ
(
f
X

(a′1, . . . , a
′
α)
)

if f
X

(a′1, . . . , a
′
α) ∈ U1

f
X

(a′1, . . . , a
′
α) otherwise

where a′
def
=

{
ϕ−1(a) if a ∈ U2

a otherwise

A replacement in a structure is a structure. Moreover, we proved in [15] that
the replacement is an isomorphism:

Lemma 5 (A Replacement is an Isomorphism).
If X is a structure, U1 ⊆ U(X) and U2 ∩ U(X) = ∅, then the structure Y

obtained by replacing in X the elements of U1 by the elements of U2 is isomorphic
to X. Moreover, if T is a set of L(X) terms closed by subterms and such that

for every t ∈ T , t
X 6∈ U1, then for every t ∈ T , t

X
= t

Y
.

Proof. See [15] �

Therefore, according to the second postulate, a replacement with fresh values
in one local memory of a state produced a state. We prove here the Lemma p.6
stating that every value in an update is a critical element:

Lemma 6 (Critical Elements).
For every state

(
X1, . . . , Xp

)
of the parallel algorithm A, for every 1 ≤ i ≤ p,

if (f, a1, . . . , aα, b) ∈ ∆i(A,
−→
X) then a1, . . . , aα, b are interpretations in Xi of

terms in T (A).

Proof. The proof is made by contradiction.

We assume that there exists an update (f, a1, . . . , aα, a0) ∈ ∆i(A,
−→
X) such

that at least one ai is not an interpretation in Xi of a term in T (A).
Let v be a fresh value, and Y i be the structure obtained by replacing ai by

v in Xi. According to the lemma 5, Xi and Y i are isomorphic.

26 Yoann Marquer and Frédéric Gava

So, according to the second postulate, because
−→
X =

(
X1, . . . , Xi, . . . , Xp

)
is

a state of A,
−→
Y =

(
X1, . . . , Y i, . . . , Xp

)
is also a state of A.

Because ai is not an interpretation in Xi of a term in T (A), the states(
X1, . . . , Xi, . . . , Xp

)
and

(
X1, . . . , Y i, . . . , Xp

)
coincide over T (A).

So, according to the third postulate, ∆i(A,
−→
X) = ∆i(A,

−→
Y).

But ai 6∈ U(Y i), so (f, a1, . . . , aα, a0) cannot appear in ∆i(A,
−→
Y), which

contradicts (f, a1, . . . , aα, a0) ∈ ∆i(A,
−→
X). �

We prove here the Lemma p.7 stating that for each step of the algorithm
only a bounded amount of work is done:

Lemma 7 (Bounded Set of Updates).
For every state

(
X1, . . . , Xp

)
of the parallel algorithm A, for every 1 ≤ i ≤ p,

#∆i(A,
−→
X) is bounded.

Proof. According to the Lemma 6, if (f, a1, . . . , aα, b) ∈ ∆i(A,
−→
X) then a1, . . . , aα, b

are interpretations in Xi of terms in T (A).
But, according to the third postulate, T (A) is finite. So there exists a bounded

number of possible a1, . . . , aα, b in ∆i(A,
−→
X).

Moreover, because L(A) is finite there exists a bounded number of dynamic

symbols f . Therefore ∆i(A,
−→
X) has a bounded number of updates. �

C.2 Computation and Communication Phases

Lemma 8 (Computing States are Closed by Multi-Isomophism).
If the state

(
X1, . . . , Xp

)
is in a computing phase and multi-isomorphic to

the state
(
Y 1, . . . , Y p

)
, then

(
Y 1, . . . , Y p

)
is in a computing phase too.

Proof. The proof is made by contradiction. We assume that
(
Y 1, . . . , Y p

)
is

not in a computing phase, so for every 1 ≤ i ≤ p, we have compA(Y i) = Y i.
Because

(
X1, . . . , Xp

)
is in a computing phase, according to the fourth pos-

tulate we have:

τA
(
X1, . . . , Xp

)
=
(
compA(X1), . . . , compA(Xp)

)
Let
−→
ζ = (ζ1, . . . , ζp) be a multi-isomorphism from

(
X1, . . . , Xp

)
to
(
Y 1, . . . , Y p

)
.

According to the second postulate, the transition function commutes with
multi-isomorphisms, so we have:

τA
(
Y 1, . . . , Y p

)
= τA

(
ζ1(X1), . . . , ζp(Xp)

)
=
−→
ζ
(
τA
(
X1, . . . , Xp

))
According to the fourth postulate, the computation function commutes with

multi-isomorphisms, so we have:

−→
ζ
(
τA
(
X1, . . . , Xp

))
=
−→
ζ
(
compA(X1), . . . , compA(Xp)

)
=
(
compA

(
ζ1(X1)

)
, . . . , compA (ζp(Xp))

)
=
(
compA(Y 1), . . . , compA(Y p)

)

An ASM Thesis for BSP 27

We assumed that for every 1 ≤ i ≤ p, we have compA(Y i) = Y i, so:(
compA(Y 1), . . . , compA(Y p)

)
=
(
Y 1, . . . , Y p

)
Therefore τA

(
Y 1, . . . , Y p

)
=
(
Y 1, . . . , Y p

)
. So we have:

−→
ζ
(
τA
(
X1, . . . , Xp

))
=
−→
ζ
(
X1, . . . , Xp

)
By applying

−→
ζ −1 on both sides we have:

τA
(
X1, . . . , Xp

)
=
(
X1, . . . , Xp

)
But τA

(
X1, . . . , Xp

)
=
(
compA(X1), . . . , compA(Xp)

)
, so for every 1 ≤ i ≤

p, we have compA(Xi) = Xi, which contradicts that
(
X1, . . . , Xp

)
is in a com-

puting phase. �

We did not assume in the fourth postulate that the communication function
commutes with multi-isomorphisms, because this is a corollary of the previous
lemma and the second postulate:

Lemma 9 (Properties of the Communication Function). For every bsp
algorithm A and for every state in communication phase, commA preserves the
universes, the number of processors, and commutes with multi-isomorphisms.

Proof. Let
−→
X be a state in a communication phase.

Because
−→
X is in a communication phase, according to the fourth postulate,

commA(
−→
X) = τA(

−→
X). Therefore, according to the second postulate, commA

preserves the universes and the number of processors.

Let
−→
ζ be a multi-isomorphism between

−→
X and another state.

Because
−→
X is in a communication phase, according to the previous lemma,−→

ζ (
−→
X) is in a communication phase too. So, according to the fourth postulate,

τA

(−→
ζ (
−→
X)
)

= commA

(−→
ζ (
−→
X)
)

.

Because τA(
−→
X) = commA(

−→
X), we have that

−→
ζ
(
τA(
−→
X)
)

=
−→
ζ
(

commA(
−→
X)
)

.

But, according to the second postulate, τA

(−→
ζ (
−→
X)
)

=
−→
ζ
(
τA(
−→
X)
)

.

Therefore commA

(−→
ζ (
−→
X)
)

=
−→
ζ
(

commA(
−→
X)
)

. �

Because the states of an algorithm may not be accessible, the set of states
S(A) may be extended with new tuples of local memories which are compatible
with the execution. According to the third postulate, only the critical elements
of the local memories matter to compute a step of the execution.

So, we will assume14 that S(A) is closed with respect to the explo-
ration witness15, which means that if

(
X1, . . . , Xi, . . . , Xp

)
is a state and

14 This assumption is without cost, because we can construct the algorithm B with
S(B) ⊇ S(A) and prove results like the Lemma p.31 for B, then apply the result for
the restricted set of states S(A).

15 And similarly, in the Definition p.8 of asmBSP, S(M) should be closed with respect
of T (M) = T (Π) ∪ T (commM), where T (Π) = {true} ∪ Read (Π) ∪ Write (Π).

28 Yoann Marquer and Frédéric Gava

the structure Y i has the same language and critical elements than Xi, then(
X1, . . . , Y i, . . . , Xp

)
is a state too.

Notice that two states may coincide over T (A) without being isomorphic, so
this is truely an extension of the set of states. The point is to apply the third
postulate on a bigger set of states in the proof of the lemma 10 p.28.

Lemma 10 (No Communication during Computation Phases).

For every states
(
X1, . . . , Xp

)
and

(
Y 1, . . . , Y q

)
in a computing phase, if Xi

and Y j have the same critical elements then ∆i(A,
−→
X) = ∆j(A,

−→
Y).

Proof.
(
X1, . . . , Xp

)
and

(
Y 1, . . . , Y q

)
are in a computing phase, so according

to the fourth postulate:

τA
(
X1, . . . , Xp

)
=
(
compA(X1), . . . , compA(Xp)

)
τA
(
Y 1, . . . , Y q

)
=
(
compA(Y 1), . . . , compA(Y q)

)
So ∆i(A,

−→
X) = compA(Xi)	Xi and ∆j(A,

−→
Y) = compA(Y j)	 Y j .

The proof is made by case:

1. If compA(Xi) = Xi and compA(Y j) = Y j , then ∆i(A,
−→
X) = ∅ = ∆j(A,

−→
Y).

2. Otherwise compA(Xi) 6= Xi or compA(Y j) 6= Y j . We assume compA(Y j) 6=
Y j , the other case compA(Xi) 6= Xi being similar.

Let
−→
Z be the p-tuple

(
X1, . . . , Y j , . . . , Xp

)
, which is the state

(
X1, . . . , Xi, . . . , Xp

)
where Xi has been replaced by Y j .

Xi and Y j have the same critical elements, and we assumed that S(A) is

closed with respect to the exploration witness, so because
−→
X is a state

−→
Z is

a state too.

Xi and Y j have the same critical elements, so the states
−→
X and

−→
Z coin-

cide over T (A). Therefore, according to the third postulate,
−→
∆(A,

−→
X) =

−→
∆(A,

−→
Z). In particular ∆i(A,

−→
X) = ∆i(A,

−→
Z).

We assumed that compA(Y j) 6= Y j , so
−→
Z is in a computing phase. So,

according to the third postulate, we have:

τA(
−→
Z) =

(
compA(X1), . . . , compA(Y j), . . . , compA(Xp)

)
So ∆i(A,

−→
Z) = compA(Y j)	 Y j = ∆j(A,

−→
Y).

Therefore ∆i(A,
−→
X) = ∆i(A,

−→
Z) = ∆j(A,

−→
Y).

�

T (commM) is defined in the Definition p.8. Read (Π) and Write (Π) are defined in
Definition p.30.

An ASM Thesis for BSP 29

C.3 Detailed Proofs for ASM-BSP

Let ζ be an isomorphism from the structure X to the structure Y , and let
(f, a1, . . . , aα, b) be an update of X. We will denote by ζ(f, a1, . . . , aα, b) the
update (f, ζ(a1), . . . , ζ(aα), ζ(b)) of Y . We generalize this notation to set of up-
dates:

ζ({u1, . . . , uk})
def
= {ζ(u1), . . . , ζ(uk)}

Lemma 11 (Isomorphic ASM).
For every asm program Π with signature L(X) and every isomorphism ζ

from X:
ζ (X ⊕∆(Π,X)) = ζ(X)⊕∆(Π, ζ(X))

Proof. We remind the definition of the updates:

f
X⊕∆

(−→a)
def
=

{
b if (f,−→a , b) ∈ ∆ and ∆ is consistent

f
X

(−→a) else

where X ⊕∆ has the same universe and signature than X.
So ζ (X ⊕∆(Π,X)) and ζ(X)⊕∆(Π, ζ(X)) has the same universe U(ζ(X))

and the same language L(X).
Therefore, to prove that ζ (X ⊕∆(Π,X)) = ζ(X)⊕∆(Π, ζ(X)), we have to

prove that they have the same interpretation for every symbol f ∈ L(X).
According to the definition of the updates:

f
ζ(X⊕∆)

(
−−→
ζ(a)) =

{
ζ(b) if (f,−→a , b) ∈ ∆ and ∆ is consistent

ζ
(
f
X

(−→a)
)

else

f
ζ(X)⊕ζ(∆)

(
−−→
ζ(a)) =

{
ζ(b) if (f,

−−→
ζ(a), ζ(b)) ∈ ζ(∆) and ζ(∆) is consistent

ζ
(
f
X

(−→a)
)

else

By definition of ζ(∆), (f,−→a , b) ∈ ∆ if and only if (f,
−−→
ζ(a), ζ(b)) ∈ ζ(∆). More-

over, we remind that∆ is inconsistent means that there exists (f,−→a , b), (f,−→a , b′) ∈
∆ with b 6= b′. Because ζ is an isomorphism from X, according to the remark
p.17, a = b in X if and only if ζ(a) = ζ(b) in ζ(X). So ∆ is consistent if and
only if ζ(∆) is consistent.

Therefore, for every set of updates ∆, ζ(X ⊕ ∆) = ζ(X) ⊕ ζ(∆). More-
over, according to the operational semantics of the asm, we have ζ (∆(Π,X)) =
∆(Π, ζ(X)). Therefore ζ (X ⊕∆(Π,X)) = ζ(X)⊕ζ (∆(Π,X)) = ζ(X)⊕∆ (Π, ζ(X)).
�

We recall: Let
−→
X =

(
X1, . . . , Xp

)
be a state of A. According to the transition

function τA, the next state is τA(
−→
X), which will be denoted by (τA(

−→
X)1, . . . , τA(

−→
X)p).

We denote by ∆i(A,
−→
X)

def
= τA(

−→
X)i	Xi the set of updates done by the i-th pro-

cessor of A on the state
−→
X , and by

−→
∆(A,

−→
X)

def
= (∆1(A,

−→
X), . . . ,∆p(A,

−→
X)) the

“multiset” of updates done by A on the state
−→
X . In particular, if a state

−→
X is

final, then τA(
−→
X) =

−→
X , so

−→
∆(A,

−→
X) =

−→
∅ .

30 Yoann Marquer and Frédéric Gava

We also recall: If X and Y are two local memories of the same algorithm A
then there exists a unique consistent set ∆ = {(f,−→a , b) | fY (−→a) = b and f

X
(−→a) 6=

b} of non trivial updates such that Y = X ⊕∆. This ∆ is called the difference
between the two local memories, and is denoted by Y 	X.

Lemma 12 (Multi-Isomorphic Set of Updates).

If
−→
ζ is a multi-isomorphism from the state

−→
X to the state

−→
Y then:

−→
ζ
(−→
∆(A,

−→
X)
)

=
−→
∆(A,

−→
Y)

Proof.
−→
X is a p-tuple. Let 1 ≤ i ≤ p.

ζi

(
∆i(A,

−→
X)
)

= ζi

(
τA(
−→
X)i 	Xi

)
by Definition p.29 of ∆i(A,

−→
X)

= ζi

({
(f,−→a , b) | fτA(

−→
X)i

(−→a) = b and f
Xi

(−→a) 6= b

})
by Definition p.30 of the difference

=

{
ζi(f,

−→a , b) | fτA(
−→
X)i

(−→a) = b and f
Xi

(−→a) 6= b

}
by the previous definition

=

{
ζi(f,

−→a , b) | fζi
(
τA(
−→
X)i

)
(
−−→
ζi(a)) = ζi(b) and f

ζi(Xi)
(
−−→
ζi(a)) 6= ζi(b)

}
according to the Remark p.17 on formulas

= ζi

(
τA(
−→
X)i

)
	 ζi

(
Xi
)

by Definition p.30 of the difference

= τA

(−→
ζ (
−→
X)
)i
	 ζi

(
Xi
)

according to the second postulate

= τA(
−→
Y)i 	 Y i

because
−→
ζ is a multi-isomorphism from

−→
X to

−→
Y

= ∆i(A,
−→
Y)

by Definition p.29 of ∆i(A,
−→
X)

�

Definition 10 (Updates (Terms Read/Write) of ASM programs).

Read (f (t1, . . . , tα) := t0)
def
= {t1, . . . , tα, t0}

Read (if F then Π1 else Π2 endif)
def
= {F} ∪ Read (Π1) ∪ Read (Π2)

Read (par Π1‖ . . . ‖Πn endpar)
def
= Read (Π1) ∪ · · · ∪ Read (Πn)

Write (f (t1, . . . , tα) := t0)
def
= {f (t1, . . . , tα)}

Write (if F then Π1 else Π2 endif)
def
= Write (Π1) ∪Write (Π2)

Write (par Π1‖ . . . ‖Πn endpar)
def
= Write (Π1) ∪ · · · ∪Write (Πn)

An ASM Thesis for BSP 31

Lemma 13 (Each Transition is Captured by an ASM).
For every state

(
X1, . . . , Xp

)
of the parallel algorithm A, and for every 1 ≤

i ≤ p, there exists an asm program Π
−→
X
i such that Read

(
Π
−→
X
i

)
⊆ T (A) and

∆(Π
−→
X
i , X

i) = ∆i(A,
−→
X).

Proof. According to the Lemma p.7, ∆i(A,
−→
X) contains a bounded number

m of updates (f1, a11, . . . , a
1
α1 , a10), . . . , (fm, am1 , . . . , a

m
αm , am0).

According to the Lemma p.6, for every update (f, a1, . . . , aα, a0) ∈ ∆i(A,
−→
X)

there exists t1, . . . , tα, t0 ∈ T (A) such that for every 0 ≤ j ≤ α we have tj
Xi

= aj .
So, the command f(t1, . . . , tα) := t0 is interpreted by (f, a1, . . . , aα, a0) in Xi.

Therefore, there existsm asm commands f1(t11, . . . , t
1
α1) := t10, . . . , fm(tm1 , . . . , t

m
αm) :=

tm0 which are respectively interpreted by (f1, a11, . . . , a
1
α1 , a10), . . . , (fm, am1 , . . . , a

m
αm , am0)

in Xi, such that every term tkj read in these commands is in T (A).

Let Π
−→
X
i be the following program:

par f1(t11, . . . , t
1
α1) := t10

‖ f2(t21, . . . , t
2
α2) := t20

...
‖ fm(tm1 , . . . , t

m
αm) := tm0

endpar

By using the asm operational semantics, we proved that:

∆(Π
−→
X
i , X

i) = {(f1, a11, . . . , a1α1 , a10), . . . , (fm, am1 , . . . , a
m
αm , am0)}

= ∆i(A,
−→
X)

�

The problem is there can be an infinite number of such asm program Π
−→
X
i ,

so we need to narrow the number of relevant states. In order to do that, we will
use the finiteness of the exploration witness T (A). For each processor memory
X, we denote by EX the equivalence relation on pairs (t1, t2) of terms in T (A)
defined by:

EX(t1, t2)
def
=

{
true if t1

X
= t2

X

false otherwise

We prove that the number of relevant states can be reduced to the number
of the relations EX :

Lemma 14 (Syntactically Equivalent Memories).
For every bsp algorithm A and for every state

(
X1, . . . , Xp

)
and

(
Y 1, . . . , Y q

)
in a computing phase, if EXi = EY j then ∆(Π

−→
X
i , Y

j) = ∆j(A,
−→
Y).

Proof. Let Ỹ j be the structure obtained by replacing in U(Y j) the elements
appearing both in U(Xi) and U(Y j) by fresh values. According to the Lemma
p.25, Y j and Ỹ j are isomorphic.

32 Yoann Marquer and Frédéric Gava

Let Zj be the structure obtained by replacing in U(Ỹ j) the critical elements
of Ỹ j by the critical elements of Xi. Because EXi = EY j , this operation is well-
defined16. Because U(Xi) ∩ U(Ỹ j) = ∅, according to the Lemma p.25, Ỹ j and
Zj are isomorphic.

Therefore, Y j and Zj are isomorphic. So, because
−→
Y =

(
Y 1, . . . , Y j , . . . , Y q

)
is a state, according to the second postulate, the q-tuple

−→
Z =

(
Y 1, . . . , Zj , . . . , Y q

)
obtained by replacing Y j by Zj in

−→
Y is a state too.

Because
−→
Y is in a computing phase and is multi-isomorphic to the state

−→
Z ,

according the Lemma p.26,
−→
Z is in a computation phase too.

The states
−→
X =

(
X1, . . . , Xi, . . . , Xp

)
and
−→
Z are in a computing phase, and

Xi and Zj have the same critical elements. Therefore, according to the Lemma

p.7 we have ∆i(A,
−→
X) = ∆j(A,

−→
Z).

According to the Lemma p.31,∆(Π
−→
X
i , X

i) = ∆i(A,
−→
X). Therefore∆(Π

−→
X
i , X

i) =

∆j(A,
−→
Z). According to the Lemma p.31, Read

(
Π
−→
X
i

)
⊆ T (A). So, because Xi

and Zj have the same critical elements they coincide over Read
(
Π
−→
X
i

)
, so we

have ∆(Π
−→
X
i , X

i) = ∆(Π
−→
X
i , Z

j). Therefore ∆(Π
−→
X
i , Z

j) = ∆j(A,
−→
Z).

Let ζ be an isomorphism between Y j and Zj . According to the Lemma

p.30, ζ(∆j(A,
−→
Y)) = ∆j(A,

−→
Z). Moreover, because for every t ∈ T (A) we have

ζ(t
Y j

) = t
Zj

, we have ζ(∆(Π
−→
X
i , Y

j)) = ∆(Π
−→
X
i , Z

j).

Therefore ζ(∆(Π
−→
X
i , Y

j)) = ζ(∆j(A,
−→
Y)), and by applying ζ−1 on both sides

we have the result ∆(Π
−→
X
i , Y

j) = ∆j(A,
−→
Y). �

Proposition 3 (BSP-ASMs capture Computations of BSP Algorithms).

For every bsp algorithm A, there exists an asm program ΠA such that for

every state
−→
X in a computation phase:

−→
∆(ΠA,

−→
X) =

−→
∆(A,

−→
X)

Proof. Let c be the number of relations EX , where X is a local memory from
a state in a computing phase.

According to the third postulate, T (A) is finite, so there exists n such that
T (A) = {t1, . . . , tn}. For every local memory X, EX is an equivalence relation
for the elements of T (A). So, c is bounded by the n-th Bell number Bn, which
is the number of equivalence relations on a set that has exactly n elements.

Therefore, there exists a bounded number c of local memories Y i11 , . . . , Y icc
from states

−→
Y1, . . . ,

−→
Yc in a computing phase, such that for every local memory

X from a state in a computing phase there exists one and only one 1 ≤ j ≤ c
such that EX = E

Y
ij
j

.

16 If t1
Ỹ j

= t2
Ỹ j

then, by using the isomorphism between Y j and Ỹ j , we have t1
Y j

=

t2
Y j

. So, because EXi = EY j , we have t1
Xi

= t2
Xi

.

An ASM Thesis for BSP 33

Let Π1, . . . ,Πc be the asm programs obtained at the Lemma p.31 such that

for every 1 ≤ j ≤ c, ∆(Πj , Y
ij
j) = ∆ij (A,

−→
Yj).

For every relation E
Y

ij
j

, let Fj be the formula17 defined by:

Fj
def
=

∧
1≤k,`≤n

Ek` where Ek` =

{
tk = t` if E

Y
ij
j

(tk, t`) is true

tk 6= t` otherwise

Notice that according to the definition of E
Y

ij
j

and Fj , we have that Fj

is true in a local memory X if and only if EX = E
Y

ij
j

. Therefore, for every

local memory X from a state in a computing phase, one and only one of these
formulas F1, . . . , Fc is true. These formulas are sometimes called the guards of
the program ΠA, which is defined as the following asm program:

if F1 then Π1

else if F2 then Π2

...
else if Fc then Πc

endif . . . endif

Such an asm program with guards and non-trivial updates will be called a
program in normal form.

Let
−→
X =

(
X1, . . . , Xp

)
be a state in a computation phase, and 1 ≤ i ≤ p.

We prove now that ∆(ΠA, X
i) = ∆i(A,

−→
X).

We proved that there exists one and only one 1 ≤ j ≤ c such that EXi = E
Y

ij
j

.

So, according to the definition of the formulas F1, . . . , Fc, we have that Fj is true
in Xi and the other formulas are false in Xi. Therefore ∆(ΠA, X

i) = ∆(Πj , X
i).

Because
−→
X and

−→
Yj are in a computation phase, and because EXi = E

Y
ij
j

,

according to the Lemma p.31 we have: ∆(Πj , X
i) = ∆i(A,

−→
X).

Therefore, we proved for every 1 ≤ i ≤ p that ∆(ΠA, X
i) = ∆i(A,

−→
X). �

Theorem 2. algoBSP ⊆ asmBSP

Proof. Let A be the bsp algorithm (S(A), I(A), τA). According to the fourth

postulate, there exists compA and commA such that for every state
−→
X :

τA(
−→
X) =

{ −−−−→compA(
−→
X) if

−→
X is in a computation phase

commA(
−→
X) otherwise

where −−−−→compA
(
X1, . . . , Xp

)
=
(
compA(X1), . . . , compA(Xp)

)
. According to the

proposition 1, there exists an asm program ΠA such that for every state
−→
X in a

computation phase, we have
−→
∆(ΠA,

−→
X) =

−→
∆(A,

−→
X).

17 This is the reason why we assumed that every signature in this paper contains the
booleans and the equality.

34 Yoann Marquer and Frédéric Gava

So, for every 1 ≤ i ≤ p, we have:

Xi ⊕∆(ΠA, X
i) = Xi ⊕∆i(A,

−→
X)

= Xi ⊕
(
τA(
−→
X)i 	Xi

)
= τA(

−→
X)i

= compA(Xi)

Therefore, we have for every state
−→
X in a computation phase:

τΠA

(
X1, . . . , Xp

)
=
(
X1 ⊕∆(ΠA, X

1), . . . , Xp ⊕∆(ΠA, X
p)
)

=
(
compA(X1), . . . , compA(Xp)

)
By definition,

−→
X is in a computation phase means that −−−−→compA(

−→
X) 6=

−→
X , so

we proved that
−→
X is in a computation phase if and only if τΠA

(
−→
X) 6=

−→
X .

So, we have:

τA(
−→
X) =

{
τΠA

(
−→
X) if τΠA

(
−→
X) 6=

−→
X

commA(
−→
X) otherwise

Moreover, for every state
−→
X such that τΠA

(
−→
X) =

−→
X , we proved that

−→
X is in

communication phase. So, according to the Lemma p.27, commA preserves the
universes, the number of processors, and commutes with multi-isomorphisms.
The other properties are immediatly true according to the three postulates.
Therefore A is a asmBSP machine. �

Theorem 3. algoBSP ⊇ asmBSP

Proof. Let M be the asmBSP machine (S(M), I(M), τM). By definition, there
exists an asm program Π and an application commM such that:

τM (
−→
X) =

{
τΠ(
−→
X) if τΠ(

−→
X) 6=

−→
X

commM (
−→
X) otherwise

In order to prove that M is a bsp algorithm, we have to prove that it verifies
the four postulates:

1. M verifies the first postulate because I(M) ⊆ S(M) and τM is a transition
function.

2. According to the operational semantics of the asm, τΠ preserves the uni-
verses and the number of processors. We prove by using the Lemma p.29

that τΠ commutes with any multi-isomorphism
−→
ζ :

−→
ζ
(
τΠ
(
X1, . . . , Xp

))
=
−→
ζ
(
X1 ⊕∆(Π,X1), . . . , Xp ⊕∆(Π,Xp)

)
=
(
ζ1
(
X1 ⊕∆(Π,X1)

)
, . . . , ζp (Xp ⊕∆(Π,Xp))

)
=
(
ζ1(X1)⊕∆(Π, ζ1(X1)), . . . , ζp(Xp)⊕∆(Π, ζp(Xp))

)
= τΠ

(
ζ1(X1), . . . , ζp(Xp)

)
= τΠ

(−→
ζ
(
X1, . . . , Xp

))
Therefore, by using the properties of commM in the Definition p.8 of asmBSP,
M verifies the second postulate.

An ASM Thesis for BSP 35

3. ∆i(τΠ ,
−→
X) =

(
Xi ⊕∆(Π,Xi)

)
	Xi so, if∆(Π,Xi) is consistent then∆i(τΠ ,

−→
X)

is the set of updates∆(Π,Xi) less the trivial updates, and otherwise∆i(τΠ ,
−→
X) =

∅.
The sets Read (Π) and Write (Π) are from Definition p.30. By definition of
the operational semantics of the asm programs, if X and Y coincide over
{true}∪Read (Π) then ∆(Π,X) = ∆(Π,Y). Moreover, if X and Y coincide
over Write (Π) too, then an update of ∆(Π,X) is trivial on X if and only if
the corresponding update of ∆(Π,Y) is trivial on Y .
Therefore, T (Π) = {true} ∪Read (Π)∪Write (Π) is an exploration witness
for τΠ . So, by using the properties of commM in the Definition p.8 of asmBSP,
T (M) = T (Π) ∪ T (commM) is an exploration witness for M .
Therefore, M verifies the third postulate.

4. For every local memory X, let compM (X) = X ⊕∆(Π,X).

So τΠ(
−→
X) = −−−−→compM (

−→
X), and we have:

τM (
−→
X) =

{ −−−−→compM (
−→
X) if −−−−→compM (

−→
X) 6=

−→
X

commM (
−→
X) otherwise

Therefore, M verifies the fourth postulate.

Therefore M is a bsp algorithm. �

Corollary 1. Every asmBSP program has a normal form.

Proof. According to the previous theorem, an asmBSP is a bsp algorithm and,
according to the proof of the Proposition p.9, every bsp algorithm is captured by
an asmBSP with a program in normal form. Thus, our initial asmBSP is equivalent
to an asmBSP with a program in normal form. �

36 Yoann Marquer and Frédéric Gava

D A function of communication

D.1 Generalities

There is no shared memory, and point-to-point communication is considered.
Since in the bsp model, a parallel machine consists of a set of processors, each
with its own private memory, and an interconnection network that can route
packets between processors, we may reason about bsp algorithms as a set of
parameterized processes that communicate via message-passing.

The presented function of communication is naive since only a point-to-point
of two processors exchanging a single data is considered. If the network can send
blocks of data or can involve more than 2 processors, a more efficient (but much
more complicated) function can be give. But our function is sufficient because
it involves the right bsp cost and the traditional bsp programming primitives.

To simplify the work, we assume that every term can be shared with other
processors and thus we do not take into account the bsplib’s push/pop prim-
itives. Adding them complex the exploration witness without fundamentally
changing the solution.

In this section, we use the standard bsplib’s primitives bsp_get, bsp_put,
bsp_sendand bsp_move. We rename them read, write, send and rcv. Reading and
writing are now not on buffers of bytes (memory aera as in the c programming
language) but on variables. Similarly, the send primitives sends terms and not
buffers. For example, in an asmBSP we get the command write(x, j, y) (sending
the value of x to processor j in the variable y) of Π will be interpreted in the

processor Xi by (i, x @ j, y) and added to the buffer IdMsg
Xi

. A command
x := read(j, y) of Π will be interpreted in the processor Xi by (j, y @ i, x) and

added to the buffer IdMsg
Xi

.
The conditions about the communication function in the Definition p.8 of

asmBSP are a version of the second and third postulate:

1. For every state
−→
X such that τΠ(

−→
X) =

−→
X , commM preserves the universes

and the number of processors, and commutes with multi-isomorphisms

2. There exists a finite set of terms T (commM) such that for every state
−→
X

and
−→
Y with τΠ(

−→
X) =

−→
X and τΠ(

−→
Y) =

−→
Y , if they coincide over T (commM)

then
−→
∆(M,

−→
X) =

−→
∆(M,

−→
Y).

The first condition is not particularly restricting, especially if the commu-
nication function only manages the communications between processors with a
syntactical process, as we will see in the following. So, the main restriction is to
assign an exploration witness to the communication function.

Notice that we may want to ensure that the local memories are only updated

at the end of the communication phase. Indeed, in a state
−→
X during the commu-

nication phase, if a local memory is updated we may have τΠ(
−→
X) 6=

−→
X , so the

computation phase begins even if the communication phase is not completed. If
necessary, we could impose a boolean bcomm which is true during the commu-
nication phase, and such that the computation phase can begin only if bcomm

An ASM Thesis for BSP 37

becomes false. In that case, bcomm should be added to the exploration witness
of the communication function.

In this section we we give how to built the function of communication in the
asm context. It is a bit technical. The main ideas are:

– The messages are sent letter by letter; The representation gives the formal
size of the communicated values;

– The communications use two buffers of sending IdMsg and Msg; One for
sending the order of communication for drma routines and another one for
the reception of messages of other processors

– If we assume that every processor can only send at most one message and
receive at most one message during an “exchange”, then the h-relation (com-
munication phase) requires exactly h exchanges;

D.2 Representation, Size and Characterization of Terms

The representation ta of an element a in the local memoryX is the unique term

formed only by constructors such that ta
X

= a. For example, the representation
of 314 as a decimal number is 31410, and its representation as a binary number
is 1001110102.

If t is a term, let
−→
t be the sequence of the letters used to write it in the prefix

notation. For example, if f is a binary symbol, g is a unary symbol, and a and b
are constants, then the sequence of letters of the term t = f(f(b, g(a)), g(f(a, b)))

is
−→
t = (f, f, b, g, a, g, f, a, b). Because a letter is not itself a term, for convenience

we will add to the language L(M) a constant symbol f for every symbol f ∈

L(M), interpreted by f
Xi

= f . So, the sequentialization of this term will be
−→
t = (f, f , b, g, a, g, f , a, b).

Therefore, a 7→ −→ta is the implementation in our framework of the serialization
function (e.g. java’s toString method). We assume in this section that every
value which can be communicated must be serializable. We assume that every
value which can be communicated must be serializable, which is already given
because we assumed that every element must be representable. In order to assign
a size to terms, we can use this serialization.

The weight w (f) of a symbol f with arity α (f) is defined by w (f)
def
= 1−

α (f). Because for every symbol f we have α (f) ≥ 0, notice that w (f) ≤ 1. The
weight of a word f1 . . . f` of length ` is defined by:

w (f1 . . . f`)
def
=
∑̀
i=1

w (fi)

If 1 ≤ i ≤ `, the word fi . . . f` is called a suffix of the word f1 . . . f`. The weight
of a word is the sum of the weight of its letters:

Lemma 15 (Characterization of a Term). The word f1 . . . f` is a term if
and only if w (f1 . . . f`) = 1 and for every suffix fi . . . f` we have w (fi . . . f`) ≥ 1.

38 Yoann Marquer and Frédéric Gava

Proof. Firstly, we prove the implication by induction on the term t:

– If t is a constant c, then w (c) = 1− 0 = 1.
– If t = ft1 . . . tα where α (f) = α and t1, . . . , tk are terms, then:

w (ft1 . . . tα) = w (f) +
∑α
i=1 w (ti)

= (1− α) + α× 1
= 1

A (proper) suffix of ft1 . . . tα has the form siti+1 . . . tα where 1 ≤ i ≤ α,
and si is a suffix of the term ti. So, by induction hypothesis w (si) ≥ 1,
and the terms (if there is any) ti+1, . . . , tα have a weight of 1. Therefore
w (siti+1 . . . tα) ≥ 1 + (α− i) ≥ 1.

Secondly, we prove the converse by induction on the length of the word
f1 . . . f`:

– If ` = 1 then by hypothesis w (f1) = 1, so α (f1) = 0. Therefore, the word
f1 is a constant, which is a term. It has no other suffix.

– Let ` ≥ 2. We assume by induction that for every 1 ≤ `′ < ` we have the
converse, which means that for every word f1 . . . f`′ , if w (f1 . . . f`′) = 1 and
for every 1 ≤ i ≤ `′ we have w (fi . . . f`′) ≥ 1, then f1 . . . f`′ is a term.
Let f1 . . . f` be a word such that w (f1 . . . f`) = 1 and for every 1 ≤ i ≤ ` we
have w (fi . . . f`) ≥ 1. We prove that f1 . . . f` is a term.
f` is a suffix, so w (f`) ≥ 1. But, by definition, we have w (f`) ≤ 1. So we
have w

(
f(`−1)+1

)
= w (f`) = 1. Therefore, there exists a 1 ≤ i < ` such that

w (fi+1 . . . f`) = 1. Let i1 be the smallest. By hypothesis we have for every
1 ≤ i < i1 that w (fi+1 . . . fi1fi1+1 . . . f`) ≥ 1.
But w (fi+1 . . . fi1fi1+1 . . . f`) = w (fi+1 . . . fi1)+w (fi1+1 . . . f`), and by def-
inition of i1 we have w (fi1+1 . . . f`) = 1.
So w (fi+1 . . . fi1) ≥ 0. The case w (fi+1 . . . fi1) = 0 can be excluded, because
it implies that w (fi+1 . . . fi1fi1+1 . . . f`) = 0 + 1 = 1, which contradicts the
minimality of i1.
Therefore w (fi+1 . . . fi1) ≥ 1. In particular w (fi1) ≥ 1, so w (fi1) = 1.
So, we obtain i2 < i1 in the same way that we obtained i1 < i0 = `, and so
on. We obtain a strictly decreasing sequence of elements ij ≥ 1, until ik = 1.
Therefore we have:

f1 . . . f` = fik
(
fik+1 . . . fik−1

)
. . .
(
fi1+1 . . . fi0

)
, such that:

w
(
fik+1 . . . fik−1

)
= 1, and for every suffix: w

(
fi . . . fik−1

)
≥ 1

...
w (fi1+1 . . . fi0) = 1, and for every suffix: w (fi . . . fi0) ≥ 1

By induction hypothesis, fik+1 . . . fik−1
is a term tk, . . . , and fi1+1 . . . fi0 is

a term t1.

An ASM Thesis for BSP 39

By hypothesis w (f1 . . . f`) = 1, so:

α (f1) = 1− w (f1)
= w (f1 . . . f`)− w (f1)

=
∑k
j=1 w

(
fij+1 . . . fij−1

)
=
∑k
j=1 1

= k

t1, . . . , tk are terms, and α (f1) = k, so f1 . . . f` = f1t1 . . . tk is also a term.

�

Notice that if f1 . . . f` is the empty word, then ` = 0 and w (f1 . . . f`) =∑`
i=1 w (fi) = 0. So, because the empty word is not a term, the equivalence

holds in that case too.

D.3 Buffers of communications

So, a message from a processor i to a processor j will be sent letter by letter. The
processors have two buffers IdMsg and Msg, which does not appear in Π. IdMsg
contains the identifiers (i, x @ j, y) of the messages, where i is the identifier of the
sending processor, x the read location, j the identifier of the receiving processor,
and y the written location.

For example, a command write(x, j, y) of Π will be interpreted in the pro-

cessor Xi by (i, x @ j, y) and added to the buffer IdMsg
Xi

. A command x :=
read(j, y) of Π will be interpreted in the processor Xi by (j, y @ i, x) and added

to the buffer IdMsg
Xi

.
At the end of the computation phase18 theses identifiers are mixed together,

and for every processorXi its buffer Msg
Xi

is filled with the messages (
−−→
t
xXi @ j, y)

for every identifier (i, x @ j, y), and IdMsg
Xi

is emptied.
Then the processor Xi sends the message letter by letter to the processor Xj .

If the message were reconstructed on Xj only at the end of the communication
phase, then the term t itself would be necessary, and the exploration witness
could not be bounded. Instead, the value is reconstructed step by step each time
a letter is received.

For example, to reconstruct the term t = f(f(b, g(a)), g(f(a, b))), the proces-

sor Xi sends
−→
t = (f, f , b, g, a, g, f , a, b) one letter at a time from the end to the

18 We can always build a formula which becomes true at the end of the computation
phase. For example, for every t ∈ Read (Π) we add a fresh variable v initialized at
⊥. The number of fresh variables is bounded because Read (Π) ⊆ T (M) which is
bounded according to the third postulate. We build a new program Π ′ = par v1 :=
t1 ‖ . . . ‖ vk := tk ‖ Π endpar which has the same execution than Π if the fresh
variables are ignored. The desired formula is v1 = t1 ∧ · · · ∧ vk = tk. Indeed, it
becomes true only if the old values −→v of the terms read by Π are the same than the
new values

−→
t , which means that nothing has changed.

40 Yoann Marquer and Frédéric Gava

beginning, and the processor Xj reconstructs t by using the following updates:

b received: x1 := b
a received: x2 := a
f received: x1 := f(x2, x1)
g received: x1 := g(x1)
a received: x2 := a
g received: x2 := g(x2)
b received: x3 := b
f received: x2 := f(x3, x2)
f received: x1 := f(x2, x1)

At the end, we have x1 = f(f(b, g(a)), g(f(a, b))).

Firstly, notice that the number of variables used that way cannot be bounded.
For example, the term f(. . . f(an+1, an) . . . , a1) requires n + 1 variables. So,
instead of a variable xnArg we will use a unary symbol RcvVal(nArg).

Secondly, we need to specify how the index nArg evolves. We set nArg
Xi

= 0
for every local memory at the beginning of a communication phase. Then, each
time a symbol f is received, nArg is updated by nArg := nArg +w (f), where
w (f) is the weight of the symbol f (see previously).

The weight of a word is the sum of the weight of its letters. We prove in
Lemma p.37 that nArg ≥ 1 during the communication phase, and that for every
term t we have w (t) = 1. Therefore, at the end of the communication phase,
nArg is the number of terms received.

Thirdly, the letters may be received for different locations. In fact, a letter f
cannot be sent alone, the location (j, y) should be made explicit. Therefore, the
messages traveling on the network have the form (f @ j, y), and the symbols
RcvVal and nArg should also depend on the location. So, in fact, RcvVal is a
binary symbol, and nArg is a unary symbol.

D.4 Read and Write

For the moment we simplify the example by using only variables to read and
write values. If WriteComm(Π) = {y1, . . . , yk} is the set of the variables written
in Π by communication primitives, then the locations are y1, . . . , yk. So, in our

example, each time the processor Xj receive a message (c @ j, y) where c is a
constant symbol, the following update is made:

par

nArg(y) := nArg(y) + 1
‖ RcvVal

(
y,nArg(y) + 1

)
:= c

endpar

An ASM Thesis for BSP 41

And each time the processor Xj receive a message (f @ j, y) where α (f) ≥ 1
the following update is made:

par

nArg(y) := nArg(y) + 1− α
(
f
)

‖ RcvVal
(
y,nArg(y) + 1− α

(
f
))

:= f

RcvVal
(
y,nArg(y)

)
,

. . . ,
RcvVal

(
y,nArg(y) + 1− α

(
f
))


endpar

Therefore, at the end of the communication phase, nArg(y) is the number of
terms received at the location y. if nArg(y) = 0 the variable y does not require
to be updated. If nArg(y) ≥ 2, more than one term have been received, so there
might be a conflict. In that case, we assume that the variable y should not be
updated19. So, at the end of the communication phase (the synchronization),
the following updates are made for the variables y1, . . . , yk ∈WriteComm(Π):

par

if nArg(y1) = 1 then y1 := RcvVal
(
y1, 1

)
‖

...
‖ if nArg(yk) = 1 then yk := RcvVal

(
yk, 1

)
endpar

Notice that because in our example the symbols read by Π are only updated
at the end of the communication phase, the computation phase can begin at the
next step, so we do not need a boolean bcomm to prevent the computations to
happen during the communication phase.

Therefore, in our example with the communication primitives read and write,
the exploration witness T (commM) of the communication function is the closure
by subterms of: ⋃

y∈WriteComm(Π)

⋃
f∈L(M)

∪
α(f)=0

{
f,RcvVal

(
y,nArg(y) + 1

)}

∪
α(f)≥1

{
f
(
RcvVal

(
y,nArg(y)

)
, . . . ,RcvVal

(
y,nArg(y) + 1− α

(
f
)))}

∪
{

true,nArg(y) = 1, y,RcvVal
(
y, 1
)}

So, because WriteComm(Π) and L(M) are finite, we have that T (commM)
is finite too.

19 This decision may be problematic if the same value has been sent several times, but
we will not consider this problem in this paper.

42 Yoann Marquer and Frédéric Gava

D.5 Send and Receive

But WriteComm(Π) may not be restricted to variables. In fact, terms are re-
quired for communication primitives20 like send or rcv.

Indeed, in that case we cannot use an identifier (i, x @ j, y) during the com-
munication phase because the written location is not a variable y but will be
determined during the next computation phase by a command t2 := rcv. So, we
will use instead a symbol to indicate that the message should be stored in a
buffer of the receiving processor.

Therefore, during the computation phase a command send(x, j) will be inter-
preted in the processor Xi by an identifier (i, x @ j,) and added to the buffer

IdMsg
Xi

, and at the end of the computation phase, these identifiers are mixed
together (with the identifiers for the read and write primitives).

As for the read and write primitives, the message should be sent letter by
letter. The received value cannot be constructed by using RcvVal

(
y,nArg(y)

)
because the final location y is not known. Instead, we assume that the number
hin of messages received by a processor must be bounded for every execution of
the algorithm21.

So, the communication function can assign a location RcvLoc(n), where 1 ≤
n ≤ hin and RcvLoc is an injection, to each received message in a processor j.
Therefore, for every sending processor Xi and for every identifier (i, x @ j,),

its buffer Msg
Xi

is filled with the messages (
−−→
t
xXi @ j,RcvLoc(n)) and IdMsg

Xi

is emptied.
Then, the messages are sent letter by letter, and each value is reconstructed

in RcvVal (RcvLoc(n), 1) in the same way as before. If the primitives read and
write are used at the same time as the primitives send and rcv, we can assume
that the language contains a variable 1 ≤ nLoc ≤ hin such that if 1 ≤ n < nLoc
then RcvLoc(n) = y is the location of a symbol y, and if nLoc ≤ n ≤ hin then
RcvLoc(n) is a location for a rcv command.

At the end of the communication phase, for every y ∈ WriteComm(Π)
such that RcvLoc(n) = y, the program if nArg(RcvLoc(n)) = 1 then y :=

RcvVal (RcvLoc(n), 1) is applied22 . Then, during the next computation phase, a

20 Notice that in our presentation, it does not matter if the location x read by a com-
mand is a variable or a term t1, because this term may be added to the exploration
witness T (M), but in this paper we assume the most restrictive case. And indeed,
if we want to prevent computations during the communication phase, we should
restrict the location to be a variable.

21 In other words, in our framework we can notice an algorithmic difference be-
tween the primitives {read,write} and the primitives {send, rcv}: the first have
automatically a bounded number of received messages (or a clash), but the sec-
ond may not. The restriction of hin is physically sound because it states that
there must exists a bound to the quantity of information stored in a given vol-
ume (here, the processor), which can be estimated by the Bekenstein bound,
https://en.wikipedia.org/wiki/Bekenstein_bound.

22 If they are applied sequentially, they required nLoc−1 ≤ h steps, and we have to
add a counter to the language and to the exploration witness T (commM).

https://en.wikipedia.org/wiki/Bekenstein_bound

An ASM Thesis for BSP 43

command t2 := rcv is interpreted (for example23) by par t2 := RcvVal (RcvLoc(nLoc), 1) ‖ nLoc :=
nLoc +1 endpar if nLoc ≤ h.

Therefore, in our example with the primitives read, write, send and rcv, the
exploration witness T (commM) of the communication function is the closure by
subterms of:

⋃
1≤n≤hin

⋃
f∈L(M)

∪
α(f)=0

{
f, RcvVal (RcvLoc(n),nArg(RcvLoc(n)) + 1)

}

∪
α(f)≥1

{
f

(
RcvVal (RcvLoc(n),nArg(RcvLoc(n)))

. . . ,RcvVal
(
RcvLoc(n),nArg(RcvLoc(n)) + 1− α

(
f
)))}

∪WriteComm(Π) ∪

{
true, nArg(RcvLoc(n)) = 1,RcvVal (RcvLoc(n), 1)

}

Therefore T (commM) is finite, so we gave an example of communication
function verifying the conditions given at the Definition 6 p.8 of asmBSP:

Proposition 4 (Communication “à la BSPlib”). A function of communi-
cation with primitives for distant readings/writings and point-to-point sending
of data can be design using asm.

Notice that we did not specify how the index RcvLoc(n) is constructed, nor
whether or not RcvVal is emptied at the beginning of the next communication
phase. These are details which are left to the implementation and depend on the
chosen algorithm.

In our example the latency L of the barrier of synchronization includes, at
the end of the communication phase, the assurance that every message has been
sent and received. The bandwidth g includes, at the beginning of the commu-
nication phase, the exchange of the message identifiers in order to prepare the
communication relation between the processors; The preparation of the mes-
sages themselves by a kind of serialization and, at the end of the communication
phase, the update of the written variables.

D.6 Number of Exchanges

During the communication phase of a superstep, every processor Xi must send
houti messages24 and receive hini messages. Such a communication pattern is called

23 There exists many variants of the rcv command. Notice that in our variant, we
should add RcvVal (RcvLoc(nLoc), 1), nLoc +1 and nLoc ≤ h to the exploration
witness T (M).

24 Or letter of a message, as in our example of communication function.

44 Yoann Marquer and Frédéric Gava

a h-relation, where:
h = max(hin, hout)

with hin = max
1≤i≤p

(
hini
)

and hout = max
1≤i≤p

(
houti

)
We assume in that section that every processor can only send at most one

message and receive at most one message during an “exchange”, and we prove
that the communication phase requires exactly h exchanges.

Notice that if h = hout then there exists a processor Xi that requires at
least h exchanges to send its houti messages, and if h = hin then there exists a
processor Xi that requires at least h exchanges to receive its hini messages. So,
we only have to prove that there exists a sequence of exchanges requiring at
most h exchanges:

Lemma 16 (Order of Exchanges).
For every h-relation there exists a sequence of exchanges requiring at most h

exchanges.

Proof. The proof is made by induction on the number of messages:

1. If there is no communication, then h = 0 and the relation does not require
any exchange.

2. We assume that there is a h-relation which can be realized with at most
h exchanges, and we add a new message sent by the processor Xi to the
processor Xj .
The proof is made by case:
– If houti = h or hinj = h, then the new pattern of communication is a h+ 1

relation.
So we can do the exchanges of the previous relation then the new ex-
change in h+ 1 exchanges.

– Otherwise, the new pattern of communication is a h relation.
Moreover, in the previous relation Xi sends houti ≤ h − 1 messages and
Xj receives hinj ≤ h − 1 messages. So, during the sequence of the h

exchanges of the previous relation, there exists an exchange ei when Xi

does not send, and there exists an exchange ej when Xj does not receive.
We construct a sequence Xi0 , Xi1 , Xi2 , . . . of sending processors, and a
sequence Xj0 , Xj1 , Xj2 , . . . of receiving processors, while we change the
communications in the following way:
(a) We begin with Xi0 = Xi and Xj0 = Xj .
(b) We assume that Xin does not send at ei and Xjn does not receive

at ej , and that it remains a communication to be done from Xin to
Xjn .
These properties are true for n = 0.
We prove that either we can construct the following processors Xin+1

and Xjn+1 with the same properties, or the sequences of processors
end.

An ASM Thesis for BSP 45

(c) If at the exchange ej , X
in sends no message, then we can add the

communication from Xin to Xjn at ej without increasing the number
of exchanges, becauseXjn does not receive at ej . In that case, there is
no more communication left, so we can end the sequences of sending
and receiving processors.

(d) Otherwise, if at the exchange ej , X
in sends a message to a processor

Xk, then we set Xjn+1 = Xk, we remove the communication from
Xin to Xjn+1 , and we add the communication from Xin to Xjn . This
communication is done without increasing the number of exchanges.
But now it remains the communication from Xin to Xjn+1 to be
done.
Notice that before Xjn+1 received a message from Xin at the ex-
change ej , but we removed this communication without adding a
new communication to Xjn+1 . So, because a processor can only re-
ceive one message per exchange, we have that Xjn+1 now does not
receive at ej .

(e) If at the exchange ei, X
jn+1 receives no message, then we can add

the communication from Xin to Xjn+1 at ei without increasing the
number of exchanges, because Xin does not send at ei. In that case,
there is no more communication left, so we can end the sequences of
sending and receiving processors.

(f) Otherwise, if at the exchange ei, X
jn+1 receives a message from a

processor Xk, then we set Xin+1 = Xk, we remove the communi-
cation from Xin+1 to Xjn+1 , and we add the communication from
Xin to Xjn+1 . This communication is done without increasing the
number of exchanges.
But now it remains the communication from Xin+1 to Xjn+1 to be
done.
Notice that before Xin+1 sent a message to Xjn+1 at the exchange
ei, but we removed this communication without adding a new com-
munication from Xin+1 . So, because a processor can only send one
message per exchange, we have that Xin+1 now does not send at ei.

(g) Now Xin+1 does not send at ei, X
jn+1 does not receive at ej , and it

remains the communication from Xin+1 to Xjn+1 to be done. So, by
induction we can continue until the sequences end.

Notice that, after N repetitions of this process from the initial processors
Xi0 = Xi and Xj0 = Xj , we have that:

• at the exchange ej , for every 0 ≤ n < N , we have a communication
from Xin to Xjn

• at the exchange ej , X
jN receives no message

• at the exchange ei, for every 0 ≤ n < N , we have a communication
from Xin to Xjn+1

• at the exchange ei, X
iN sends no message

So XiN is different from every previous Xin , and XjN is different from
every previous Xjn .

46 Yoann Marquer and Frédéric Gava

Therefore, the processors of the sequence Xi0 , Xi1 , Xi2 , . . . are distinct,
and the processors of the sequence Xj0 , Xj1 , Xj2 , . . . are distinct too.
But the number of processors is finite, so these sequences must end. So,
after a finite sequence of sending and receiving processors, the communi-
cations (including the new one) can be done without increasing the num-
ber of exchanges. Therefore, the h-relation requires at most h exchanges.

�

Notice that we proved that such a sequence of exchanges exists, but this
sequence is probably costly to compute. By the way, our purpose is proving the
achievability of such a function of communication, not finding an efficient one
(using hardware optimisations, routing in the network, etc. that is not our work).

Proposition 5 (A function of communication). A function of communi-
cation performing h-relation requiring at most h exchanges with primitives for
distant readings/writings and point-to-point sending of data can be design using
asm.

Proof. By construction of the previous function of communication and appli-
cation of the previous lemma. �

	*-1.7cmAn ASM Thesis for BSP

