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ABSTRACT1

The paper proposes a model-based framework for estimating traffic states from Eulerian (loop)2

and/or Lagrangian (probe) data. Lagrangian-Space formulation of the LWR model adopted as the3

underlying traffic model provides suitable properties for receiving both Eulerian and Lagrangian4

external information. Three independent methods are proposed to address Eulerian data, La-5

grangian data and the combination of both, respectively. These methods are defined in a consistent6

framework so as to be implemented simultaneously. The proposed framework has been verified7

on the synthetic data derived from the same underlying traffic flow model. Strength and weakness8

of both data sources are discussed. Next, the proposed framework has been applied to a free-9

way corridor. The validity and performance have been tested using the data from a microscopic10

simulator.11
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INTRODUCTION1

State of the art2

Traffic state estimation (TSE) is crucial in real-time dynamic traffic management and information3

applications. The essence of TSE is to reproduce traffic conditions based on available observation4

data. One class of available estimation methods does not make use of traffic flow dynamics, but5

relies on basic statistics and interpolation. These are referred to as data-driven methods. Another6

class of estimation methods relies on dynamic traffic flow models. These are referred to as model-7

based methods. The focus of this article is on the latter because it potentially provides better8

results than the former class in non-recurrent situations (work zones, accidents, social events, etc.),9

regarding the monitoring-forecasting capabilities.10

Model-based TSE relies on two components: a model-based component and a data assim-11

ilation algorithm. The model-based component consists of two parts: (i) a dynamic traffic flow12

model to predict the evolution of the state variables; and (ii) a set of observation equations relating13

sensor observations to the system state. Thereafter, a data-assimilation technique is adopted to14

combine the model predictions with the sensor observations. For example, the Kalman filter (KF)15

(4) and it advanced relatives, such as Extended KF (9), Unscented KF (7), Ensemble KF (10) have16

been widely applied in the field of traffic state estimation.17

The same traffic flow model can be formulated in three two-dimensional coordinates re-18

garding space x, time t and vehicle number n. Laval and Leclercq (5) have presented three19

equivalent variational formulations of the first-order traffic flow models, namely N(x, t) model,20

X(t, n) model, T (n, x) model respectively, under the theory of Hamilton-Jacobi partial differen-21

tial equations. Under such defined coordinate systems, sensor observations from road networks can22

be defined into two categories: (i) Eulerian sensing data - observations (e.g., aggregated speeds,23

flows) from spatially-fixed sensors (such as inductive loops, video sensors, and radar sensors) over24

a fixed report frequency, this type is dominating the information sources in the field of transporta-25

tion research for decades; and (ii) Lagrangian sensing data - information from probe samples at a26

fixed time interval (such as position and speed information of individual vehicles (4), and/or probe27

spacing and position information (8)), this class is becoming an increasingly popular source. In28

literature, most of TSE applications are based on the traditional space-time (Eulerian) formulation.29

Aggregated traffic quantities (e.g., flows, densities or speeds (4, 9, 10)) are usually considered as30

system states, but no individual vehicle tracking is involved. The popularity of this formulation31

is due to the fact that incorporating Eulerian data is straightforward and intuitive. Recent studies32

have shown that a first-order (LWR) traffic flow model can be formulated and solved more effi-33

ciently and accurately in vehicle number-time (Lagrangian-time) coordinates (6). And its related34

Lagrangian formulation of TSE enables more accurate and efficient application of data assimila-35

tion methods, due to the solution to the mode-switching problem (traffic information travels in one36

direction), less non-linearity of the system model, and the nature set of observation equations to37

deal with Lagrangian data (11). However, the computation cost depends on the discretized platoon38

size (set to 1 vehicle classically) and time grid (often set around 1 second), which might be time39

consuming. To the best of our knowledge, none of previous research has provided a complete TSE40

framework for assimilating both Eulerian and Lagrangian data under a vehicle number - space41

(Lagrangian-space:= L-S) formulation.42
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Objectives and contributions1

This paper presents a generic data assimilation framework based on a mesoscopic-LWR model for-2

mulated in Lagrangian-space coordinates, using both Lagrangian and Eulerian observations. The3

term mesoscopic is in response to the two other counterparts, since the Lagrangian-time coordi-4

nates can apply in a microscopic simulation framework and the Eulerian coordinates can accom-5

modate in a macroscopic one. In this work, the system model is the Lagrangian-space formulation6

of the LWR model. It individually represents vehicles but only tracks their states at cell bound-7

aries. We will develop algorithms and observation models to incorporate data from both Eulerian8

and Lagrangian sensors. And we do not apply specific data assimilation techniques; instead we9

try to demonstrate the sequential data assimilation concepts via reasonable assumptions. The algo-10

rithms on how to estimate network traffic states under the proposed model-based framework from11

the two data sources will be the main contribution of this work.12

Contents of the paper13

This paper is organized as follows. Section 3 presents the underlying traffic dynamics, including its14

formulation, solutions and properties. Section 4 describes the methodology of the proposed TSE15

framework, including how to assimilate Lagrangian data and combine with Eulerian data. Sections16

5 and 6 illustrate the model validation and an application to a freeway corridor. Discussion and17

conclusions are drawn in Sections 7 and 8.18

LS-LWR MODEL19

This section defines the underlying process model in the state estimation framework, where the20

model formulation, numerical solution and its properties are discussed.21

Conservation law and variational theory22

This section first presents a mesoscopic formulation of the LWR model as the process model in23

the estimation framework. The LWR model is formulated in vehicle platoon and space (n, x)24

coordinates. The current mesoscopic formulation combines a vehicular description with macro-25

scopic behavioral rules. It relaxes the temporal coordinate, and this entitles a transformation of26

a temporal progressing approach (e.g., in Eulerian or Lagrangian-time simulation framework) to27

an event-progressing approach (trigger event can be the change of time headway or pace, and/or a28

correction procedure based on an observation from fixed loops or probe vehicles).29

The formulation follows the principle of the Hamilton-Jacobi (HJ) theory, to find an ex-30

pression of the LWR model in Lagrangian-space coordinates. This model is also referred to as the31

T -model.32

The LWR model can then be described by a hyperbolic equation:33

∂xh− ∂N(1/V (h)) = 0 (1)

Here, h denotes the time headway. The inverse speed 1/v (or called pace τ ) can be derived from34

the fundamental diagram 1/V (h).35

Previous authors have proposed to apply variational theory in Eulerian coordinates (x, t)36

(1) and Lagrangian coordinates (n, t) (6). Here, we transpose the demonstration in Lagrangian-37

space coordinates (n, x), following the same rationale in (6). The problem can be expressed as the38

Hamilton-Jacobi derived from the fundamental diagram:39
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FIGURE 1 Numerical solutions in Lagrangian-space coordinates

∂xT =
1

V (∂NT )
(2)

Here, the function 1/V represents the flux function of the problem.1

Numerical solutions in Lagrangian-space coordinates2

Here, a Godunov scheme is applied to solve the conservation law equation (hyperbolic equation)3

above with an upwind method.4

This would preserve the numerical benefit of Lagrangian traffic flow models. Fig. 1 illus-5

trates the mesoscopic numerical grid (see grey area) for the Godunov scheme. On the mesoscopic6

grid, the time headway is determined by:7

hx+∆x
i = hxi +

∆x

∆n
.(

1

V (hxi )
− 1

V (hxi−1)
) (3)

The CFL condition that guarantees the convergence of the Godunov scheme is:8

∆n ≥ maxh

∣∣∣∣∂h(
1

V
)

∣∣∣∣∆x (4)

Alternatively, the problem can also be expressed in terms of T (n, x) considering the ’pas-9

sage time’ flux that crosses the boundary of the cell n, regarded as a variational formulation of the10

T -model:11

T (n, x)− T (n, 0)

∆x
=

1

V (T (n,x)−T (0,x)
∆n

)
(5)

In this expression, V depends on the fundamental diagram. Here, we consider a triangular funda-12

mental with three parameters: the free-flow speed vm, the maximum wave speed w and the jam13

density kx. It can be expressed by:14

1

V (h)
= max(

1

vm
,−kx(

1

wkx
− h)) (6)
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The numerical solution to the problem is simplified as:1

T (n, x) = max(T (n, 0) +
x

vm
, T (0, x+

n

kx
) +

n

w.kx
) (7)

Finally, the origin n = 0, x = 0 could be shifted to n−∆n, x−∆x and we find:2

T (n, x) = max(T d, T s), (8)

where T d = T (n, x−∆x) + ∆x
vm

and T s = T (n−∆n, x− ∆n
kx

) + ∆n
w.kx

represents the demand and3

the supply term respectively. The demand term defines the arrival time of a vehicle from upstream4

in non-constrained (free-flowing) conditions. The resulting passage time of a vehicle is at least5

equal to its arrival time but could be delayed due to the downstream conditions. Thus, the supply6

time provides such information in constrained (congested) conditions.7

This numerical solution indicates traffic flow is divided into vehicle platoons of certain size8

∆n, and road stretch is discretized into spatial cells of certain length ∆x. Note that, the cell length9

∆x in the simulation is not necessarily to be equal. The state in this formulation is the passage time10

T (n, x) of vehicle platoons at cell boundaries. This state is always determined by the maximum of11

two uncorrelated terms: the demand (arrival) time and the supply time. For an elaborate description12

we refer to (5).13

Properties14

The current mesoscopic formulation is based on the notions from the variational theory. It can15

incorporate the numerical benefits and modeling flexibility of both Eulerian and Lagrangian-time16

models. Simultaneously, this formulation allows state distinction on both cell class and vehicle17

class, combining a vehicular description with macroscopic behavioral rules. It individually repre-18

sents vehicles (platoons) but only tracks their passage times at cell boundaries. Therefore, travel19

times can be easily derived from the model, which is more convenient compared to other (e.g., Eu-20

lerian or Lagrangian) formulations of state estimation. This discrete model evolves state by state,21

with only one expression to consider all traffic conditions. Hence, it does not require memory22

and it is more flexible and time-efficient for data assimilation (no complex matrix inversion and23

multiplication). Moreover, the numerical scheme allows for long cells and cell boundaries can be24

located at network discontinuities only (merges, diverges, and lane-drops). In this way, the spatial25

discontinuities can address easily. The computation cost depends on the number of cell boundaries26

(x-dimension) in the network and the number of vehicles (n-dimension) to propagate during the27

simulation. Therefore, this would improve computational efficiency for large scale applications.28

More importantly, this mesoscopic scheme is particularly convenient for data assimilation.29

In reality, the flow characteristics are mostly observed at fixed points (e.g., spatial fixed loop data)30

or along vehicle trajectories (e.g., vehicle-number fixed probe data). As discussed in literature that31

the Eulerian formulation is suitable for incorporating loop data and the Lagrangian-time formula-32

tion is suitable for probe data assimilation, the Lagrangian-space formulation is considered to be33

well-compatible for assimilating both types of observations. Because these observations are lo-34

cated on cell boundaries of the mesoscopic grid, which makes any traffic state estimation method35

convenient with this approach/formulation. This formulation can be easily coupled with any data36

assimilation techniques to perform state estimation. Due to the nature of the mesoscopic system37

model, the TSE might be not restricted to discretized mesoscopic x− n grids. If we know any two38

boundaries in the network and an observation at a certain location or of a certain vehicle, we can39

generalize TSE for this specific assimilation problem.40
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METHODOLOGY1

Methods for estimating traffic states based on loop and probe data are presented in sections 4.1 and2

4.2, respectively. Next a method that combines both data sources is presented in section 4.3.3

First, three definitions with respect to different traffic states are given in the following:4

• an observation (o-) state is a traffic state measured by a sensor5

• a background (b-) state is a state forecasted by a traffic flow model6

• an analysis (a-) state is the result of an analysis procedure (or algorithm) that provides7

the most likely state regarding o- and b-states8

TSE based on loop data9

A data assimilation method using sole loop data first proposed in (3). It requires the numerical10

scheme to be set as follows: ∆n to 1 and cells boundaries at each loop location. It considers11

flow and speed time series collected by loop sensors at locations {Xloop} with a given frequency12

∆T . Then it is implemented as a sequential procedure, for which each sequence is divided into 413

successive steps:14

• Step 1: the o-state and b-state are collected and transformed15

• Step 2: a Global Analysis is performed to (a-) state16

• Step 3: the state of the model is updated accordingly, by adjusting arrival and supply17

times at cells boundaries18

• Step 4: the model is run to provide a background state for the next sequence19

As mentioned by the authors in (3), the update of the model is a parsimonious adjustment of the20

demand and/or the supply terms at cell boundaries. It has to be implemented so that the CFL sta-21

bility condition is respected. The reader is referred to the paper for more details and validation.22

23

TSE based on probe data24

The data assimilation framework presented above is limited to Eulerian (loop) data while nowa-25

days increasing amount of traffic data are collected by Lagrangian (probe) sensors. Thus a TSE26

estimator based on Lagrangian observations becomes essential for real applications. Probe sensors27

collect positions of equipped vehicles at a given time frequency. They are usually processed for28

providing aggregated indicators, for instance the mean speed per link. However, most of the wealth29

of probe data is lost during the aggregating process.30

In this paper, the TSE estimator enables to assimilate positions and times without any31

aggregation process, which allow for using most of the details of probe data. The method is32

divided into 4 steps.33

• Step 1: the o-state and the b-state are collected and transformed34

• Step 2: Global Analysis, which consists of estimating the n-index of probe vehicles35

• Step 3: the model is updated accordingly, which consists of adjusting arrival and supply36

times at cell boundaries of the model37

• Step 4: the model is run over the next sequence to provide a new background38

The two following sections elaborate steps 2 and 3, which are the keys to successfully39

update traffic states.40
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FIGURE 2 n-index estimation

Focus on step 2 : Estimating the n-index of probe vehicles1

Let us consider the probe vehicle p that provides a set Sp of observed time-positions denoted2

{top,i, xop,i}, i ∈ Sp. Simultaneously the model provides a background state T b(n, x) at cell bound-3

aries, from which analogous function N b(t, x) can be easily defined (T is a monotonically in-4

creasing function) upstream (x = xup) and downstream (x = xdown) probe positions. N b(t, xup)5

and N b(t, xdown) can then be considered for estimating n-index of the probe based on variational6

principles, as illustrated in Figure 2.7

na
p,i = min

(
N b

up,u, N
b
down,w + kx.(xdown − xop,i)

)
(9)

where8 
N b

up,u = N b
(
top,i −

xup
u
, xup

)
N b

down,w = N b

(
top,i −

xdown − xop,i
w

, xdown

)
9

Equation 9 provides the n−index estimated locally (for a single time-position). At this
stage, local n−index estimation could be flawed by four sources of errors: errors on the model
parameters, errors on the boundary conditions, non-FIFO traffic conditions or occurrence of a
traffic incident. Local errors on the estimated n−index may induce global inconsistencies on the
resulting arrival/supply times. To tackle this problem, a global optimization is developed and it
consists of two steps. The first step aims at building the variational proximity matrix , which
returns the variational cost (in veh.) between each of the time-space observations from probes
(with respect to the variational principles (1)). Based on that, the second step calculates the optimal
n−index, denoted n∗. The optimal solution minimizes the entropy of the system while keeping a
constant n-index along probe trajectories. The optimization procedure searches in the range of all
possible n−indices, and this search range is defined by the minimum and maximum values from



Duret, Yuan 9

the variational principles and the range of local n−index estimation. The entropy is defined as:

E(n∗
p) =

∑
i

n∗
p,i

nlocal
p,i

.ln(
n∗
p,i

nlocal
p,i

) (10)

The final solution consists of the triplets {n∗
p, x

o
p, t

o
p}, where n∗

p is the optimal n−index, and1

top and xop are the observed time and position of the probe p.2

Focus on step 3: Update of arrival and supply times at cell boundaries3

Once a−states are known, probe trajectories are considered as internal cell boundary conditions4

that are transformed into demand or supply conditions at neighboring cell boundaries. Here, we5

present the update of the arrival and the supply times at a cell boundary over a period P , considering6

that a set of probe vehicles has been analyzed.7

Downstream: update of arrival times The downstream cell boundary is influenced by probe8

vehicles located in a time window with a length P and that moves with a free-flowing wave speed9

u, see Figure 3(a). Within the influencing area, each probe vehicle provides information on its10

upcoming arrival times. When probe vehicles travel through a cell, successive time-positions pro-11

vide feasible arrival times at the downstream cell boundary. For each probe vehicle, only the12

latest triplet {na
p, x

o
p,i, t

o
p,i} is considered for updating the arrival time at the cell downstream, as13

illustrated in Figure 3(b).14

taa,na
p

= top,i +
xdown − xop,i

u
(11)

Upstream: update of supply times The upstream cell boundary is influenced by probe vehicles15

located in a time window with a length P and that moves with a maximum jam speed w, see16

Figure 3(c). For each probe vehicle, triplets {na
p,i, x

o
p,i, t

o
p,i} are considered as internal boundary17

conditions to revise supply times at the cell boundary upstream. Within the influencing area, the18

updated supply times respect as illustrated in Figure 3(d):19

tas,na
p+(xo

p,i−xup).kx = top,i +
xpp,i − xup

w
,∀i ∈ Sp (12)

CFL condition The data assimilation process is sequential with time steps based on data time20

frequency ∆T . The CFL stability condition has to be respected during the sequential update of the21

traffic model. It requires that each cell boundary has to be updated over a time period ∆TU , which22

is bounded as a wave cannot travel through a whole cell during this time period. Consequently,23

if ∆T ≥ ∆TU then the updating process must proceed step by step (as described in the previous24

section) with a maximum time step ∆TU .25

Assimilating both loop and probe data26

Loop and probe data provide information of different nature, it is therefore impossible to fuse the27

two data sources to perform a one-shot assimilation process. Reviewing their respective actions,28

the two TSE estimators act in a complementary manner. On one hand, TSE based on loop data29

allows for an adjustment of the flow by adding - deleting - advancing - delaying vehicles at loop30



Duret, Yuan 10

xdown

xup

x − space

t − time

P

(a) Oblique window (u)

xdown

xup

x − space

t − time

P

!"	$%",'	(

)$,*+,	
$

)",'(

(b) Update of the arrival time

P

xup

xdown

x − space

t − time

(c) Oblique window (w)

t
s,np

a+kx . xp,i
o −xup( )

a

np
a

xp,i
o

tp,i
o

xdown

xup

x − space

t − timeP

(d) Update of the supply time



Duret, Yuan 11

sensors locations. From a physical point of view, it acts as a ’flow regulator’ at cell boundaries.1

On the other hand, the TSE based on probe data adjusts arrival and supply times at cell boundaries2

considering probe trajectories as internal cell-boundary conditions. From a physical point of view,3

it acts as a ’travel time regulator’ along cells travelled by probe vehicles.4

To make the best potential use of both data, we propose first to estimate trafic states from5

loop data at loop sensors locations and then to estimate traffic states from probe data everywhere6

else. The main reason for this sequence is the following : TSE based on loop data improves the7

flow estimation at cell boundaries and therefore enhance the TSE based on probe data along cells.8

It results in a 7 steps methodology:9

• Step 1: collection and transformation of the loop data and the model background states10

• Step 2: Global Analysis, which consists of estimating headway-regime pairs (a-states)11

at each loop location12

• Step 3: the model is updated accordingly (see section 4.1). At this stage, the updated13

model provides the best possible estimated traffic states at cell boundaries. This version of the14

model is considered as a new model background to be combined with probe data15

• Step 4: collection and transformation of the probe data and the (updated) model back-16

ground17

• Step 5: Global Analysis, which consists of estimation the n-index of probes along cells18

• Step 6: update of the model accordingly, by revising arrival and supply times at every19

cell boundaries, except those already updated during the step 3.20

• Step 7: run the model over the next sequence21

Here again, this sequence has to be implemented while respecting CFL stability condition22

mentioned in section 4.2.2.23

MODEL VALIDATION24

This section aims to analyze and validate the performance of the TSE methodology with loop25

sensors and probe sensors (separately and jointly).26

Experimental validation setup27

The ground truth is emulated based on a microscopic LWR model (Newell’s car-following model,28

equivalent to the LWR model at a macroscopic scale). The model has been run on a homogeneous29

road stretch (L = 2000m, single lane) with a demand-supply scenario so that a congestion propa-30

gates through the network, see vehicle trajectories in Figure 3. A loop sensor located in the middle31

of the network (x = 1000m) collects flows and speeds with an aggregation period of 1-minute.32

Moreover, 5% of the vehicles are considered as probe sensors for which time-position information33

is reported at every 30s.34

The traffic flow model is a LS-LWR model. The network is composed of 2 cells of 1000m35

in length, upstream and downstream of the loop sensor location. The demand-supply scenario has36

also been predefined with an approximative demand and a high supply so that traffic conditions are37

always free-flowing on the network.38

TSE based on loop observation model39

Figure 4 provides the estimated traffic states considering data from the loop sensor. In this figure,40

traffic states have been rearranged to provide travel times over the two cells. The red line provides41

the reference (ground truth) travel times and the blue line returns the reconstructed travel times.42
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FIGURE 3 Observational model

Upstream cell Until the time t = 2000s, the traffic conditions are free-flowing. Between the1

time period t = 2200s and t = 2800s, a congestion propagates through the upstream cell. The2

estimated traffic states comply with the observed travel times, which validates the ability of the3

TSE estimator to adjust the network supply at the loop sensor location.4

Downstream cell Downstream the loop sensor, the estimated traffic states are free-flowing un-5

til the end of the simulation, whereas the observed travel times indicate that a congestion occurs.6

Indeed, the loop sensor data only indicate a reduced congested flow at the cell boundary, however7

the traffic model is unable to propagate such information toward the downstream direction but only8

upstream direction.9

10

In summary, when a congestion occurs, loop sensors can estimate travel times providing11

that congestion states have passed over the loops. The result shows that travel times might be12

underestimated over the network level. And this underestimation will become significant when13

traffic congestion is triggered far downstream the loop sensor. We conclude that for operational14

purposes loop sensors have to be located as close as the triggering location of a jam/bottleneck to15

provide accurate estimation. In addition, the complementary information from downstream loop16

sensors can improve the performance of data assimilation.17

TSE based on probe observation model18

Figure 5 provides the estimated traffic states considering probe data only. The performance of19

TSE based on solo probe data provides similar performance over the two cells. It is noteworthy20

that TSE is very responsive as the congestion phenomenon occurs, mainly due to the probe data21

with a homogeneous coverage of the network both in time and space. It should also be noted that22

travel times are underestimated in this validation scenario due to the experimental setup. The traf-23

fic model considers a low demand versus high supply scenario. Information from probes allows24

for an adjustment of the supply times at the intercell boundary, but it does not rectify the underes-25

timated flow demand (from downstream) and thus underestimate travel times. Note that the result26
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FIGURE 4 Travel time estimation from loop data assimilation
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FIGURE 5 Travel time estimation from probe data assimilation
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depends on the experimental setup as travel times will become overestimated if the demand from1

the upstream boundary is overestimated.2

We conclude that for operational purposes, the knowledge of the demand at any point of3

the network is decisive and critical when probe data are used for estimating traffic states. The4

estimation can be enhanced with an accurate prior estimation of the demand; or combining probe5

data with loop data, as proposed in section 4.3.6

TSE based on loop and probe observation model7

Figure 6 provides the estimated traffic states considering loop and probe data. The results show8

the travel times estimated here over performs and cumulates the benefits mentioned for loop and9

probe observation model considered separately.10

Upstream cell The performance are identical to the those provided by the loop observation11

model. The travel time is properly estimated and fit the ground truth travel time.12

Downstream cell The performance is slightly enhanced compared to the results obtained with13

probe observations only. It confirms that both observations are very complementary when assimi-14

lated in the framework proposed in the paper.15

APPLICATION TO A FREEWAY CORRIDOR16

The previous section demonstrates the exactness of the estimator when applying to a network with17

FIFO conditions and homogeneous driving behavior. These assumptions are restrictive and not18

reflective of reality. This section aims at evaluating the performance of the estimator considering a19

multi-lane corridor with on- and off-ramps, with a relaxed FIFO assumption and distributed driving20

behavior.21

Preparation of the observational model22

Ground truth data have been emulated based on a microscopic traffic simulator (FOSIM (2)). This23

simulator is developed at the Delft University of Technology, specially designed for the detailed24

analysis in freeway networks. All the parameters in terms of driving behaviors have been calibrated25

and validated based on data from Dutch freeways. A three-lane freeway with one on-ramp and one26

off-ramp is designed, as illustrated in Figure 7(a) (the first 500 m as the warming-up section in27

Simulation, the last 1000m as the cooling-down section).28

A demand-supply scenario has been built in such a way that a congestion is onset at the on-29

ramp. The model has been run twice: scenario 1 provides traffic conditions with only passenger30

cars whereas scenario 2 considers a mixed traffic condition (with 90% cars, 10% trucks). The31

resulting time-space diagrams and travel times are illustrated in Figure 7.32

Based on FOSIM simulation results, Eulerian and Lagrangian observation models have33

been built. First, loop sensors have been located on the main road : loop 1 - 100m after the34

entrance of the network, and loop 2 - 100m upstream of on-ramp. Second, 10% equipped probe35

vehicles return their exact positions every 20s.36

Preparation of the traffic model37

The traffic model is the mesoscopic LWR model applied on a network with 7 cells : five cells for the38

main road (numbered from 1 to 5), one cell 6 for the off-ramp and one cell 7 for the on-ramp. Cell39



Duret, Yuan 16

FIGURE 6 Travel time estimation from loop and probe data assimilation
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(a) Networks

(b) time-space diagram (c) time-space diagram

(d) travel times (e) travel times

FIGURE 7 FOSIM observation models: cars only (a and c) and mixed traffic (b and d)
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boundaries 1-2 and 3-4 are located at loop sensor locations. Boundary conditions (demand-supply)1

are supposed to be known approximatively and parameters of the mesoscopic LWR have been set2

with the following default values: u = 110 km/h, w = 18 km/h and kx = 150 veh/km/lane. Results3

obtained from the underlying traffic model (without data assimilation) indicate that the corridor is4

free-flowing, with travel times stabilized around 3 mins (175s).5

Results with different observation models6

Three observation models have been tested : ’loop only’, ’probe only’, and ’combined loop and7

probe’. Travel time estimation based on the three observation models are illustrated in Figure 8,8

ground truth (in red) and default model travel times (in black) are also displayed.9

During the free-flowing period, travel times are properly estimated regardless of observa-10

tion models or traffic composition. However, significant differences are observed when a conges-11

tion occurs. The results analysis only focuses on the period t = [20−45]min when the congestion12

is onset.13

14

TSE based on the loop observation model underestimates travel times during the conges-15

tion period, regardless of traffic composition. This can be caused by an underestimation of the16

upstream demand and/or an overestimation of the supply. Loop 1 located at the entrance of the17

network is supposed to update the demand according to the ground truth, so the overestimation of18

the supply is the cause: loop 2 is located 100 meters upstream the head of the congestion, which19

cannot detect immediately after its onset.20

21

TSE based on the probe observation model presents a better performance. However, it22

tends to overestimate travel times. It can be caused by a poor prior estimation of demand, which23

skews the n-index estimation of probe vehicle and leads to poor estimation of arrival/supply times.24

It can also be caused by poorly calibrated traffic parameters in the traffic model and/or non FIFO25

observations, which is confirmed in Figure 8(b) that shows the overestimation is enhanced for a26

mixed traffic (ranging from t = [30 − 40]min). By analyzing FOSIM trajectories, it is observed27

that during congestion trucks are stuck on the right-most lane (over congested) while most of the28

cars travel faster on left-most lanes. The FIFO assumption is not fulfilled and the consequence29

on the performance of TSE can be explained as follows. When a probe vehicle (for instance a30

truck) returns its position, arrival and supply times are estimated in the (FIFO) mesoscopic model31

thereof. We conclude that when the characteristics of probe vehicles are distant from the mean32

traffic stream, this induces bias in traffic state estimation which tends to overestimate travel times.33

As excepted, TSE combining loop and probe observations outperforms the estimations con-34

sidering loop and probe separately. The increase of travel times is detected immediately after the35

onset of congestion and the estimated travel times dynamically correspond to the ground truth.36

37

Table 1 provides three Measurements of Effectiveness (MoEs) that have been calculated38

over the period t = [20 − 45]min: mean average error (MAE) , mean average percentage error39

(MAPE) and mean percentage error (MPE). All the MoEs globally confirm the previous comments.40

DISCUSSION41

Based on the previous results, we conclude that Eulerian observations can update arrival and supply42

times, by adjusting the demand (flow) via adding or deleting vehicles locally. However, since loop43
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(a) Cars only

(b) Mixed traffic

FIGURE 8 Comparison of estimated travel times
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TABLE 1 Performance of the different observational models over the indicated simulation
period, Scenario 1 (cars only) And Scenario 2 (cars and trucks)

SCENARIO 1 model model + loop model + probe model + (loop and probe)
RMSE (s) 96 69 28 21
MAPE (%) 32 24 9 6
MPE (%) -32 -24 1.43 1
SCENARIO 2 model model + loop model + probe model + (loop and probe)
RMSE (s) 229 92 56 42
MAPE (%) 49 22 12 10
MPE (%) -49 -22 4 3

sensors are spatially fixed, they only catch supply information as information propagates upstream.1

Hence, travel time estimation might be inconsistent (see section 5.2, the case of the downstream2

cell). It is therefore critical to locate loop sensors at the spots of a jam and a bottleneck to provide3

accurate estimation.4

In contrast, Lagrangian observations spread over the network in space and time. Given a5

reasonable resolution (10% in the validation cases), they can update both arrival times and supply6

times without any latency. However, two limitations exist in this method. First, the n-index estima-7

tion relies on the assumption of the FIFO condition, which is unrealistic. This might lead to poor8

estimation of travel times when probe information deviates from the average traffic conditions (see9

section 6.3). Second, the demand/flow at cell boundaries cannot be adjusted. A prior estimation of10

the demand will improve the performance of TSE with probe data (see section 5.2).11

The combination of the two data sources compensates the limitations of each other. The12

experiment results demonstrate that TSE with data combination outperforms the estimation with a13

single source.14

CONCLUSION15

Main findings16

A TSE estimator based Eulerian observations combined with a mesoscopic LWR model has been17

proposed and validated in (3). This paper complements the methodology with Lagrangian observa-18

tions. Now both Eulerian and Lagrangian observations can be used for TSE in a unique framework.19

Eulerian observations provide comprehensive observations in time and vehicle for a dis-20

crete set of locations in the network. At those locations, model states are successfully revised,21

which provide good performance when observations are located near the head of congestion. The22

update acts as a ’flow regulator’ at cell boundaries by adding, deleting, advancing or delaying23

vehicles.24

Lagrangian observations provide a homogeneous coverage of the network in time and space25

for a discrete set of (probe) vehicles. Probe vehicles allow for an revision of demand-supply times26

at neighboring cell boundary of the network. The update acts as a cell ’travel time regulator’ that27

yields good results under the condition that the demand on the network is known. Note that the n-28

index values of probe vehicles are critical and essential in the proposed approach. The calculation29

of this variable is application-specific (under FIFO or non-FIFO condition) regarding estimation30

performance, and it is subjective for further investigation.31

In the TSE framework with data combination as proposed in section 4.3, Eulerian and La-32
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grangian observations become highly complementary. Eulerian observations successfully update1

traffic states (especially the flow) at loop locations of the network while Lagrangian observations2

successfully update cell travel times along the network. The methodology has been verified on the3

synthetic data derived from the same underlying traffic flow model.4

The proposed TSE framework has been applied to a freeway corridor with a relaxed FIFO5

condition and distributed driving behavior. The validity and performance have been tested using6

the ground truth from a microscopic simulator.7

Further research8

Future research includes, (a) to test the framework in a more general case, a realistic large-scale9

network with multiclass traffic, and a non-FIFO condition; (b) to test different sources of data10

observations, e.g., bluetooth data, information from connected vehicles; (c) to apply specific data11

assimilation techniques to account for model and observation reliability; (d) to study the optimal12

layout of Eulerian sensors and the minimal penetration of Lagrangian sensors for accurate estima-13

tion; (e) online estimation of traffic demand and important parameters in the traffic flow model; (f)14

traffic state prediction based on the proposed estimation framework.15
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