
HAL Id: hal-01717629
https://hal.science/hal-01717629v2

Submitted on 6 May 2019 (v2), last revised 25 Mar 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sequential Metric Dimension
Julien Bensmail, Dorian Mazauric, Fionn Mc Inerney, Nicolas Nisse, Stéphane

Pérennes

To cite this version:
Julien Bensmail, Dorian Mazauric, Fionn Mc Inerney, Nicolas Nisse, Stéphane Pérennes. Sequential
Metric Dimension. [Research Report] Inria. 2018. �hal-01717629v2�

https://hal.science/hal-01717629v2
https://hal.archives-ouvertes.fr

Sequential Metric Dimension∗

Julien Bensmail1, Dorian Mazauric2, Fionn Mc Inerney1, Nicolas Nisse1, and

Stéphane Pérennes1

1Université Côte d'Azur, Inria, CNRS, I3S, France
2Université Côte d'Azur, Inria, France

Abstract

In the localization game, introduced by Seager in 2013, an invisible and immobile
target is hidden at some vertex of a graph G. At every step, one vertex v of G can
be probed which results in the knowledge of the distance between v and the secret
location of the target. The objective of the game is to minimize the number of steps
needed to locate the target whatever be its location.

We address the generalization of this game where k ≥ 1 vertices can be probed
at every step. Our game also generalizes the notion of the metric dimension of a
graph. Precisely, given a graph G and two integers k, ` ≥ 1, the Localization

problem asks whether there exists a strategy to locate a target hidden in G in at most
` steps and probing at most k vertices per step. We �rst show that, in general, this
problem is NP-complete for every �xed k ≥ 1 (resp., ` ≥ 1). We then focus on the
class of trees. On the negative side, we prove that the Localization problem is NP-
complete in trees when k and ` are part of the input. On the positive side, we design
a (+1)-approximation algorithm for the problem in n-node trees, i.e., an algorithm
that computes in time O(n log n) (independent of k) a strategy to locate the target in
at most one more step than an optimal strategy. This algorithm can be used to solve
the Localization problem in trees in polynomial time if k is �xed.

We also consider some of these questions in the context where, upon probing the
vertices, the relative distances to the target are retrieved. This variant of the problem
generalizes the notion of the centroidal dimension of a graph.

Keywords: Games in graphs, Metric dimension, Complexity.

1 Introduction

Unless stated otherwise, every graph considered in this paper is assumed to be connected,
undirected, and simple. Localization (or Identi�cation) problems consist of distinguishing
the vertices of a graph G = (V,E) using a smallest subset R ⊆ V of its vertices. Many
variants have been studied depending on how R is required to make the vertices distin-
guishable. For instance, identifying codes [16], adaptive identifying codes [2], and locating
dominating sets [21] ask for the vertices to be distinguished by their neighbourhood in
R. Another well studied example is the one of resolving sets [13, 20], where one aims at
distinguishing the vertices of a graph by their distances to such a set. Given a graph G,
the main problem is to compute a resolving set with minimum size, this minimum being

∗This work has been partially supported by ANR program �Investments for the Future� under reference
ANR-11-LABX-0031-01, the Inria Associated Team AlDyNet. An extended abstract of parts of this paper
has been presented in [3].

1

called the metric dimension of G [13, 20]. The corresponding decision problem (�rst shown
to be NP-complete in [12]) is NP-complete in planar graphs [8] and in graphs of diameter
2 [11], and W[2]-hard (parameterized by the solution's size) [14]. On the positive side, the
problem is FPT in the class of graphs with bounded treelength [1]. Bounds on the metric
dimension have also been determined for various graph classes [10].

In this paper, we address a sequential variant of this problem, which we deal with
through the following terminology. Let us consider a graph G = (V,E) where an unknown
vertex t ∈ V hosts a hidden (invisible) and immobile target. Probing one vertex v ∈ V
results in the knowledge of the distance between t and v, denoted by dG(v, t), which is the
length of a shortest path from t to v. Probing a set R ⊆ V of vertices results in the distance
vector (dG(v, t))v∈R and R is resolving if no two vertices of G get the same distance vector
(by R). The metric dimension of G, denoted by MD(G), is then the minimum number of
vertices that must be probed simultaneously to immediately (in one step) determine the
location t of the target (wherever it is). For instance, in the case of a path, probing one
of its ends is su�cient to locate the target, i.e., MD(P) = 1 for every path P . Another
example is the case of a star (tree with a universal node) with n leaves, denoted by Sn, for
which it is necessary and su�cient to probe every leaf but one, i.e., MD(Sn) = n− 1.

If less than MD(G) vertices can be probed at once, then it is impossible to locate
a target in one step, in which case it is natural to allow more than one probing step.
Obviously, if at most 1 ≤ k < MD(G) vertices can be probed at once, then it is always
feasible to locate an immobile target in dMD(G)/ke steps, simply by considering a smallest
resolving set R of G, and probing all vertices of R through successive steps (probing at most
k vertices each step). However, there are graphs for which the target can be located much
faster (see Section 2 or Lemma 4.1). In [18], Seager initiated the study of the following
sequential locating game: an invisible and immobile target is hidden at some vertex t, and,
at every step, one vertex can be probed to retrieve its distance to t, and the objective
is to locate t using the minimum number of steps. Seager gave bounds and exact values
on this minimum number of steps in particular subclasses of trees (e.g., subdivisions of
caterpillars) [18] but left the problem open in trees in general. In this paper, we study the
generalization of this game where k ≥ 1 vertices can be probed at every step.

Precisely, let k ≥ 1 be an integer and let G = (V,E) be a graph hosting an invisible
and immobile target hidden at t ∈ V . A k-strategy is a sequence of probing steps, where, at
each step, at most k vertices are probed, and at the end of which t is uniquely determined.
Note that, in a k-strategy, the choice of the vertices to be probed at some step obviously
depends on the result of the previous steps. Let λk(G) denote the minimum integer h such
that there exists a k-strategy for locating the target in G in at most h steps, whatever
be the location of the target. Given G and k, ` ≥ 1, the Localization problem asks
whether λk(G) ≤ `. We also consider the dual parameter κ`(G) de�ned as the minimum
integer h such that there exists an h-strategy for locating the target in G in at most `
steps. Note that, for every graph G, the parameter κ1(G) is exactly the metric dimension
MD(G) of G, and λk(G) ≤ ` if and only if κ`(G) ≤ k. We are interested in the complexity
of the Localization Problem in general graphs and particularly in trees. Note that
by the remarks above (Lemma 4.1), the Localization Problem andMetric Dimension

Problem (for which ` = 1) behave very di�erently, so knowing that theMetric Dimension

Problem is NP-complete does not imply the same for the Localization Problem.

2

1.1 Related work

Moving target Sequential games related to resolving sets have �rst been introduced and
studied in the case of a mobile target. That is, at every step, some vertices may be probed
and, if the target has not been located yet, it may move to one of its neighbours [17].
Restrictions on this move are sometimes imposed, such as forbidding the target to �back-
track�, i.e., move to a neighbour that has just been probed. This condition is crucial, as
allowing backtracking may make the localization of the target impossible in some contexts.
For instance, it is not possible to locate a moving target that is allowed to backtrack in a
triangle when probing one vertex per step.

The question of how many times all the edges of a graph must be subdivided to ensure
locating a moving target probing one vertex (resp., k vertices) per step has been addressed
in [7] (resp. [15]). A graph is called locatable if there exists a 1-strategy for locating a
target that is not allowed to backtrack in a �nite number of steps. Locatable trees were
�rst studied in [17], where it was proved that all trees are locatable, and a �rst bound on
the number of steps it takes to locate the target was exhibited. This upper bound was
then improved in [6]. In [19], the case of trees with a target allowed to backtrack was
considered. Let ζ(G) be the minimum integer k such that there exists a k-strategy for
locating a moving target in G. In [5], it was shown that deciding whether ζ(G) ≤ k is
NP-hard and that ζ(G) is not bounded in the class of graphs G with treewidth 2. Moreover,
ζ(G) ≤ 3 for any outerplanar graph G [4].

Relative distances and centroidal dimension Foucaud et al. de�ned a variant of
resolving sets, called centroidal bases, where the vertices of a graph must be distinguished
by their relative distances to the probed vertices [9]. In this setting, given an integer
k ≥ 2, probing a set B = {v1, . . . , vk} of vertices results in the relative-distance vector
(δi,j(t))1≤i<j≤k where, for every 1 ≤ i < j ≤ k, δi,j(t) = 0 if dG(t, vi) = dG(t, vj), δi,j(t) = 1
if dG(t, vi) > dG(t, vj), and δi,j(t) = −1 otherwise. Intuitively speaking, the relative-
distance vector of t indicates which vertices of B are the closest to t, which vertices are the
second closest, etc., without indicating the exact distances between v and these vertices.
The set B is a centroidal basis of G if the relative-distance vectors are distinct for every
two vertices of G. The centroidal dimension of G, denoted by CD(G), is the minimum
size of a centroidal basis of G [9]. Note that CD(G) ≥ 2 unless G has only one vertex,
and that CD(G) is well de�ned since, clearly, V is a centroidal basis of G. The decision
problem associated to the centroidal dimension was shown to be NP-complete, and almost
tight bounds on the centroidal dimension of paths have been computed (see [9]).

Again, sequential variants of the centroidal basis can naturally be de�ned. The variant
where the target is allowed to move was considered in [4]. In this work, we also initiate
the study of the variant where the target is immobile, which, to the best of our knowledge,
has not been considered yet. Let k ≥ 2 be an integer and G be a graph. Let λrelk (G)
denote the minimum integer h such that there exists a k-strategy for locating, through the
relative-distance vectors, a hidden immobile target in G in at most h steps, whatever be its
location. Given G, k, `, the Relative-Localization problem asks whether λrelk (G) ≤ `.
The dual parameter κrel` (G) is de�ned as the minimum integer h such that there exists an
h-strategy for locating, through the relative-distance vectors, the target in G in at most
` steps. Note that, for every graph G, the parameter κrel1 (G) is exactly the centroidal
dimension CD(G) of G, and λrelk (G) ≤ ` if and only if κrel` (G) ≤ k.

3

1.2 Our results

This work is dedicated to the computational complexity of the Localization problem,
where one aims at locating an invisible and immobile target in a graph through successive
probing steps where the distance vectors are retrieved. So that the readers get a �rst
intuition for this problem, we start, in Section 2, by providing �rst, some observations.
In Section 3, we then show that the Localization problem is polynomial-time solvable
when both k and ` are �xed parameters but that, in general, the Localization problem
is NP-complete when only one of k and ` is a �xed parameter. Precisely:

• Let k ≥ 1 and ` ≥ 1 be two �xed integers. Given a graph G as an input, the
problem of deciding whether λk(G) ≤ ` is polynomial-time solvable (in time nO(k`))
(Theorem 3.1).

• Let k ≥ 1 be a �xed integer. Given a graph G with a universal vertex and an
integer ` ≥ 1 as inputs, the problem of deciding whether λk(G) ≤ ` is NP-complete
(Theorem 3.3).

• Let ` ≥ 1 be a �xed integer. Given a graph G with a universal vertex and an
integer k ≥ 1 as inputs, the problem of deciding whether κ`(G) ≤ k is NP-complete
(Theorem 3.7).

The proof of Theorem 3.1 also yields that theRelative-Localization problem is polynomial-
time solvable when k ≥ 2 and ` ≥ 1 are �xed integers. Through modi�cations, our proofs
also yield that the Relative-Localization problem is NP-complete for any �xed k ≥ 2
(Theorem 3.6) or any �xed ` ≥ 1 (Theorem 3.9).

In Section 4, we then focus on the Localization problem in the class of trees. Al-
though we prove that the problem remains NP-complete in the class of trees, surprisingly
we show that this hardness only comes from the �rst probing step. More precisely, we show
that, in a tree, Localization becomes polynomial-time solvable after the �rst step. As a
consequence, we design a polynomial-time (+1)-approximation algorithm for the problem.
To summarize:

• deciding whether λk(T) ≤ ` is NP-complete for a tree T when both k and ` are part
of the input (Theorem 4.2);

• there exists an algorithm that computes, in time O(n log n) (independent of k), a
k-strategy for locating a target in at most λk(T) + 1 steps in any (possibly edge-
weighted) n-node tree T (Theorem 4.12);

• deciding whether λk(T) ≤ ` for any (possibly edge-weighted) n-node tree T can be
solved in time O(nk+2 log n) (independent of `) (Theorem 4.13).

2 Preliminaries

For any two vertices u, v ∈ V , we denote by NG(v) (or simply N(v) when no ambiguity
is possible) the set of neighbours of v. Assuming a vertex of G hosts an invisible and
immobile target, recall that a k-strategy Φ is a sequence of steps where at most k vertices
are probed per step, resulting in the exact localization of the target. As we mainly focus
on the Localization problem in this work, unless stated otherwise, such a strategy will
always deal with the exact distances between the target and the probed vertices. After the

4

w x

y z

Figure 1: A graph G (left) and an isometric subgraph H of G (right).

sth step of Φ, we denote by Hs ⊆ V the set of vertices that remain as possible locations
for the target, i.e., that have not been eliminated at step s. Unless stated otherwise, we
thus have H0 = V .

Let us precisely describe the (already mentioned) case of stars because the simple
arguments occurring in this case will be used as basic tools for several of the proofs in this
paper. Given a star Sn with n leaves, λk(Sn) = dn−1k e and any optimal strategy to locate
the target consists of probing every leaf but one. Indeed, if the target is at distance 1 of
a leaf, then it is located at the center of the star. Otherwise, if the target is at distance
2 from each of the probed leaves, it must be located in the single unprobed leaf. On the
other hand, if at least two leaves have not been probed, there is no way to decide in which
unprobed leaf the target is located.

The Relative-Localization problem slightly di�ers since, in this variant, all leaves
must be probed. Indeed, after having probed all leaves but one, a last probe is necessary
to decide whether the target occupies the last (unprobed) leaf or the center of the star.

To conclude this section, let us observe the following properties. They will not be used
further in this paper, however, we believe that they are interesting by themselves and give
some hints on the di�culty of designing a strategy for locating a target.

First, let us notice that the metric dimension is not closed under isometric subgraphs.
That is, there exists a graph G having an isometric subgraph H such that MD(H) >
MD(G). Let H be the star S4 and let G be obtained from H by adding two adjacent
vertices u and v each adjacent to a di�erent leaf of H and a vertex w adjacent to one of
the two remaining leaves of H. In this case, MD(H) = 3 and MD(G) = 2 (by probing u
and the only leaf in G that is not w). This kind of result is also true for our parameters.

Observation 2.1. There are graphs G having an isometric subgraph H such that λk(H) >
λk(G).

Proof. Let k ≥ 1 and q ≥ 2 and let Hk,q be the star S(k+1)q with center c and (k+1)q leaves
v1, . . . , v(k+1)q. Let Gk,q be the graph obtained from Hk,q by adding q vertices s1, . . . , sq
such that si is adjacent to v(i−1)(k+1)+1, . . . , vi(k+1) for every 1 ≤ i ≤ q. The graphs
G4,4 and H4,4 are depicted in Fig. 1. Clearly, Hk,q is an isometric subgraph of Gk,q (i.e.,
distances of Gk,q are preserved in Hk,q).

By the paragraph above, λk(Hk,q) = d q(k+1)−1
k e. On the other hand, λk(Gk,q) ≤ d qke+1

as proved by the following strategy. Probe sequentially every vertex in s1, . . . , sq−1. If,
during the �rst step, the target is at distance 2 from the probed vertices, then the target
is in c. Otherwise, if, at some step t ≤ d qke, the target is at distance 0 from some sj , the
target is at sj . Finally, if, at step t ≤ d qke, the target is at distance 1 from some sj , then
probe the vertices v(j−1)(k+1)+1, . . . , vj(k+1)−1 to locate the target. �

5

As stated in the introduction, there is a strong connection between the metric dimension
and our sequential game. For instance, one k-strategy for locating a target in a graph G
consists of considering a minimum resolving set R of G, and probing all vertices of R
in dMD(G)/ke steps. In general though, this strategy can be arbitrarily far from being
optimal. As an illustration, note that for the graphs Gk,q constructed in the proof of
Observation 2.1, we have MD(Gk,q) = (k + 1)q − 1 (all vertices that are leaves in Hk,q

must be probed but one), while λk(Gk,q) ≤ d qke+ 1.

3 General complexity of Localization and Relative-Localization

In this section, we prove that the (Relative) Localization problem is polynomial-
time solvable when both k and ` are �xed but NP-complete when only one of k and ` is
�xed. The proof when ` is �xed is an almost straightforward reduction from the Metric

Dimension problem. In the case when k is �xed, the proof is a much more involved
reduction from the 3-Dimensional Matching problem. Our proofs, through several
modi�cations, also apply to the Relative-Localization problem. The proof that the
(Relative) Localization problem is in NP is given as a separate claim (Claim 3.2) as
it is used in all of the NP-completeness proofs.

Theorem 3.1. Let k ≥ 1 (k ≥ 2 for the Relative Localization problem) and ` ≥ 1
be two �xed integers. The (Relative) Localization problem is polynomial-time solvable
(in time nO(k`)).

Proof. Let G be any n-node graph. Let us consider the following tree T that will be used
to represent all possible strategies that probe exactly k vertices per step and last at most
` steps in G.

The tree T is rooted in r and all leaves are at distance 2` from the root. The two
types of vertices of T are labelled by subsets of vertices of V (G). For any vertex v ∈ V (T)
at even distance from r, its label L(v) ⊆ V (G) represents the set of possible locations of
the target at this moment. For any vertex v ∈ V (T) at odd distance from r, its label
L(v) ⊆ V (G), of size k, represents the set of vertices that are probed at this moment.

Precisely, T is de�ned as follows. Its root r is labelled with L(r) = V (G) (initially, the
target may be anywhere). Then, given a vertex v ∈ V (T) at even distance from r and such
that L(v) = S ⊆ V (G), the node v has exactly

(
n
k

)
children labelled by each of the subsets

of size k of V (G). Then, for every Q ∈ V (G)k, let w be the child of v such that L(w) = Q.
The at most n children of w are de�ned as follows. Let (S1, · · · , Sq) be the partition of
S such that, for any x, y ∈ S, the vertices x and y belong to the same Si if and only if
probing the vertices of Q knowing that the target is in S gives the same answer (distance
vector) for x and y. Then, w has exactly q children s1, . . . , sq such that L(si) = Si for
every 1 ≤ i ≤ q. Intuitively, each child of w corresponds to the possible locations of the
target in response to the probing of the vertices of Q.

First, note that |V (T)| is polynomial in n when k and ` are �xed. Precisely, since T
has at most (

(
n
k

)
n)` leaves (due to the degree of the nodes and the height of T) and all

leaves are at distance 2` from r, |V (T)| is upper bounded by O(2`(
(
n
k

)
n)`) = nO(k`).

Secondly, every strategy (of length ` and probing k vertices per turn) is �contained" in
T . Indeed, any subtree T ′ of T built as follows represents a strategy: start with T ′ reduced
to the root r, then while possible, for any leaf v of T ′, if v is at an even distance from r,
choose a single child of v and add it to T ′ (this is the probing that the strategy performs
in this situation), otherwise, if v is at odd distance from r, add all its children to T ′. It is

6

easy to see that, in this way, any strategy, winning (locating the target in at most ` turns,
wherever it is) or not, can be represented.

By the same reasoning, for every node v at even distance 2(`−`′) from r, the subtree of
T rooted in v �contains" all strategies of length `′ and probing k vertices per turn, assuming
that, initially, the target occupies a vertex in L(v). Let us say that v is valid if it contains
at least one such winning strategy.

To �nd out if there is a winning strategy in G, let us proceed by dynamic programming,
bottom-up from the leaves of this tree to the root. A leaf v of T is valid if and only if
L(v) is a singleton (indeed, the leaves of T represent strategies without any probe so the
location of the target must be uniquely identi�ed). Then, a vertex v at odd distance from
the root is valid if and only if all its children are valid (after a probing, there must be a
winning strategy, whatever be the answer). Finally, a vertex v at even distance from the
root is valid if and only if at least one of its children is valid. Indeed, the subtree rooted at
v contains a winning strategy if, knowing that the target is in L(v), there exists at least one
possible probing (one set of k vertices to be probed) that leads toward a winning strategy,
whatever be the answer to this probing.

Therefore, there is a winning strategy for G if and only if the root is valid which can
be decided in time |V (T)| = nO(k`).

Claim 3.2. The (Relative) Localization Problem is in NP.

Proof of claim. The proof is done for the Localization Problem. The certi�cate is a
k-strategy which can be described by a rooted decision tree T as follows. The nodes of T
are labelled by sets of k vertices (the vertices to be probed at a given step) and its edges
are labelled by sets of vertices representing the possible locations of the target. Precisely,
the root node represents the �rst k vertices to be probed in G according to the k-strategy.
For every node v ∈ V (T) (but the root), the label Le ⊆ V (G) of the parent-edge e of v
represents the current possible locations of the target and the label Lv ⊆ V (G), |Lv| ≤ k,
is the set of vertices to be probed according to the strategy, given that the target occupies
a vertex in Le. Then, every child w of v corresponds to a possible outcome (after probing
the vertices in Lv). That is, Lvw is the new set of possible locations after having probed Lv
(given that the target was in Le). Note that, clearly, Lvw ⊆ Le. Moreover, we may restrict
our attention to progressive strategies, i.e., strategies for which, for every non-root vertex
v with parent-edge e, and for every child-edge f of v, Lf ⊂ Le. Indeed, otherwise, the
vertices probed in Lv are not relevant and a better choice would be any subset containing
at least one vertex of Le (two vertices of Le in the case of the Relative Localization

Problem, where by de�nition k ≥ 2, and this is the only part of the proof that di�ers
between the two problems).

The previous remark shows that we can restrict ourselves to k-strategies represented by
rooted trees where all non-leaf nodes have at least two children. Moreover, any such tree
representing a winning strategy (a k-strategy that locates the target) has exactly |V (G)|
leaves since there is a one-to-one correspondence between a path from the root to a leaf of
T with the location of the target in G. A trivial induction on |V (T)| allows to show that
any rooted tree with n leaves and where all non-leaf nodes have at least two children, has
at most 2n nodes. Thus, any winning k-strategy may be encoded polynomially and the
Localization Problem is in NP. �

7

X’’x’’1 x’’(k+2)m

x1
1 x2

1 x3
1 x3kn

1

S1

X1 x1
i x2

i x3
i x3kn

i

Xi x1
k+2 x2

k+2 x 3
k+2 x3kn

k+2

Xk+2

s (universal vertex)

Si Sk+2

stable set

stable setstable setstable set

stable set stable set stable set

q

Figure 2: Example of a graph G constructed from an instance of 3DM in the proof of
Theorem 3.3. A thin line between one vertex (blue circle) and one rectangle represents
all edges between this vertex and every vertex in the rectangle. The instance of 3DM is
encoded by the edges between the vertices in Si (representing the sets) and the vertices in
Xi, for every 1 ≤ i ≤ k + 2.

3.1 When the number k of probed vertices per step is �xed

For a �xed integer k ≥ 1, the k-Probe Localization problem takes a graph G and an
integer ` ≥ 1 as inputs and asks whether λk(G) ≤ `. Analogously, for any �xed integer
k ≥ 2, the k-Probe Relative-Localization problem takes a graph G and an integer
` ≥ 1 as inputs and asks whether λrelk (G) ≤ `.

Theorem 3.3. For every k ≥ 1, the k-Probe Localization problem is NP-complete in
the class of graphs with a universal vertex.

Proof. The problem is in NP by Claim 3.2. Let us prove it is NP-hard by a reduction from
the 3-Dimensional Matching (3DM) problem which is a well known NP-hard problem.
The 3DM problem takes a set X = I1 ∪ I2 ∪ I3 of 3n elements (|I1| = |I2| = |I3| = n) and
a set S of triples (x, y, z) ∈ I1 × I2 × I3 as inputs and asks whether there are n triples of
S that are pairwise disjoint.

Let k ≥ 1 be a �xed integer and let I = (X ,S) be an instance of 3DM. First, we
may assume that |X | = 3kn since, if not, it is su�cient to take k disjoint copies of (X ,S).
Moreover, we may assume that m = |S| is such that 2m − 1 ≡ 0 mod k (for instance by
adding dummy triples if needed). Let X = {x1, . . . , x3kn} and S = {S1, . . . , Sm}.

From (X ,S), we construct, in polynomial time, a graph G = (V,E) with the vertex-set
V = X ∪X ′′ ∪ S ∪ {s} ∪ {q} such that (see Fig. 2):

• X = X1 ∪ · · · ∪ Xk+2 with Xi = {xi1, . . . , xi3kn} for every i ≤ k + 2. Each of the
vertices xij , for i ∈ J1, k + 2K, represents the element xj , for j ≤ 3kn;

• X ′′ = {x′′1, . . . , x′′(k+2)m};

• S = S1 ∪ · · · ∪ Sk+2 with Si = {sij , 1 ≤ j ≤ m} for every i ∈ J1, k + 2K. Each of the

vertices sij , for i ∈ J1, k + 2K, represents the element Sj , for j ≤ m.

8

The edges of G are as follows:

• there is an edge between s and every vertex of V \ {s};

• there is an edge between q and every vertex of X ∪X ′′;

• for every j ∈ J1, 3knK and every g ∈ J1,mK such that xj ∈ Sg, there is an edge
between xij and s

i
g for every i ∈ J1, k + 2K.

Let p = m(k+2)−1
k ∈ N. We prove the theorem by showing that I = (X ,S) admits a

3DM if and only if λk(G) ≤ (k + 2)n+ p+ 1.

Claim 3.4. If I admits a 3DM, then λk(G) ≤ (k + 2)n+ p+ 1.

Proof of claim. Let Y ⊆ S be a 3DM of I = (X ,S) (of size |Y | = kn). Up to renumbering
the sets and the elements, let us assume that Y = {S1, S2, . . . , Skn} and assume that
Si = {x3(i−1)+1, x3(i−1)+2, x3(i−1)+3} for every i ∈ J1, knK. Note that, because Y is a 3DM
of size kn,

⋃
1≤i≤kn Si = X (i.e., all elements are covered).

We describe a k-strategy Φ to locate the target in G in at most (k+ 2)n+ p+ 1 steps.
The �rst step of Φ consists of probing only the vertex q. Three cases may occur. Either
H1 = {q} (recall that Hs, here and further, denotes the set of vertices that remain possible
locations for the target after the sth step) in which case the target is located. Or the target
is at distance 2 from q, i.e., H1 = S, in which case Φ sequentially probes every vertex of S
but one until the target is located, which takes at most p extra steps. Or the target is at
distance 1 from q and H1 = X ∪X ′′ ∪ {s}.

Hence, we may assume that H1 = X ∪X ′′ ∪ {s}. In this case, Φ proceeds by Phases of
at most n steps each. There will be at most k + 2 such Phases. Intuitively, during Phase
i ≤ k+2, the strategy Φ probes vertices in Si in such a way that either the target is located
at one of the vertices of Xi, or, at the end of the Phase, the target is known not to be in
Xi.

Let us assume by induction on 1 ≤ i ≤ k + 2 and 1 ≤ j ≤ n that, before the jth step
of Phase i, if the target has not been located yet, then the set of possible locations for the
target is

H1+(i−1)n+j−1 = σ ∪X ′′ ∪
{
xi3k(j−1)+1, . . . , x

i
3kn

}
∪

 ⋃
i<y≤k+2

Xy

 ,

where σ = {s} if i = j = 1 (or possibly, in the case k = 1, if i = 1 and j = 2), and σ = ∅
otherwise.

This holds for i = j = 1. Then, the strategy Φ consists of probing the vertices in
Pi,j = {sik(j−1)+1, . . . , s

i
kj}. There are three cases to consider. Before going into the details

of the cases, recall that the sets Sk(j−1)+1, . . . , Skj belong to the 3DM Y and so are pairwise
disjoint. Hence, by construction of G, for every a, b ∈ Pi,j , we have (NG(a)∩Xi)∩(NG(b)∩
Xi) = ∅.

• Either all vertices of Pi,j are at distance 1 from the target. In this case, the target is
located at s (this case may only happen for i = j = 1 or, possibly, i = 1 and j = 2
in the case k = 1).

• Or exactly one vertex, say sik(j−1)+x for 1 ≤ x ≤ k, of Pi,j is at distance 1 from

the target. Let y = k(j − 1) + x. In this case, the target must occupy one of
xi3(y−1)+1, x

i
3(y−1)+2, x

i
3(y−1)+3 (the vertices corresponding to the elements that are

9

contained in Sy). The strategy Φ probes two of these vertices, until the target is
located in at most two extra steps. Therefore, in this case, the target is located in at
most 1 + (i− 1)n+ j + 2 ≤ (k + 2)n+ p+ 1 steps (since i ≤ k + 2 and j ≤ n).

• The last case is when all the vertices of Pi,j are at distance 2 from the target. In
particular the target cannot occupy a vertex in U = {s} ∪ {xi3k(j−1)+1, . . . , x

i
3kj}.

And so, if j < n, then

H1+(i−1)n+j = H1+(i−1)n+j−1 \ U = X ′′ ∪
{
xi3kj+1, . . . , x

i
3kn

}
∪

 ⋃
i<y≤k+2

Xy

 ,

hence the induction hypothesis holds for j + 1. Finally, if j = n, then

H1+in = H1+(i−1)n+n−1 \ U = X ′′ ∪

 ⋃
i+1<y≤k+2

Xy

and the induction hypothesis holds for i + 1 and j = 1. In this case, Phase i + 1
starts if i+ 1 ≤ k + 2.

After the nth step of Phase k + 2, we get that H1+(k+2)n = X ′′. The strategy Φ ends
by sequentially probing every vertex of X ′′ but one. So, the target can be located in at
most p extra steps. Therefore, λk(G) ≤ (k + 2)n+ p+ 1. �

Claim 3.5. If every 3DM of I has size strictly less than kn, then λk(G) > (k+2)n+p+1.

Proof of claim. Let us assume that every 3DM of I has size strictly less than kn. We show
that every k-strategy needs at least (k + 2)n + p + 2 steps to guarantee the localization
of the target in G. To avoid technicalities, let us assume that H0 = X ∪ X ′′, i.e., the
target is known a priori to occupy a vertex in X ∪ X ′′. We show that even with this
extra assumption (that is not favourable for the target), every k-strategy needs at least
(k + 2)n+ p+ 2 steps to guarantee the localization of the target.

Let Φ be any k-strategy. First, let us note that, since H0 = X ∪X ′′ and both q and s
are universal for X∪X ′′, then probing q or s does not bring further information. Therefore,
we may assume that Φ never probes q nor s. Let us now describe the information retrieved
upon probing vertices in X,X ′′ or S.

(a) Let u ∈ X ′′. Note that dG(u, z) = 2 for every z ∈ X ∪X ′′ \ {u}. Therefore, probing u
only determines if the target is on u or not, and gives no further information. In other
words, probing u only allows to remove u from the set of possible locations.

(b) Let u ∈ Xi for any i ≤ k + 2. Note that dG(u, z) = 2 for every z ∈ X ∪ X ′′ \
{u}. Therefore, similarly, probing u only allows to remove u from the set of possible
locations.

(c) Let u ∈ Si for any i ≤ k + 2. Let {x, y, z} = NG(u) ∩Xi, i.e., x, y, z are the vertices
corresponding to the elements contained in the set that corresponds to u. Note that
dG(u, z) = 2 for every z ∈ X ∪X ′′ \ {x, y, z}. Therefore, probing u removes at most
three vertices, namely x, y, z, from the set of possible locations.

(d) More generally, let Z ⊆ Si with |Z| < kn. Probing all vertices of Z allows to remove
NG(Z) ∩Xi, i.e., at most 3|Z| vertices, from the set of possible locations.

10

(e) Finally, let Z ⊆ Si with |Z| = kn. Because I has no 3DM of size kn, there must be at
least two vertices of Z whose neighbourhoods intersect in Xi. That is, |NG(Z)∩Xi| ≤
3kn− 1. Probing all vertices of Z allows to remove at most 3kn− 1 vertices from the
set of possible locations.

Let P ⊆ X ∪ X ′′ ∪ S be the set of all vertices that have been probed during the
(k + 2)n+ p+ 1 �rst steps of Φ. We show that, at this point, the set of possible locations
for the target still contains at least two vertices and so an extra step is required.

For every 0 ≤ j ≤ kn, let αj be the number of sets Si that contain exactly kn − j
vertices of P . Formally, αj = |{i | 1 ≤ i ≤ k + 2, |Si ∩ P | = kn − j}|. For every
kn < j ≤ m, let αj be the number of sets Si whose exactly j vertices have been probed,
i.e., αj = |{i | 1 ≤ i ≤ k + 2, |Si ∩ P | = j}|. By de�nition, since |Si| = m for every
i ≤ k + 2: ∑

0≤j≤m
αj = k + 2. (1)

Let y = |X ∩ P | be the total number of vertices probed in X and let x′′ = |X ′′ ∩ P | be
the total number of vertices probed in X ′′. By de�nition of y, x′′, and the α's, the total
number ρ of vertices that have been probed after (k + 2)n+ p+ 1 steps satis�es:

ρ = y + x′′ +
∑

kn<j≤m
jαj +

∑
0≤j≤kn

(kn− j)αj . (2)

Moreover, since at most k vertices can be probed each step:

ρ ≤ k[(k + 2)n+ p+ 1] (3)

Note that, by Item (a) above, if x′′ ≤ (k+ 2)m− 2, then at least two vertices have not
been probed and, therefore, are still potential locations for the target (as noticed above,
probing a vertex of X ′′ is the only way to remove it from the set of possible locations). In
such a case, another step would be needed to ensure the localization. Therefore, we may
assume that x′′ ∈ {(k + 2)m− 1; (k + 2)m}.

Let us assume that x′′ = (k + 2)m (below, we point out the few di�erences in the case
x′′ = (k + 2)m − 1). In that case, all vertices in X ′′ are removed from the set of possible
locations of the target that must be in X. Let 0 < j ≤ kn and let i ≤ k+2 such that kn−j
vertices have been probed in Si. By Item (d) above, probing the vertices in Si removes at
most 3(kn− j) vertices of Xi (and no other vertices) from the set of possible locations of
the target. In other words, it leaves at least 3j vertices of Xi as possible locations. Let
i ≤ k + 2 such that kn vertices have been probed in Si. By Item (e) above, probing the
vertices in Si removes at most 3kn − 1 vertices of Xi (and no other vertices) from the
possible locations of the target. In other words, one vertex of Xi is still a possible location.

Summing over all j ∈ J0, knK, the vertices probed in S leave at least α0 +
∑

1≤j≤kn
3jαj

vertices of X as possible locations for the target. To ensure the localization of the target
without more steps, only one vertex of X must remain as a possible location (in the case
when x′′ = (k+ 2)m−1, i.e., one vertex of X ′′ is still a possible location, then no vertex of
X must remain possible). Since, by Item (b) above, only the y vertices probed in X may
remove further vertices from the set of possible locations, it follows that:

y + 1 ≥ α0 +
∑

1≤j≤kn
3jαj . (4)

11

In the case where x′′ = (k + 2)m− 1, this is y ≥ α0 +
∑

1≤j≤kn
3jαj .

We are now ready to show that the above inequalities lead to a contradiction, proving
that an extra step is required. For this purpose, let us consider again the total number ρ
of vertices that have been probed during the �rst (k + 2)n+ p+ 1 steps.

ρ = y + x′′ +
∑

kn<j≤m
jαj +

∑
0≤j≤kn

(kn− j)αj (Equation (2))

= y + x′′ +
∑

kn+1≤j≤m
(j − kn)αj + kn

∑
0≤j≤m

αj −
∑

0≤j≤kn
jαj

= y + x′′ +
∑

kn+1≤j≤m
(j − kn)αj + kn(k + 2)−

∑
0≤j≤kn

jαj (Equation (1))

= y + (k + 2)m+
∑

kn+1≤j≤m
(j − kn)αj + kn(k + 2)−

∑
0≤j≤kn

jαj (if x′′ = (k + 2)m)

≥ α0 +
∑

1≤j≤kn
3jαj − 1 + (k + 2)m+

∑
kn+1≤j≤m

(j − kn)αj + kn(k + 2)−
∑

0≤j≤kn
jαj

(Inequality (4)) (if x′′ = (k + 2)m)

= α0 +
∑

1≤j≤kn
3jαj + pk +

∑
kn+1≤j≤m

(j − kn)αj + kn(k + 2)−
∑

0≤j≤kn
jαj (by de�nition of

p)

= k[n(k + 2) + p+ 1] +
∑

kn+1≤j≤m
(j − kn)αj + α0 +

∑
1≤j≤kn

2jαj − k

= k[n(k+ 2) + p+ 1] + 2(k+ 2)− 2
∑

0≤j≤m
αj +

∑
kn+1≤j≤m

(j− kn)αj +α0 +
∑

1≤j≤kn
2jαj − k

(Equation (1))

= k[n(k+2)+p+1]+4+
∑

kn+1≤j≤m
(j−kn)αj−2

∑
kn+1≤j≤m

αj−α0 +
∑

1≤j≤kn
2(j−1)αj +k

= k[n(k+2)+p+1]+4+
∑

kn+2≤j≤m
(j−kn−1)αj−

∑
kn+1≤j≤m

αj−α0+
∑

1≤j≤kn
2(j−1)αj+k

≥ k[n(k + 2) + p+ 1] + 4 + k − α0 −
∑

kn+1≤j≤m
αj

ρ ≥ k[n(k + 2) + p+ 1] + 2 (Equation (1))

This contradicts Inequality (3) and concludes the proof of the claim. �

Via slight modi�cations, the previous proof can also be applied to prove the hardness
of the k-Probe Relative-Localization problem.

Theorem 3.6. For every k ≥ 2, the k-Probe Relative-Localization problem is NP-
complete in the class of graphs with a universal vertex.

Proof. The proof of Theorem 3.3 applies, except that the strategy designed in Claim 3.4
has to start by probing both s and q (instead of only q). In this variant (with relative
distances), the localization may require one more step (than with exact distances) in case
the target is in S ∪ {s}. The claim still holds since this case (the target in S ∪ {s}) is not
the worst case.

12

3.2 When the number ` of steps is �xed

For a �xed integer ` ≥ 1, the `-Step Localization problem takes a graph G and an
integer k ≥ 1 as inputs and asks whether κ`(G) ≤ k. In the case where the target
must be located through relative distances, the analogous problem `-Step Relative-

Localization is de�ned in the obvious way (but k ≥ 2 in that case).

Theorem 3.7. For every ` ≥ 1, the `-Step Localization problem is NP-complete in the
class of graphs with a universal vertex.

Proof. For ` = 1, the result follows from the fact that computing κ1(G) is exactly the same
as computing the metric dimension MD(G) of G, and that the problem of computing the
metric dimension is NP-complete in general [8]. So, from now on, let us assume that ` ≥ 2.

The problem is in NP by Claim 3.2. To prove the NP-hardness let us reduce theMetric

Dimension problem (given a graph G and an integer k ≥ 1, is MD(G) ≤ k?) restricted
to the class of graphs that contain a universal vertex, which is known to be NP-hard [11].
Let G be a graph that contains a universal vertex and k be an integer. We construct, in
polynomial time, a graph G′ such that MD(G) ≤ k if and only if a target hidden in G′

can be located in at most ` steps by probing at most k vertices per step, i.e., κ`(G
′) ≤ k.

The construction ofG′ is as follows. Start from k(`−1)+1 disjoint copiesG1, . . . , Gk(`−1)+1

of G. Let v be a universal vertex of G, and for 1 ≤ i ≤ k(`− 1) + 1, let vi denote the copy
of v in Gi. Finally, add a universal vertex u to the graph. This results in G′. Clearly, the
construction is achieved in polynomial time.

We start by pointing out the following easy claim.

Claim 3.8. For any 1 ≤ a ≤ k(`− 1) + 1, if the target is known to occupy a vertex of Ga,
then probing a vertex w ∈ V (G′ \ Ga) does not remove any vertex in Ga from the set of
possible locations.

Proof of claim. The vertex u is universal to Ga and, therefore, all vertices of Ga are the
same distance from u and every shortest path from w to a vertex of Ga includes u. Thus,
any two vertices of Ga cannot be distinguished via their distance to w. �

We now prove that MD(G) ≤ k if and only if κ`(G
′) ≤ k.

• First let us assume that MD(G) ≤ k; we show that κ`(G
′) ≤ k. Consider the

k-strategy where, during step s (for 1 ≤ s ≤ ` − 1), we probe the vertices in
{v(s−1)k+1, . . . , vsk}.

� If the target is at one of these vertices, say vi, then it is located immediately at
some step.

� If the target is at distance 1 from one probed vertex vi, then it occupies a
vertex in the corresponding Gi (unless k = 1, in which case the target could
also occupy u). Note that, because G has diameter 2, then each of its copies Gi
is an isometric subgraph of G′. Hence, any resolving set of size k of G (which
exists since MD(G) ≤ k) is also a resolving set for the vertices of Gi in G′.
Probing such a resolving set in Gi during the next step then allows to locate the
target. In the case k = 1, Gi has at most 3 vertices as otherwise, MD(G) > 1
since vi is a universal vertex in Gi. Then, there are at most two other vertices
in Gi that have not been probed (and are not adjacent if there are two, again
since otherwise, MD(G) > 1), and thus, the target can be located in the next
step by probing one of these vertices to distinguish it from u and the other.

13

� If the target is at distance 1 from all the k ≥ 2 vi vertices, then it is located at
u.

� If at step ` − 1 the target is at distance 2 from the probed vertices, then it is
located in Gk(`−1)+1 and can be located at step ` since we have assumed that
MD(G) ≤ k and each Gi is isometric in G′.

• Now we prove the other direction, that is, we show that MD(G) > k implies that
κ`(G

′) > k. Since there are k(`−1) + 1 copies of Gi and only k(`−1) vertices can be
probed during the �rst `− 1 steps, then, on the last step, regardless of the employed
strategy, there will always exist a copy, say Ga for some 1 ≤ a ≤ k(`−1)+1, for which
no vertices in Ga have been probed. If the target is hidden in Ga, then, by Claim 3.8,
all the vertices of Ga are still potential locations for the target. The last step is then
not su�cient to locate a target hidden in Ga since probing a vertex w ∈ V (G′ \Ga)
is useless by Claim 3.8, Ga is an isometric subgraph of G′, andMD(Ga) > k. Hence,
κ`(G

′) > k.

A proof establishing the hardness of `-Step Relative-Localization can analogously
be obtained by a reduction of the Centroidal Dimension problem.

Theorem 3.9. For every ` ≥ 1, the `-Step Relative-Localization problem is NP-
complete in the class of graphs with a universal vertex.

Proof. For ` = 1, the result follows from the fact that κrel1 (G) is exactly the centroidal
dimension CD(G) of G, and that computing the centroidal dimension is an NP-complete
problem [9]. So let ` ≥ 2 be �xed.

The problem is in NP by Claim 3.2. To prove its NP-hardness, let us reduce the
Centroidal Dimension problem restricted to the class of graphs that contain a universal
vertex, which is known to be NP-hard [9]. Let G be a graph that contains a universal vertex,
and k ≥ 2. We construct, in polynomial time, a graph G′ with a universal vertex such
that CD(G) ≤ k if and only if a target hidden in G′ can be located in at most ` steps, by
probing at most k vertices per step, i.e., κrel` (G′) ≤ k.

The construction ofG′ is as follows. Start from k(`−1)+1 disjoint copiesG1, . . . , Gk(`−1)+1

of G. Let v be a universal vertex of G, and for 1 ≤ i ≤ k(` − 1) + 1, let vi denote the
copy of v in Gi. Then, add all the edges so that vk(`−1)+1 becomes a universal vertex in
the whole resulting graph, which is G′.

Claim 3.10. Let 1 ≤ a ≤ k(`− 1) + 1, and assume the target is known to occupy, in G′,
any vertex of Ga. If CD(G) > k, then we cannot locate the target in one step by probing
k vertices of G′.

Proof of claim. Assume k vertices are probed in Ga. Since CD(Ga) > k and Ga is an
isometric subgraph of G′, there exist at least two vertices y1, y2 ∈ Ga that cannot be
distinguished based on the information received. That is y1 and y2 have the same relative-
distance vector. If any number of the k vertices probed in Ga had instead been replaced
by vertices in G′ \ Ga, then the relative-distance vectors of y1 and y2 may change but
they would still be identical to one another since vk(`−1)+1 is a universal vertex (and thus,
distance 1 from both y1 and y2) and a cut vertex which separates all the Gi's. �

We are now ready to prove that CD(G) ≤ k if and only if κrel` (G′) ≤ k.

• First let us assume that CD(G) ≤ k. We show that κrel` (G′) ≤ k. Consider the k-
strategy where, at step s for 1 ≤ s ≤ `−1, we probe the vertices in {v(s−1)k+1, . . . , vsk}.
Then:

14

� If the target is closer to one of the vertices in {v(s−1)k+1, . . . , vsk} probed at step
s, say v(s−1)k+x for some integer 1 ≤ x ≤ k, then the target is at a vertex in
G(s−1)k+x. Indeed, all the Gis are separated by a cut vertex vk(`−1)+1 and since
vk(`−1)+1 is universal, it is equidistant from all the vertices of {v(s−1)k+1, . . . , vsk}.
Note that each Gi is an isometric subgraph of G′. Hence, any centroidal basis
of size k of G (which exists since CD(G) ≤ k) is also a centroidal basis for the
vertices of Gi in G

′. Probing such a centroidal basis in Gi allows to locate the
target during the next step s+ 1 ≤ `.

� If the target is equidistant from each of the vertices in {v(s−1)k+1, . . . , vsk}
probed at step s, then the target may not be at the vertices in {v(s−1)k+1, . . . , vsk}
nor at the vertices of G(s−1)k+1, . . . , Gsk. Therefore, if s < ` − 1, then Hs =
{vsk+1, . . . , v(s+1)k+1} ∪

⋃
0≤i≤k V (Gsk+1+i). Hence, after s = ` − 1 steps,

Hs = V (Gk(`−1)+1). Then, since each Gi is an isometric subgraph of G′ and
CD(G) ≤ k, probing a centroidal basis in Gk(`−1)+1 allows to locate the target
during the next step s+ 1 = `.

• Now we prove the other direction, that is, we show that CD(G) > k implies that
κrel` (G′) > k. Whatever be the probing strategy, if, on the last step, there exists a
copy, say Ga for some 1 ≤ a ≤ k(` − 1) + 1, for which no vertices in Ga have been
probed, then there is no way to know at which vertex of Ga the target is located.
Indeed, all Gi's are separated by a cut vertex, so probing a vertex in some Gi provides
no information on any otherGj , j 6= i. Since there are k(`−1)+1 copies ofGi and only
k(`−1) vertices may be probed in the �rst `−1 steps, then, on the last step, regardless
of the strategy, there will always exist a copy, say Ga for some 1 ≤ a ≤ k(`− 1) + 1,
for which no vertices in Ga have been probed. According to Claim 3.10, the last step
is not su�cient to locate the target in Ga. Hence, κ

rel
` (G′) > k.

4 The Localization problem in trees

This section is devoted to the study of the Localization problem in the class of trees.
Recall that when ` = 1, the problem is equivalent to the one of determining the metric
dimension, which can easily be solved in polynomial time in trees [13, 20]. We �rst show
that when k and ` are part of the input, deciding whether λk(T) ≤ ` for a given tree T is NP-
complete. Our reduction actually shows that the di�culty of the problem comes from the
choice of the nodes to be probed during the �rst step. Surprisingly, we show that the �rst
step is actually the only source of hardness. More precisely, our main result is that if the
�rst step is given (intuitively, either given by an oracle or imposed by an adversary), then an
optimal strategy (according to this �rst pre-de�ned step) can be computed in polynomial
time. As a consequence, we design a (+1)-approximation algorithm for the Localization
problem in trees and prove that, in contrast with general graphs (Theorem 3.3), the k-
Probe Localization problem is polynomial-time solvable in the class of trees.

4.1 NP-hardness of the �rst step

Before proceeding to the proof of the main result of this section, we �rst need to give an
exact formula for λk for a particular class of trees. More precisely, let k ≥ 1 be �xed, and
1 < r ∈ N be such that r − 1 ≡ 0 mod k. For 1 < n ∈ N, we denote by Srn the tree
obtained from r copies of Sn (the star with n leaves) by adding one new node c adjacent
to the center of each of the r stars.

15

Lemma 4.1. For every k, r, n as above,

λk(S
r
n) =

r − 1

k
+

⌈
n− 1

k

⌉
.

Furthermore, MD(Srn) = r(n− 1).

Proof. For every 1 ≤ i ≤ r and 1 ≤ j ≤ n, let ci denote the center of the ith copy of Sn,
denoted by Si, and let cij denote the jth leaf of the ith copy of Sn. First, we prove that

λk(S
r
n) ≤ r−1

k + dn−1k e. Consider the k-strategy Φ where, at each step 1 ≤ s ≤ r−1
k , the

nodes c
(s−1)k+1
1 , . . . , csk1 are probed. If at step s, one of the probed nodes, say c

(s−1)k+x
1 for

some 1 ≤ x ≤ k, is:

• distance 0 from the target, then the target is located at c
(s−1)k+x
1 ;

• distance 1 from the target, then the target is located at c(s−1)k+x;

• distance 2 from the target and k = 1, then the target is located at c or c
(s−1)k+x
y for

some 2 ≤ y ≤ n. The target is then located in a total of at most s + dn−1k e steps
since it occupies a leaf of the subgraph induced by c

(s−1)k+x
y and its neighbours which

happens to be a star Sn that is also an isometric subgraph of Srn;

• distance 2 from the target and k > 1, then the target is located at c if it is also distance

2 from the other probed nodes. Otherwise, it is at c
(s−1)k+x
y for some 2 ≤ y ≤ n.

The target is then located in a total of at most s + dn−2k e steps since it occupies a

leaf of the subgraph induced by c
(s−1)k+x
y and all its neighbours except for c, which

happens to be a star Sn−1 that is also an isometric subgraph of Srn.

If at step s < r−1
k all of the probed nodes are at distance 3 from the target, then the

target is located at one of the nodes csk+1, . . . , c(s+1)k. If at step s < r−1
k all of the probed

nodes are at distance 4 from the target, then the target is located at one of the nodes
csk+1
j , . . . , c(s+1)kj .

If at step r−1
k all of the probed nodes are at distance 3 from the target, then the target

is located at cr. If at step r−1
k all of the probed nodes are at distance 4 from the target,

then the target is located at one of the nodes crj . The target is then located in a total of

at most r−1
k + dn−1k e steps since it occupies a leaf of the subgraph induced by cr and all its

neighbours except for c which happens to be a star Sn that is also an isometric subgraph
of Srn.

We now prove that λk(S
r
n) > r−1

k + dn−1k e − 1. We may assume that the target is on a
leaf as this is not a favourable case for it. Consider a k-strategy. Since there are r copies
of Sn in Srn and at most k r−1k nodes can be probed during the �rst r−1

k steps, then, after
step r−1

k , there will always exist a copy Sa for some 1 ≤ a ≤ r of Sn for which no nodes in
Sa have been probed. Assuming the target is in Sa, note that the nodes probed in Srn \Sa
during the previous steps did not provide any information on its location. Since Sa is a
star with n leaves, we require at least dn−1k e additional steps to locate the target.

The last part of the statement, i.e.,MD(Srn) = r(n−1), was proved e.g. in [13, 20].

We are now ready to prove that the Localization problem remains NP-complete when
restricted to trees.

Theorem 4.2. The Localization problem is NP-complete in the class of trees.

16

b1
i

b2
i

b3
i

b2j
i

b2m+1
i

b1
i’

b2
i’

b3
i’

b2ji'

b2m+1
i’

b1
n

b2
n

b3
n

b2j
n

b2m+1
n

r

b1
1

b2
1

b3
1

b2j
1

b2m+1
1

b1
i’’

b2
i’’

b3
i’’

b2ji’’

b2m+1
i’’

Figure 3: Example of a tree T constructed from an instance of Hitting Set in the proof
of Theorem 4.2. In this example, the elements bi′ , bi′′ , and bn belong to the set S1 (but not
the elements b1 and bi) as �gured by the three stars at level 2. The elements bi and bi′′

belong to Sj (stars at level 2j) but not the elements b1, bi′ , and bn.

Proof. The problem is in NP by Claim 3.2. We now prove its NP-hardness by a reduction
from the Hitting Set problem. The inputs are an integer k ≥ 1, a ground set B =
{b1, . . . , bn}, and a set S = {S1, . . . , Sm} of subsets of B, i.e., Si ⊆ B for every i ≤ m. The
Hitting Set problem aims at deciding if there exists a set H ⊆ B such that |H| ≤ k and
H ∩ Si 6= ∅ for every i ≤ m.

Adding one new element to the ground set and adding this element to one single subset
clearly does not change the solution. Therefore, by adding some dummy elements (each
one belonging to a single subset), we may assume that all subsets are of the same size σ
and that σ − 1 ≡ 0 mod k.

Let γ be any integer such that γ − 1 ≡ 0 mod k and γ > n− k− 1. The instance T of
the Localization problem is built as follows (see Fig. 3 for an illustration). Start with n
node-disjoint paths B1, . . . , Bn (called branches) of length 2m, where Bi = (bi1, . . . , b

i
2m+1)

for each i ≤ n. Then add one new root node r adjacent to bi1 for all i ≤ n. For every
1 ≤ j ≤ m and for every 1 ≤ i ≤ n such that bi ∈ Sj , add γ new nodes adjacent to bi2j .

The subgraph induced by bi2j and by the γ leaves adjacent to it is referred to as the star
representing the element i in the set Sj (or representing the set Sj in the branch i). The
construction of T is clearly achieved in polynomial time.

Intuitively, it will always be favourable for the target to be located in a leaf of some star
because γ is �huge". During the �rst step of any strategy, the level (roughly, the distance
to the root) of the target can be identi�ed. Each even level 2j corresponds to a set Sj . If,
during the �rst step, one star corresponding to each even level can be eliminated from the
possible locations (which corresponds to hit every subset), then the strategy �nishes one
step earlier than if all subsets cannot be hit (as, in such a situation, all stars would have
to be checked).

17

More formally, we show below that λk(T) ≤ 1 + σ−1
k + γ−1

k if and only if there is a
hitting set H of size at most k for (B,S). Let us �rst show that if there is a hitting set
H of size at most k for (B,S), then λk(T) ≤ ` for any ` ≥ 1 + σ−1

k + γ−1
k . W.l.o.g. (up

to renumbering the elements), let us assume that H = {b1, . . . , bk} and let us present the
corresponding k-strategy. During the �rst step, the nodes b12m+1, . . . , b

k
2m+1 are probed.

We consider the following cases.

• First, if the target is at distance exactly 2m + 1 from one of (actually from all) the
probed nodes, then it is located at r.

• Then, let us assume that the target is at distance strictly less than 2m + 1 from
one of the probed nodes, w.l.o.g., that the target occupies a node in the branch B1

(including the leaves of the stars in this branch). If the target is at odd distance
from b12m+1, then the target is located since there is a unique node at distance 2h+ 1
from b12m+1 for each 0 ≤ h ≤ m. Otherwise, the target is at distance d = 2(m − h)
from d2m+1 for some 0 ≤ h < m (if h = m, then the target is trivially located). If
b1 /∈ Sm−h, then b12m+1−d does not belong to a star and b12m−d is the unique node at
distance d from b12m+1 and the target is located. Otherwise, the target may occupy
b12m+1−d or any leaf adjacent to b12m+1−d. By Observation 4.4, this can be checked in
dγk e steps by sequentially checking each of these nodes but one. Overall, in this case,
the target is located in at most 1 + dγk e steps (including the �rst one).

• Hence, we may assume that the target is at distance at least 2m + 2 from each of
b12m+1, . . . , b

k
2m+1. Note that, in this case, the target is the same distance from every

probed node. Said di�erently, the information brought by the �rst step is that the
target is at some distance d ≥ 1 from the root c and not in branches B1, . . . , Bk.

� If d is even, then the target can be at bk+1
d , . . . , bnd . Indeed, for every i ≤ n,

and any even distance d′, there is a unique node at distance d′ from r in the
branch Bi. By Observation 4.4, the target can be located in dn−k−1k e steps by
sequentially checking each of these nodes but one. Overall, it took 1 + dn−k−1k e
steps to locate the target.

� Otherwise, d = 2j + 1 for some j ≤ m. Recall that H is a hitting set. In
particular, |Sj \ H| < |Sj | = σ. In the worst case, |Sj \ H| = σ − 1 and,
w.l.o.g. (up to renumbering), Sj \ H = {bk+1, . . . , bk+σ−1}. In this case, the
target can be located at bk+1

d , . . . , bnd or at any leaf adjacent to one of the nodes

bk+1
2j , . . . , bk+σ−12j (i.e., the leaves of the stars corresponding to the set Sj in the
branches that have not been hit). Then, the strategy continues by sequentially
probing the nodes bk+1

d , . . . , bn−1d . Note that we start by the branches containing
the stars that remain to be checked. There are two cases to be considered.

∗ Either after checking bk+1
d , . . . , bk+σ−1d in σ−1

k steps (recall that σ − 1 ≡ 0
mod k), the target is located to be in some star (this is the case if it is
at distance 2 from one probed node). Then, it remains to identify which
leaf of the star is the location of the target. This can be done in γ−1

k steps
by sequentially checking each of these leaves but one (Observation 4.4).
Overall, in this case, the target has been located in 1 + σ−1

k + γ−1
k steps.

∗ Or the target does not occupy a leaf of a star and is located after a total of
1 + dn−k−1k e steps (including the �rst step).

18

To conclude, if the minimum size of a hitting set is at most k, then λk(T) ≤ ` for any
` ≥ 1 + max{dγk e, d

n−k−1
k e, σ−1k + γ−1

k } = 1 + σ−1
k + γ−1

k (the last equality holds since
γ > n− k − 1 and, since σ − 1 ≡ 0 mod k and σ > 1, we have σ−1

k ≥ 1).
We now show that if there are no hitting sets of size at most k for (B,S), then λk(T) > `

for any ` ≤ 1+ σ−1
k + γ−1

k . Consider any k-strategy. After the �rst step, at most k branches
have some node that has been probed. These at most k branches correspond to at most
k elements of the ground set B and, since all hitting sets of (B,S) have size at least
k + 1, there must be a set that does not contain any of these k elements. W.l.o.g., let
S1 = {b1, . . . , bσ} be this set. After the �rst step, let us assume that the target is located
at distance 3 from the root (it is possible to decide this a posteriori since we are considering
a worst case). Then, the target may be located at any leaf of some star corresponding to
S1. More precisely, the target may be at any node in {b13, . . . , bσ3} or at any leaf adjacent
to one of the nodes in {b12, . . . , bσ2}. Actually, the target may also be at other nodes (the
third node of other branches), but we can ignore these choices. Even with this additional
assumption, we show that the strategy will last for too long.

Indeed, after the �rst step, the instance becomes equivalent to an instance that consists
of a rooted tree whose root has degree σ and each child of the root is adjacent to γ+1 leaves,
and the target is known to occupy a leaf. By a direct adaptation of Lemma 4.1, locating
the target takes another σ−1

k +dγk e steps. Overall, locating the target thus requires at least
1+ σ−1

k +dγk e steps. Since γ−1 ≡ 0 mod k, then dγk e >
γ−1
k and λk(T) > 1+ σ−1

k + γ−1
k .

4.2 A polynomial-time algorithm for the next steps

The proof of Theorem 4.2 shows that, in our reduction, choosing the nodes to be probed
during the �rst step to ensure an optimal strategy is equivalent to �nding a minimum
hitting set. We show here that this �rst step is actually the only source of hardness for
solving Localization in trees.

The key argument is the following easy remark. Let us consider a tree T where an
immobile target is hidden and assume that a single node r ∈ V (T) is probed. After this
single probe, the distance d ∈ N between the target and r is revealed. Therefore, from
the second step, the instance becomes equivalent to a tree T ′ (a subtree of T) rooted in r,
whose leaves (all of them) are the same distance d from r, and where the target is known
to occupy some leaf of T ′. We �rst present an algorithm that computes in polynomial time
(independent of k and `) an optimal strategy to locate the target in such instances.

Let T be the set of rooted trees with all leaves the same distance from the root. Given
a rooted tree (T, r) ∈ T (in what follows, we omit r when it is clear from the context),
let λLk (T) be the minimum integer h such that there exists a k-strategy Φ for locating a
target in at most h steps knowing a priori that the target occupies some leaf of T . The
next claim is one of the key arguments that makes the problem easier in this context. For
any node v in a rooted tree (T, r), we denote by Tv the subtree rooted at v.

Claim 4.3. Let (T, r) ∈ T be a tree rooted in r and v be a child of r. If the target is known
to occupy a leaf of T , then probing any node in Tv allows to learn if the target occupies a
leaf of Tv or a leaf of T \ Tv.

Proof of claim. Let d be the distance between r and the leaves of T . Let w be any node of
Tv and let d′ be the distance between w and r. The claim follows from the fact that the
target occupies a leaf of Tv if and only if its distance to w is strictly less than d+ d′. �

Let T ∈ T be a tree rooted in r and v be a child of r, and let us assume that the secret
location of the target is some leaf of Tv. Note that (Tv, v) ∈ T . Let us assume that Tv is

19

(4,2) (4,1) (3,3) (3,3) (2,2) (2,2) (1,1)
1

1 1 1 2
22

3
3

2
3

(0,0)

Tv2Tv1 Tv3
Tv4 Tv5

Tv6 Tv7
Tv8

r

Figure 4: A tree (T, r) ∈ T rooted at r. The eight children of r are v1, . . . , v8. The pair
(λLk (Tvi), π(Tvi)) for each Tvi is written below the corresponding subtree. In the �gure, one
(two, three, resp.) x© in a subtree corresponds to one (two, three, resp.) node (nodes) of
this subtree being probed during step x.

not a path and let s be the �rst step of an optimal strategy Φ in T that probes some node
of Tv (such a step s must exist since otherwise the target would never be located in Tv). By
Claim 4.3, it is su�cient to probe a single node of Tv to learn whether the target occupies
a leaf of Tv. Then, applying an optimal strategy φv in Tv will locate the target in a total
of s+λLk (Tv)− 1 steps if the �rst step of φv only requires probing a single vertex of Tv and
s + λLk (Tv) steps otherwise. So, it may be possible to do better. Indeed, probing several
nodes of Tv during the sth step of Φ may serve not only to locate the target in Tv but also
to �play" the �rst step of Φv. Doing so, the strategy will take only s + λLk (Tv) − 1 steps.
Let v1, . . . , vd∗ denote the children of r. So, elaborating, an optimal strategy will consist
of doing a tradeo� between probing one single node in several of the Tvi 's (and locating
�quickly" in which subtree Tvi the target is hidden, since several of them are considered
simultaneously) and probing more nodes in some of the Tvi 's in order to get a head start
for the strategy in the case the Tvi hosting the target is identi�ed.

For any tree T , let π(T) be the minimum integer q ≤ k such that there exists a k-
strategy for locating a target in T in at most λLk (T) steps, knowing a priori that the target
occupies some leaf of T , and such that q nodes are probed during the �rst step.

To illustrate this need of a tradeo� and the importance of π, let us consider the ex-
ample depicted in Fig. 4. The root r of T has eight children v1, . . . , v8 with the pairs
(λLk (Tvi), π(Tvi)) being (4, 2), (4, 1), (3, 3), (3, 3), (2, 2), (2, 2), (1, 1), and (0, 0), respec-
tively. Let k = 4. Here, the target can be located in at most four steps, through the
following strategy.

• Step 1. The probed nodes are those labeled 1© in Fig. 4, that is, two nodes of Tv1 , one
node of Tv2 , and one node of Tv3 . If the target occupies some leaf of Tv1 or Tv2 , then
there is a strategy for locating the target in at most λLk (Tv1)− 1 = λLk (Tv2)− 1 = 3
extra steps because π(Tv1) (π(Tv2), resp.) nodes of Tv1 (Tv2 , resp.) have been probed.
If the target occupies some leaf of Tv3 , then there is a strategy for locating the target
in at most λLk (Tv3) = 3 extra steps (that is a total of four steps). Thus, assume that
the target occupies a leaf of some subtree Tvi , 4 ≤ i ≤ 8.

• Step 2. The probed nodes are those labeled 2© in Fig. 4, that is, three nodes of Tv4
and one node of Tv5 . If the target occupies some leaf of Tv4 or Tv5 , then using similar
arguments to those above, we can show there is a strategy for locating the target in
at most two extra steps (that is a total of four steps). Thus, assume that the target
occupies a leaf of Tv6 , Tv7 or Tv8 .

20

Algorithm 1 A1(k, (T, r))

Require: An integer k and a tree (T, r) ∈ T rooted in r with children v1, . . . , vd∗

Ensure: (λLk (T), π(T))
1: if (T, r) is a rooted path then
2: return (0, 0)
3: for i = 1 to d∗ do
4: Let (λi, πi) = A1(k, (T [i], vi)) // recursive calls to Algorithm 1
5: Sort the (λi, πi)1≤i≤d∗ in non-increasing lexicographical order
6: return A2(k, (T, r), (λi, πi)1≤i≤d∗) // call to Algorithm 2

• Step 3. The probed nodes are those labeled 3© in Fig. 4, that is, two nodes of Tv6
and one node of Tv7 . Again, if the target occupies some leaf of Tv6 or Tv7 , then, with
at most one extra step, the target is located. Otherwise, the target is on Tv8 and
there is no need for an extra step.

Let (T, r) ∈ T be a tree rooted in r and let v1, . . . , vd∗ be the children of r. From
previous arguments, the computation of an optimal strategy for T consists of determining,
for each subtree Tvi (1 ≤ i ≤ d∗), the �rst step for which a node of Tvi will be probed (if the
target has not been located in a di�erent subtree at a previous step). If one node is probed
during this step, then λLk (Tvi) extra steps are needed if the target occupies some leaf of Tvi
(unless π(Tvi) = 1 in which case λLk (Tvi) − 1 extra steps are needed). Furthermore, if we
want to locate the target in at most λLk (Tvi) − 1 extra steps (if the target occupies some
leaf of Tvi), then π(Tvi) nodes of Tvi must be probed during this step. Algorithms 1 and 2
compute such an optimal strategy for a tree in T in polynomial time. We �rst describe
their behaviour, before focusing on proving their correctness.

Description of Algorithm 1 The main algorithm A1(k, (T, r)) takes an integer k ≥ 1
and a rooted tree (T, r) ∈ T as inputs and computes (λLk (T), π(T)) and a corresponding
k-strategy. It proceeds bottom-up by dynamic programming from the leaves to the root.
Precisely, let v1, . . . , vd∗ be the children of r. For any 1 ≤ i ≤ j ≤ d∗, let T [i] = Tvi be
the subtree rooted at vi, and let T [i, j] = {r} ∪ Tvi ∪ . . . ∪ Tvj (T [i, j] = ∅ if i > j). To
lighten the notations, let us set λi = λLk (T [i]) and πi = π(T [i]) for every 1 ≤ i ≤ d∗.
Assume that, (Λ,Π) = (λi, πi)1≤i≤d∗ have been computed recursively and sorted in non-
increasing lexicographical order. Then, A2(k, (T, r), (Λ,Π)), described in Algorithm 2,
takes the integer k ≥ 1, the rooted tree (T, r) ∈ T , and the sorted tuple (Λ,Π) as inputs
and computes (λLk (T), π(T)) and a corresponding strategy.

Description of Algorithm 2 We now informally describe A2(k, (T, r), (Λ,Π)). The
�rst part, from Lines 2 to 5, deals with the subtrees Tvd+1

, . . . , Tvd∗ that are rooted paths
(Tvi 's being paths rooted at one of their two ends, while the second end is a leaf). In
other words, these Lines deal with the Tvi 's such that (λi, πi) = (0, 0). Indeed, this case is
somehow pathologic, and needs to be treated separately.

The second part (from Line 6) of Algorithm 2 goes as follows. Informally, A2(k, (T, r), (Λ,Π))
recursively builds, for i = d down to 1, an optimal k-strategy Φ for T [i, d∗] from an optimal
k-strategy Φ′ of T [i+1, d∗] and from an optimal k-strategy Φ′′ of T [i] (the latter one being
given as input through (λi, πi)). In other words, (λLk (T [i, d∗]), π(T [i, d∗])) is computed from
(λLk (T [i + 1, d∗]), π(T [i + 1, d∗])), and (λi, πi). For every 1 ≤ i ≤ d + 1, let li (resp., pi)
denote the value of l (resp. of p) just before the (d+2− i)th iteration of the for loop (so, l1

21

Algorithm 2 A2(k, (T, r), (Λ,Π))

Require: An integer k and a tree (T, r) ∈ T rooted in r with v1, . . . , vd∗ such that (Λ,Π) =
(λi, πi)1≤i≤d∗ is sorted in non-increasing lexicographical order

Ensure: (λLk (T), π(T))
1: l← 1, p← k, d← d∗

2: if T [d∗] is a rooted path then
3: d← z where 0 ≤ z < d∗ is the smallest integer such that T [z + 1] is a rooted path
4: l← 1 +

⌈
d∗−d−1

k

⌉
// l← 1 + λLk (T [d+ 1, d∗]) (Lem. 4.5)

5: p← k + k
(⌈

d∗−d−1
k

⌉
−
⌈
d∗−d−1
d∗−d

⌉)
− (d∗ − d− 1) // p← k − π(T [d+ 1, d∗])

(Lem. 4.5)
6: for i = d down to 1 do

7: if p = 0 or l < λi + 1 then

8: p← k, l← max(l + 1, λi + 1)
9: α← πi− (πi−1)d(l− (λi+ 1))/le // α = πi if, in Line 7, l < λi+ 1, and α = 1 otw.
10: if α ≤ p then
11: p← p− α
12: else

13: p← k − 1, l← l + 1 // l = 1 + λLk (T [i, d∗]); p = k − π(T [i, d∗]) (Lem. 4.9)
14: return (l − 1, k − p)

and p1 are the �nal values of l and p). Intuitively, let us assume that an optimal strategy
for T [i+ 1, d∗] has been computed, that it takes at most li+1− 1 steps, and that it requires
a minimum of k− pi+1 = π(T [i+ 1, d∗]) nodes to be probed during its �rst step. Roughly,
there are �ve cases to consider.

• If πi ≤ pi+1 and λi = li+1−1, then the strategy Φ follows Φ′ but, in addition, probes
πi nodes of T [i] during its �rst step. If the target is in T [i], then Φ follows Φ′′ (and
takes a total of at most λi steps), otherwise, it proceeds as Φ′ (and takes a total of
at most li+1 − 1 steps). We get li = li+1 and pi = pi+1 − πi.

• Else, if πi > pi+1 > 0 and λi = li+1−1, then the �rst step of Φ probes a unique node
in T [i]. If the target is in T [i], then Φ follows Φ′′ (and takes a total of at most λi + 1
steps). Otherwise, it proceeds as Φ′ (and takes a total of at most li+1 steps). We get
li = li+1 + 1 and pi = k − 1.

• Else, if pi+1 = 0 and λi ≤ li+1 − 1, then the �rst step of Φ probes a unique node in
T [i]. If the target is in T [i], then Φ follows Φ′′ (and takes a total of at most λi + 1
steps). Otherwise, it proceeds as Φ′ (and takes a total of at most li+1 steps). We get
li = li+1 + 1 and pi = k − 1.

• Else, if λi < li+1 − 1 and pi+1 > 0, then the strategy Φ follows Φ′ but, in addition,
probes one node of T [i] during its �rst step. If the target is in T [i], then Φ follows
Φ′′ (and takes a total of at most λi+ 1 steps), otherwise, it proceeds as Φ′ (and takes
a total of at most li+1 − 1 steps). We get li = li+1 and pi = pi+1 − 1.

• Finally, if (λi > li+1 − 1), then the strategy Φ probes πi nodes in T [i] during the
�rst step. If the target is in T [i], then Φ follows Φ′′ (and takes a total of at most λi
steps), otherwise, it proceeds as Φ′ (and takes a total of at most li+1 steps). We get
li = λi + 1 and pi = k − πi.

22

Correctness and complexity of Algorithms 1 and 2 We start by proving the cor-
rectness of the two main parts of Algorithm 2, i.e., that of the peculiar case (Lines 2 to 5)
and of the general case (from Line 6).

First, we consider the �rst part of Algorithm 2. Lemma 4.5 below proves that Lines 2
to 5 compute (λLk (T [vd+1, d

∗]), π(T [vd+1, d
∗])). Let us recall the following observation that

is easy to see.

Observation 4.4. For every star Sn with n leaves, λk(Sn) = dn−1k e.

We de�ne S ⊂ T as the set of subdivided rooted stars S (i.e., trees with at most one
node of degree at least 3) with all leaves the same distance from the root, where the root
of S is the (unique) node with degree at least 3 or one of the two ends of S is a path.

Lemma 4.5. For every subdivided rooted star S ∈ S with d leaves, λLk (S) = dd−1k e and
π(S) = −k(dd−1k e − d

d−1
d e) + (d− 1).

Proof. The strategy consists of sequentially probing each leaf of S but one. Either the
target will be probed at some step, or it must be in the unique leaf that has not been
probed. During the �rst step, π(S) leaves are probed, and exactly k leaves are probed
during every other step. Such a strategy lasts for dd−1k e steps.

For any strategy using less than dd−1k e steps, the nodes of at most k(dd−1k e−1) ≤ d−2
branches have been probed. Hence, there are at least two branches of S for which no nodes
have been probed and so it is not possible to decide which one of these branches is occupied
by the target.

Similarly, it can be checked that, for any strategy using at most dd−1k e steps and
probing less than π(S) nodes during the �rst step, there are at least two branches of
S for which no nodes have been probed. To be convinced of that point, notice that
π(S) = −k(dd−1k e − d

d−1
d e) + (d− 1) is equivalent to:

• π(S) = 0 if d− 1 = 0;

• π(S) = k if d− 1 > 0 and (d− 1) mod k = 0;

• π(S) = (d− 1) mod k otherwise.

This concludes the proof.

We now focus on proving the correctness of the second part of Algorithm 2, which is
mainly done in Lemma 4.9 below. We �rst introduce three easy observations, whose proofs
are omitted.

Observation 4.6. Let (T, r) ∈ T be a rooted tree. Then, λLk (T) = 0 if and only if T is a
rooted path, and π(T) = 0 if and only if T is a rooted path.

Although the following observation (closedness of λk under subtree) does not hold in
general graphs (see Observation 2.1), it can easily be seen that this holds in the case of
trees.

Observation 4.7. For any tree T and any subtree T ′ of T , λLk (T ′) ≤ λk(T ′) ≤ λk(T) and
λLk (T ′) ≤ λLk (T).

The next observation is obvious (indeed, to prove it, just note that the �rst step probing
a single vertex can simply be ignored) but will be quite useful in what follows.

23

Observation 4.8. For any tree T , there exists a k-strategy for locating the target in at
most λk(T) + 1 steps (resp., in at most λLk (T) + 1 steps if the target is known to occupy a
leaf) and that probes a single arbitrary node during its �rst step.

We are now ready to prove the next result, which essentially proves that the second part
of Algorithm 2 is correct. That is, we prove, provided the Tvi 's are sorted in non-increasing
lexicographical order (over (λi, πi)), that the strategy Φ described earlier is optimal for
T [i, d∗], that is, it computes (λLk (T [i, d∗]), π(T [i, d∗])).

Lemma 4.9. For every 1 ≤ i ≤ d+1, we have λLk (T [i, d∗]) = li−1 and π(T [i, d∗]) = k−pi.

Proof. The proof is by induction on d + 1− i ≤ d + 1. For i = d + 1, there are two cases
to be considered.

• If d = d∗ (i.e., the condition on Line 2 is not satis�ed), then, before the �rst iteration,
ld+1 = 1, pd+1 = k and T [d + 1, d∗] = ∅, and so λLk (∅) = ld+1 − 1 = 0 and π(∅) =
k − pd+1 = 0. So the induction hypothesis is satis�ed for i = d+ 1.

• Otherwise, d < d∗ and Tvd+1
, . . . , Tvd∗ are rooted paths. That is, T [d + 1, d∗] ∈ S.

Then, the induction hypothesis for i = d + 1 is satis�ed by Lemma 4.5 and Lines 2
to 5 of Algorithm 2.

Let us assume that the induction hypothesis holds for 1 < i + 1 ≤ d + 1. That
is, at the end of the (d − i)th iteration of the for loop, λLk (T [i + 1, d∗]) = li+1 − 1 and
π(T [i+ 1, d∗]) = k − pi+1. We will prove that it is also true after the next iteration of the
for loop, i.e., λLk (T [i, d∗]) = li − 1 and π(T [i, d∗]) = k − pi.

It is very important to note that Lines 2 and 3 imply that λi > 0 and πi > 0, for every
1 ≤ i ≤ d. We consider �ve cases depending on the values of pi+1, πi, λi, and li+1.

• Case 0 < πi ≤ pi+1, li+1 = λi + 1.

By the induction hypothesis, λLk (T [i + 1, d∗]) = li+1 − 1 = λi and π(T [i + 1, d∗]) =
k − pi+1. Because the value of l at the beginning of this iteration of the for loop
is li+1 = λi + 1, then α = πi. Then, since πi ≤ pi+1, we get that p becomes
p− α = pi+1 − πi and l is not modi�ed. Hence, li = li+1 and pi = pi+1 − πi.
We now prove that λLk (T [i, d∗]) = li+1 − 1 and π(T [i, d∗]) = k − pi+1 + πi. By
Observation 4.7, we have λLk (T [i, d∗]) ≥ λLk (T [i + 1, d∗]) = li+1 − 1. To prove that
λLk (T [i, d∗]) ≤ λLk (T [i+ 1, d∗]) = li+1 − 1, it is su�cient to describe a strategy Φ for
λLk (T [i, d∗]) with a total of at most li+1 − 1 steps.

Let Φ′ be an optimal strategy for T [i + 1, d∗] probing at most π(T [i + 1, d∗]) nodes
during the �rst step. Also, let Φ′′ be an optimal strategy for T [i] probing at most
πi nodes during the �rst step. The �rst step of Φ consists of probing πi nodes
of T [i] (as Φ′′) and π(T [i + 1, d∗]) = k − pi+1 nodes of T [i + 1, d∗] (as Φ′). By
assumption, πi ≤ pi+1, and, by the induction hypothesis, π(T [i+ 1, d∗]) = k − pi+1,
so πi + π(T [i + 1, d∗]) ≤ k and at most k nodes are probed. By Claim 4.3, this
�rst step allows to decide if the target is in T [i] or not (in the latter case, it is in
T [i+ 1, d∗]). If the target is in T [i], then Φ continues by following the strategy Φ′′ in
T [i], which will locate the target in at most λi − 1 = li+1 − 2 extra steps. Otherwise
(the target is in T [i + 1, d∗]), Φ continues by following the optimal strategy Φ′ for
T [i+1, d∗] which will locate the target in at most λLk (T [i+1, d∗])−1 = li+1−2 extra
steps. In all cases, Φ locates the target in at most li+1 − 1 steps.

24

We now prove that π(T [i, d∗]) = k − pi+1 + πi. For purpose of contradiction, let us
assume that there is a strategy for locating the target in T [i, d∗] in at most λi = li+1−1
steps and probing strictly less than k − pi+1 + πi nodes during the �rst step. By
de�nition, at least πi nodes of T [i] must be probed during the �rst step to locate the
target in at most λi = li+1 − 1 steps. Thus, it means that strictly less than k − pi+1

nodes of T [i + 1, d∗] can be probed during the �rst step. This contradicts that the
strategy performs in at most λi = li+1 − 1 steps since π(T [i+ 1, d∗]) = k − pi+1.

• Case πi > pi+1 > 0, li+1 = λi + 1.

In this case, it can be checked that α = πi and that the else instruction (Line 12) is
executed and so li = li+1 + 1 and pi = k − 1. We will prove that λLk (T [i, d∗]) = li+1

and π(T [i, d∗]) = 1.

By the induction hypothesis, λLk (T [i + 1, d∗]) = li+1 − 1 = λi and π(T [i + 1, d∗]) =
k − pi+1.

We prove that λLk (T [i, d∗]) ≥ λLk (T [i+1, d∗])+1 = li+1. For purpose of contradiction,
let us assume that λLk (T [i, d∗]) < li+1 and let Φ′ be a strategy for locating the target
in T [i, d∗] in at most li+1 − 1 steps. Since li+1 − 1 = λi, then at least πi nodes of
T [i] must be probed during the �rst step. Since λLk (T [i+ 1, d∗]) = li+1 − 1 = λi and
π(T [i + 1, d∗]) = k − pi+1, at least k − pi+1 nodes of T [i + 1, d∗] must be probed
during the �rst step. This means that at least πi + k − pi+1 > k nodes must be
probed during the �rst step, a contradiction.

We now prove that λLk (T [i, d∗]) = li+1. It is su�cient to design a strategy Φ for
locating the target in T [i, d∗] in at most li+1 steps. By Observation 4.8, there is a
strategy Φ′ for T [i] for locating the target in at most λi+1 steps that probes a single
node during the �rst step. Also, let Φ′′ be an optimal strategy for T [i + 1, d∗]. The
�rst step of Φ consists of probing one node of T [i]. If the target is in T [i], the strategy
continues with Φ′ (in at most λi = li+1 − 1 steps), otherwise, the strategy continues
with Φ′′ (in at most λLk (T [i + 1, d∗]) = li+1 − 1 steps). From this, we deduce that
π(T [i, d∗]) ≤ 1 and, by de�nition of π, we get that π(T [i, d∗]) = 1.

• Case pi+1 = 0, li+1 ≥ λi + 1.

In this case, because of the if instruction (Line 7), the value of p is set to k and
li = li+1 + 1. Then, α = 1 and so (if instruction of Line 10) pi = k − 1. We will
prove that λLk (T [i, d∗]) = li+1 and π(T [i, d∗]) = 1. By the induction hypothesis,
λLk (T [i+ 1, d∗]) = li+1 − 1 ≥ λi and π(T [i+ 1, d∗]) = k.

We �rst prove that λLk (T [i, d∗]) ≥ λLk (T [i+ 1, d∗]) + 1 = li+1. For purpose of contra-
diction, let us assume that λLk (T [i, d∗]) < li+1 and let Φ be a k-strategy for T [i, d∗]
locating the target in at most li+1− 1 steps. First, if a node of T [i] is probed during
the �rst step of Φ, it means that at most k − 1 < k − pi+1 = k nodes of T [i+ 1, d∗]
are probed during the �rst step of Φ, contradicting that k − pi+1 = π(T [i+ 1, d∗]) is
the minimum number of nodes of T [i + 1, d∗] that must be probed during the �rst
step of an optimal k-strategy for T [i+ 1, d∗].

Hence, neither Φ nor any k-strategy locating the target in T [i, d∗] in at most li+1− 1
steps can probe some node of T [i] during its �rst step. Below, we will build such a
strategy Φ′ (that probes some nodes of T [i] during its �rst step) from Φ, which leads
to a contradiction.

25

Since Φ does not probe any node of T [i] during its �rst step, then li+1 − 1 > λi
(otherwise, a target hidden in T [i] will not be located in at most li+1 − 1 steps, by
de�nition of λi > 0). Let x > 1 be the �rst step of Φ that probes a node of T [i] if
the target is in T [i] (such a step exists since T [i] is not a rooted path by de�nition
of d, i.e., since λi > 0). Then, li+1 − x ≥ λi since, otherwise, a target hidden in T [i]
could not be located by Φ in at most li+1 − 1 steps. If li+1 − x = λi, then the xth

step of Φ must probe πi nodes of T [i]. Otherwise, if li+1 − x > λi, we may assume
that the xth step of Φ probes a single node of T [i] (by Observation 4.8).

Let i+1 ≤ j ≤ d∗ be such that the �rst step of Φ probes some nodes of T [j]. Because
the subtrees have been sorted, λj ≤ λi < li+1 − 1 and we may assume that the �rst
step of Φ probes one node in T [j] (by Observation 4.8). Let us de�ne the k-strategy
Φ′ as follows. The strategy Φ′ follows Φ but, during its �rst step, it probes one node
of T [i] instead of probing some nodes of T [j]. If the target is located in T [i], then
Φ′ applies an optimal strategy in T [i] and locates the target in at most λi < li+1− 1
extra steps. Otherwise, Φ′ continues to mimic the strategy Φ until its xth step. If
the target has been located in some subtree before the xth step, then Φ′ continues
to act as Φ. Otherwise, the xth step of Φ′ mimics the xth step of Φ but, instead of
probing one node of T [i] (resp. πi nodes of T [i] if li+1 − x = λi), Strategy Φ′ probes
one node of T [j] (resp. πj ≤ πi nodes of T [j] if li+1 − x = λi). Then, Φ′ proceeds as
Φ.

It is easy to show that Φ′ is a k-strategy for T [i, d∗] locating the target in at most
li+1 − 1 steps, and probing some node of T [i] during its �rst step, a contradiction.

We now prove that λLk (T [i, d∗]) = li+1 and that π(T [i, d∗]) = 1. It is su�cient
to design a strategy Φ for T [i, d∗] locating the target in at most li+1 steps. By
Observation 4.8, there is a strategy Φ′ for T [i] for locating the target in at most
λi+1 steps and probes a single node during the �rst step. Also, let Φ′′ be an optimal
strategy for T [i+1, d∗]. The �rst step of Φ consists of probing one node of T [i]. If the
target is in T [i], then the strategy continues with Φ′ (in at most λi ≤ li+1 − 1 extra
steps), otherwise, the strategy continues with Φ′′ (in at most λLk (T [i+1, d∗]) = li+1−1
extra steps). From this, we deduce that π(T [i, d∗]) ≤ 1 and, by de�nition of π, we
get that π(T [i, d∗]) = 1.

• Case pi+1 > 0, li+1 > λi + 1.

In this case, the condition of the if instruction (Line 7) is not satis�ed, α = 1,
and so the condition of the if instruction (Line 10) is satis�ed. Hence, li = li+1

and pi = pi+1 − 1. We will prove that λLk (T [i, d∗]) = li+1 − 1 and π(T [i, d∗]) =
k−pi+1+1. By the induction hypothesis, we have λLk (T [i+1, d∗]) = li+1−1 > λi and
π(T [i+1, d∗]) = k−pi+1. By Observation 4.7, λ

L
k (T [i, d∗]) ≥ λLk (T [i+1, d∗]) = li+1−1

also.

To prove that λLk (T [i, d∗]) ≤ λLk (T [i+ 1, d∗]) = li+1 − 1, it is su�cient to describe a
strategy Φ for λLk (T [i, d∗]) with a total of at most li+1−1 steps. By Observation 4.8,
there is a strategy Φ′ for T [i] for locating the target in at most λi+1 steps that probes
a single node during the �rst step. Let Φ′′ be an optimal strategy for T [i + 1, d∗]
probing at most π(T [i+ 1, d∗]) = k − pi+1 < k nodes during the �rst step. The �rst
step of Φ consists of probing one node in T [i] (as Φ′) and π(T [i+ 1, d∗]) = k − pi+1

nodes of T [i + 1, d∗] (as Φ′′). By assumption, 0 < pi+1, so 1 + π(T [i + 1, d∗]) ≤ k
and at most k nodes are probed. By Claim 4.3, this �rst step allows to decide if the

26

target is in T [i] or not (in which case it is in T [i+1, d∗]). If the target is in T [i], then
Φ continues by following the strategy Φ′ in T [i] which will locate the target in at
most λi < li+1 − 1 extra steps. Otherwise (the target is in T [i+ 1, d∗]), Φ continues
by following the optimal strategy Φ′′ for T [i + 1, d∗] which will locate the target in
at most λLk (T [i+ 1, d∗])− 1 = li+1 − 2 extra steps. In all cases, Φ locates the target
in at most li+1 − 1 steps.

Let us prove that π(T [i, d∗]) = k − pi+1 + 1. For purpose of contradiction, let
us assume that there is a strategy Φ for locating the target in T [i, d∗] in at most
li+1 − 1 steps that probes strictly less than k − pi+1 + 1 nodes during the �rst step.
We will show that we can construct a strategy Φ′ in T [i + 1, d∗] for locating the
target in at most `i+1 − 1 steps and probes at most k − pi+1 − 1 nodes during the
�rst step, a contradiction. If the �rst step of Φ probes at least one node of T [i],
then it probes at most k − pi+1 − 1 nodes of T [i + 1, d∗] contradicting the fact that
λLk (T [i+1, d∗]) = li+1−1 and π(T [i+1, d∗]) = k−pi+1. Hence, we may assume that
the �rst step of Φ probes k − pi+1 nodes of T [i+ 1, d∗] and no nodes in T [i].

Let t > 1 be the minimum integer such that at least one node of T [i] is probed
during the tth step of Φ. After step t, at most li+1 − t − 1 steps remain and so
li+1 − t − 1 ≥ λi − 1. Let j ∈ Ji + 1, d∗K be such that at least one node of T [j]
is probed during the �rst step of Φ. Note that j > i and, because the subtrees
are ordered in non-increasing lexicographical order, either λj < λi or (λj = λi and
πj ≤ πi).
Let us consider the following strategy Φ′ for T [i+ 1, d∗]. The �rst t− 1 steps of the
strategy Φ′ follow the ones of Φ but do not probe any node of T [j]. That is, for every
j′ ∈ Ji + 1, d∗K \ {j} and for every t′ < t, the step t′ of Φ′ probes the same nodes of
T [j′] as the step t′ of Φ. In particular, the �rst step of Φ′ probes at most k−pi+1−1
nodes. If the target has been located in a subtree di�erent from T [j] during the �rst
t − 1 steps, then Φ′ continues as Φ (but without probing the nodes of T [i] since Φ′

is a strategy for T [i + 1, d∗]). Otherwise, the tth step of Φ′ proceeds as follows. For
every j′ ∈ Ji+ 1, d∗K \ {j}, the step t of Φ′ probes the same nodes of T [j′] as the step
t of Φ. Again, the strategy Φ′ does not probe any node of T [i]. Note that, during
its step t, the strategy Φ probes at least one node of T [i], and it probes at least πi
nodes of T [i] if li+1 − t = λi. Therefore, there are two cases to be considered.

� If li+1 − t > λj , then Φ′ probes one node of T [j] during step t. If the target is
located in T [j] then the next steps of Φ′ follow an optimal strategy in T [j] and
will locate the target in at most λj extra steps. Otherwise, the next steps of Φ′

follow the ones of Φ.

� If li+1 − t = λj , then it implies that li+1 − t = λi (since `i+1 − t ≥ λi ≥ λj)
and that the step t of Φ was probing πi nodes in T [i]. The strategy Φ′ replaces
these πi probes by probing πj ≤ πi nodes of T [j]. If the target is located in T [j]
then the next steps of Φ′ follow an optimal strategy in T [j] and will locate the
target in at most λj − 1 extra steps. Otherwise, the next steps of Φ′ follow the
ones of Φ.

Overall, Φ′ is a strategy for locating the target in T [i+1, d∗] in at most li+1−1 steps
that probes at most k − pi+1 − 1 nodes during the �rst step. This contradicts the
fact that π(T [i+ 1, d∗]) = k − pi+1. Hence, π(T [i, d∗]) = k − pi+1 + 1.

27

• Case li+1 < λi + 1.

In this case, because of the if instruction (Line 7), the value of p is set to k and
li = λi + 1. Then, α = πi and so (if instruction on Line 10) pi = k − πi. We
will prove that λLk (T [i, d∗]) = λi and π(T [i, d∗]) = πi. By the induction hypothesis,
λLk (T [i+1, d∗]) = li+1−1 < λi and π(T [i+1, d∗]) = k−pi+1. Also, by Observation 4.7,
λLk (T [i, d∗]) ≥ λLk (T [i]) = λi.

To prove that λLk (T [i, d∗]) ≤ λi, it is su�cient to describe a strategy Φ for λLk (T [i, d∗])
with a total of at most λi steps. Let Φ′ be an optimal strategy for T [i] probing at most
πi nodes during the �rst step. Let Φ′′ be an optimal strategy for T [i+1, d∗] for locating
the target in at most li+1−1 < λi steps and probing at most π(T [i+1, d∗]) = k−pi+1

nodes during the �rst step. The �rst step of Φ probes πi nodes of T [i] (as Φ′). By
Claim 4.3, this �rst step allows to decide if the target is in T [i] or not. If it is in T [i]
then Φ follows Φ′. Otherwise, Φ executes Φ′′ in T [i+ 1, d∗].

To conclude, let us prove that π(T [i, d∗]) = πi. The previous strategy Φ shows that
π(T [i, d∗]) ≤ πi. Since λLk (T [i, d∗]) = λi, any strategy for T [i, d∗] must probe at least
πi nodes of T [i] during the �rst step by de�nition of πi. This concludes the proof.

With Lemma 4.9 in hand, we are now ready to prove that Algorithms 1 and 2 are
correct. We also prove that their running time is polynomial. More precisely, we prove
in Theorem 4.11 below that A1(k, (T, r)) computes (λLk (T), π(T)) and a corresponding k-
strategy in time O(n log n), where n is the number of nodes. To do that, Theorem 4.10
proves the correctness and the linear (in the number of children of r) time complexity of
A2(k, (T, r), (Λ,Π)).

Theorem 4.10. Let k ≥ 1 and (T, r) ∈ T be a tree rooted in r with children v1, . . . , vd∗,
such that the tuples (Λ,Π) = (λi, πi)1≤i≤d∗ are sorted in non-increasing lexicographical
ordering. Then, A2(k, (T, r), (Λ,Π)) returns (λLk (T), π(T)) and a corresponding strategy.
Furthermore, the time complexity of A2 is O(d∗) (independent of k).

Proof. The time complexity is obvious and the correctness follows from Lemma 4.9 for
i = 1. The fact that the strategy is also returned is not explicitly described in Algorithm 2
but directly follows from the proof of Lemma 4.9.

Theorem 4.11. Let k ≥ 1 and let (T, r) ∈ T be an n-node rooted tree. Then, A1(k, (T, r))
returns (λLk (T), π(T)) and a corresponding strategy. Furthermore, the time complexity of
A1 is O(n log n) (independent of k).

Proof. The correctness is simply proved by induction and by Theorem 4.10. For the time
complexity, at every recursive call on a subtree Tv rooted at v (with dv children), the
additional number of operations is O(dv log dv) (sorting) plus O(dv) (Algorithm A2, by
Theorem 4.10). Since, in any n-node tree T ,

∑
v∈V (T) dv = 2(n − 1), this gives a total

complexity of O(
∑

v∈V (T) dv log dv) = O(n log n). Again, the strategy is not explicit in our
presentation but can be easily computed.

4.3 A polynomial-time (+1)-approximation

From Algorithm A1(k, (T, r)), it is easy to get an e�cient approximation algorithm for
solving Localization in trees when k and ` are part of the input, and a polynomial time
algorithm when k is �xed.

28

Theorem 4.12. There exists an algorithm with running time O(n log n) that, given any
integer k ≥ 1 and n-node tree T , computes a k-strategy for locating a target in T in at most
λk(T) + 1 steps.

Proof. The strategy proceeds as follows. The �rst step probes any arbitrary node r of T .
Let d be the distance between r and the target, L ⊆ V (T) be the set of nodes at distance
exactly d from r, and T d be the subtree induced by r and every node on a path between
r and the nodes in L. Note that (T d, r) ∈ T and that the target is occupying a leaf of T d.
Hence, the target can be located by applying A1(k, (T

d, r)). By Theorem 4.11, this will
locate the target in at most 1 + maxd λ

L
k (T d) ≤ 1 + λk(T) steps.

Theorem 4.13. There exists an algorithm with running time O(nk+2 log n) that, given
any integer k ≥ 1 and n-node tree T , computes an optimal k-strategy for locating a target
in T in at most λk(T) steps.

Proof. The proof is similar to the one of Theorem 4.12, but instead of probing a single
node during the �rst step, we enumerate all the O(nk) possibilities for the �rst step, and,
for each of them, we then apply Algorithm A1. For one of these instances, the target will
be located within λk(T) steps.

To conclude this section, it is important to mention that both Theorems 4.12 and 4.13
also hold in the case of edge-weighted trees. Indeed, distances are only used in Claim 4.3
which clearly holds for edge-weighted trees.

5 Conclusion and further work

In this work, we have studied the computational complexity of the Localization problem.
We have established the importance of its two main parameters, namely the number k of
vertices that can be probed each step, and the number ` of steps within which the target
must be located. Namely, �xing any of these two parameters makes the problem NP-
complete. This remains true for the Relative-Localization problem as well.

We have then focused on the case of trees. For that case, we have proved that Lo-
calization remains NP-complete. However, the only source of hardness is due to the �rst
probing step as, as soon as the second step begins, an optimal way to play can be computed
in polynomial time. As a consequence, the problem, though hard, can be approximated
e�ciently.

Our results in trees leave the open question of whether determining λk(T) is FPT (in
k) in the class of trees T . Also, we do not know the complexity of determining whether
κ`(T) ≤ k for a tree T . An interesting line of research could be to study all those problems
in other graph classes, such as interval or planar graphs.

The problem of determining λrelk (T) for a tree T seems to be much more intricate even
for simple topologies. A �rst step towards a better understanding of it would be to fully
understand the centroidal dimension of paths (i.e., to determine κrel1 (P) for every path P),
which has been initiated in [9]. A more challenging direction would then be to consider
the case of all trees.

29

References

[1] Rémy Belmonte, Fedor V. Fomin, Petr A. Golovach, and M. S. Ramanujan. Metric
dimension of bounded tree-length graphs. SIAM J. Discrete Math., 31(2):1217�1243,
2017.

[2] Y. Ben-Haim, S. Gravier, A. Lobstein, and J. Moncel. Adaptive identi�cation in
graphs. Journal of Combinatorial Theory, Series A, 115(7):1114�1126, 2008.

[3] Julien Bensmail, Dorian Mazauric, Fionn Mc Inerney, Nicolas Nisse, and Stéphane
Pérennes. Sequential metric dimension. In Proceedings of the 16th Workshop on
Approximation and Online Algorithms, WAOA 2018, 2018. RR, https://hal.inria.
fr/hal-01717629.

[4] Bartlomiej Bosek, Przemyslaw Gordinowicz, Jaroslaw Grytczuk, Nicolas Nisse, Joanna
Sokól, and Malgorzata Sleszynska-Nowak. Centroidal localization game. CoRR,
abs/1711.08836, 2017.

[5] Bartlomiej Bosek, Przemyslaw Gordinowicz, Jaroslaw Grytczuk, Nicolas Nisse, Joanna
Sokól, and Malgorzata Sleszynska-Nowak. Localization game on geometric and planar
graphs. CoRR, abs/1709.05904, 2017.

[6] A. Brandt, J. Diemunsch, C. Erbes, J. LeGrand, and C. Mo�att. A robber locating
strategy for trees. Discrete Applied Mathematics, 232:99 � 106, 2017.

[7] James M. Carraher, Ilkyoo Choi, Michelle Delcourt, Lawrence H. Erickson, and Dou-
glas B. West. Locating a robber on a graph via distance queries. Theor. Comput. Sci.,
463:54�61, 2012.

[8] Josep Díaz, Olli Pottonen, Maria J. Serna, and Erik Jan van Leeuwen. Complexity of
metric dimension on planar graphs. J. Comput. Syst. Sci., 83(1):132�158, 2017.

[9] Florent Foucaud, Ralf Klasing, and Peter J. Slater. Centroidal bases in graphs. Net-
works, 64(2):96�108, 2014.

[10] Florent Foucaud, George B. Mertzios, Reza Naserasr, Aline Parreau, and Petru Vali-
cov. Identi�cation, location-domination and metric dimension on interval and permu-
tation graphs. i. bounds. Theor. Comput. Sci., 668:43�58, 2017.

[11] Florent Foucaud, George B. Mertzios, Reza Naserasr, Aline Parreau, and Petru Vali-
cov. Identi�cation, location-domination and metric dimension on interval and permu-
tation graphs. II. algorithms and complexity. Algorithmica, 78(3):914�944, 2017.

[12] M. R. Garey and D. S. Johnson. Computers and Intractability - A guide to NP-
completeness. W.H. Freeman and Company, 1979.

[13] Frank Harary and Robert A. Melter. On the metric dimension of a graph. Ars
Combinatoria, 2:191�195, 1976.

[14] Sepp Hartung and André Nichterlein. On the parameterized and approximation hard-
ness of metric dimension. In Proceedings of the 28th Conference on Computational
Complexity, CCC, pages 266�276. IEEE Computer Society, 2013.

[15] John Haslegrave, Richard A. B. Johnson, and Sebastian Koch. Locating a robber with
multiple probes. Discrete Mathematics, 341(1):184�193, 2018.

30

[16] Mark G. Karpovsky, Krishnendu Chakrabarty, and Lev B. Levitin. On a new class of
codes for identifying vertices in graphs. IEEE Trans. Information Theory, 44(2):599�
611, 1998.

[17] Suzanne M. Seager. Locating a robber on a graph. Discrete Mathematics,
312(22):3265�3269, 2012.

[18] Suzanne M. Seager. A sequential locating game on graphs. Ars Comb., 110:45�54,
2013.

[19] Suzanne M. Seager. Locating a backtracking robber on a tree. Theor. Comput. Sci.,
539:28�37, 2014.

[20] Peter J. Slater. Leaves of trees. pages 549�559. Congressus Numerantium, No. XIV,
1975.

[21] Peter J. Slater. Domination and location in acyclic graphs. Networks, 17(1):55�64,
1987.

31

