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Abstract. In the localization game, introduced by Seager in 2013, an
invisible and immobile target is hidden at some vertex of a graph G.
At every step, one vertex v of G can be probed which results in the
knowledge of the distance between v and the secret location of the target.
The objective of the game is to minimize the number of steps needed to
locate the target whatever be its location.
We address the generalization of this game where k ≥ 1 vertices can
be probed at every step. Our game also generalizes the notion of the
metric dimension of a graph. Precisely, given a graph G and two integers
k, ` ≥ 1, the Localization Problem asks whether there exists a strategy
to locate a target hidden in G in at most ` steps and probing at most k
vertices per step. We first show that this problem is NP-complete when
k (resp., `) is a fixed parameter.
Our main results concern the study of the Localization Problem in
the class of trees. We prove that this problem is NP-complete in trees
when k and ` are part of the input. On the positive side, we design a
(+1)-approximation in n-node trees, i.e., an algorithm that computes
in time O(n logn) (independent of k) a strategy to locate the target in
at most one more step than an optimal strategy. This algorithm can be
used to solve the Localization Problem in trees in polynomial-time if
k is fixed.

Keywords: Games in graphs, metric dimension, complexity.

1 Introduction

Localization (or Identification) problems consist of distinguishing the vertices of
a graph G = (V,E) using a smallest subset R ⊆ V of its vertices. Many variants
have been studied depending on how a subset of vertices allows to identify other
vertices. For instance, identifying codes [13] and locating dominating sets [18] ask
for the vertices to be distinguished by their neighbourhood in R. Another well
studied example is the one of a resolving set [10, 17] which aims at distinguishing
every vertex of a graph by their distances to each vertex of this set. Given a graph
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G, the main problem is to compute a resolving set with minimum size, called
the metric dimension of G [10, 17]. The corresponding decision problem is NP-
complete in planar graphs [6] and in graphs of diameter 2 [9], and W[2]-hard
(parameterized by the solution’s size) [11]. On the positive side, the problem is
FPT in the class of graphs with bounded treelength [1]. Bounds on the metric
dimension have also been determined for various graph classes [8]. In this paper,
we address a sequential variant of this problem.

Let us consider a graph G = (V,E) where an unknown vertex t ∈ V hosts
a hidden (invisible) and immobile target. Probing one vertex v ∈ V results in
the knowledge of the distance between t and v, denoted by dG(v, t). Probing
a set R ⊆ V of vertices results in the distance vector (dG(v, t))v∈R and a set
is a resolving set if the distance vectors are pairwise distinct for every t ∈ V .
The metric dimension of G, denoted by MD(G), is then the minimum number
of vertices that must be probed simultaneously (in one step) to determine the
location t of the target wherever it is. For instance, in the case of a path, probing
one of its ends is sufficient to locate the target, i.e., MD(P ) = 1 for every path
P . Another example (that we use throughout the paper) is the case of a star (tree
with a universal vertex) with n leaves, denoted by Sn, for which it is necessary
and sufficient to probe every leaf but one, i.e., MD(Sn) = n− 1.

If less than MD(G) vertices can be probed at once, it is natural to allow
more than one step. Obviously, if at most 1 ≤ k < MD(G) vertices can be
probed at once, it is always feasible to locate an immobile target in dMD(G)/ke
steps, simply by sequentially probing k different vertices of a smallest resolving
set at each step. However, there are graphs for which the target can be located
much faster (see Claim 8 in Appendix 5.3). In [15], Seager initiated the study
of the following sequential locating game: at every step, one vertex of a graph
can be probed, and the objective is to minimize the number of steps required
to locate the target wherever it is. Seager gave bounds and exact values on this
minimum number of steps in particular subclasses of trees (e.g., subdivisions of
caterpillars) [15]. In this paper, we study the generalization of this game where
k ≥ 1 vertices can be probed at every step.

Precisely, let k ≥ 1 be an integer and let G = (V,E) be a graph hosting an
invisible and immobile target hidden at t ∈ V . A k-strategy is allowed to probe
at most k vertices at each step of the game (where the choice of the probed
vertices at some step may obviously depend on the results of the probes during
previous steps) until the location t of the target is uniquely determined. Let
λk(G) denote the minimum integer h such that there exists a k-strategy that
locates the target in G in at most h steps, whatever be the location of the target.
Given G, k and ` ≥ 1, the Localization Problem asks whether λk(G) ≤ `. We
also consider the dual parameter κ`(G) defined as the minimum integer h such
that there exists an h-strategy that locates the target in G in at most ` steps.
Note that, for every graph G, κ1(G) is exactly the metric dimension MD(G) of
G, and λk(G) ≤ ` if and only if κ`(G) ≤ k. We are interested in the complexity
of the Localization Problem in general graphs and particularly in trees.
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1.1 Related Work

Moving target. Sequential games related to resolving sets have first been in-
troduced and mainly studied in the case of a mobile target. That is, at every
step, some vertices may be probed and, if the target has not been located yet,
it may move to one of its neighbours (sometimes, it is required that the target
cannot move to a vertex that has been probed during the previous step which
is called the “no-backtrack condition”) [14]. In this setting, locating the target
may not be feasible. For instance, it is not possible to locate a moving target
in a triangle when probing one vertex per step if the target may “backtrack”.
The question of how many times all the edges of a graph must be subdivided
to ensure locating a moving target probing 1 vertex (resp., k vertices) per step
has been addressed in [5] (resp. [12]). Let a graph be called locatable if there
exists a 1-strategy for locating the target in a finite number of steps with the
“no-backtrack condition”. The case of trees with the “no-backtrack condition”
has first been studied in [14] where it was shown that all trees T are locatable,
and in [4], the upper bound on the number of steps it takes to locate the target
in T was improved. In [16], the case of trees where the target may “backtrack”
was considered. Let ζ(G) be the minimum integer k such that there exists a
k-strategy for locating a moving target in G. In [3], it was shown that deciding
whether ζ(G) ≤ k is NP-hard and that ζ(G) is not bounded in the class of
graphs with treewidth 2. Moreover, ζ(G) ≤ 3 for any outerplanar graph G [2].

Relative distance and centroidal dimension. Foucaud et al. defined a vari-
ant of resolving sets, called centroidal basis, where the vertices of a graph must
be distinguished by their relative distance to the probed vertices [7]. In this set-
ting, given an integer k ≥ 2, probing a set B = {v1, · · · , vk} of vertices results
in the vector (δi,j(t))1≤i<j≤k where, for every 1 ≤ i < j ≤ k, δi,j(t) = 0 if
dG(t, vi) = dG(t, vj), δi,j(t) = 1 if dG(t, vi) > dG(t, vj) and δi,j(t) = −1 other-
wise. The set B is a centroidal basis if the vectors of relative distances for every
t ∈ V are pairwise distinct. The centroidal dimension of a graph G, denoted
by CD(G) ≥ 2, is the minimum size of a centroidal basis of G [7] (this is well
defined since, clearly, V is a centroidal basis of G). The decision problem asso-
ciated to the centroidal dimension is NP-complete and almost tight bounds on
the centroidal dimension of paths have been computed [7].

A sequential variant of the centroidal basis can naturally be defined. This
variant has been studied in the case of a moving target in [2].

Here, we also initiate the study of this variant when the target is immobile.
Let k ≥ 2 be an integer and G be a graph. Let λrelk (G) denote the minimum
integer h such that there exists a k-strategy that locates (using relative distances)
a hidden immobile target in G in at most h steps, whatever be the location of the
target. Given G, k, and `, the Relative-Localization Problem asks whether
λrelk (G) ≤ `. The dual parameter κrel` (G) is defined as the minimum integer h
such that there exists an h-strategy (with relative distances) that locates the
target in G in at most ` steps. Note that, for every graph G, κrel1 (G) is exactly
the centroidal dimension CD(G) of G, and λrelk (G) ≤ ` if and only if κrel` (G) ≤ k.
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1.2 Our results

In the whole paper, G denotes a connected undirected simple graph. We consider
the computational complexity of the Localization Problem. In Section 2, we
show that it is NP-complete when k or ` are fixed parameters. Precisely:

– Let k ≥ 1 be a fixed integer. Given a graph G with a universal vertex and
an integer ` ≥ 1 as inputs, the problem of deciding whether λk(G) ≤ ` is
NP-complete (Theorem 1).

– Let ` ≥ 1 be a fixed integer. Given a graph G with a universal vertex and
an integer k ≥ 1 as inputs, the problem of deciding whether κ`(G) ≤ k is
NP-complete (Theorem 3).

On the way, we also show that the Relative-Localization Problem is NP-
complete when k or ` are fixed parameters (Theorems 2 and 4).

In Section 3, we then focus on the Localization Problem in the class of
trees. Surprisingly, in trees, the complexity of the Localization Problem only
comes from the first step. We show that, after the first step, the problem becomes
polynomial-time solvable. This allows us to design a polynomial-time approxi-
mation algorithm for the problem. More precisely, we show that

– deciding whether λk(T ) ≤ ` is NP-complete in the class of trees T when
both k and ` are part of the input (Theorem 5);

– there exists an algorithm that computes, in time O(n log n) (independent of
k), a k-strategy for locating a target in at most λk(T )+1 steps in any n-node
tree (possibly edge-weighted)(Theorem 8);

– deciding whether λk(T ) ≤ ` can be solved in time O(nk+2 log n) (indepen-
dent of `) in the class of n-node trees (possibly edge-weighted) (Theorem 9).

2 Complexity of the Localization Problem

This section is devoted to prove that the Localization Problem is NP-complete
when k or ` is fixed. The proof when ` is fixed is an almost straightforward
reduction from the Metric Dimension Problem. In the case when k is fixed, it
is a much more involved reduction from the 3-dimensional matching Problem.

2.1 When the number k of probed vertices per step is fixed

Let k ≥ 1 be a fixed integer. The k-Probe Localization Problem takes a
graph G and an integer ` ≥ 1 as inputs and asks whether λk(G) ≤ `.

Theorem 1. Let k ≥ 1 be a fixed integer. The k-Probe Localization Prob-
lem is NP-complete in the class of graphs with a universal vertex.

Sketch of proof. Since any k-strategy in a graph G has length at most |V (G)|,
the problem is in NP. Let us prove it is NP-hard by a reduction from the 3-
dimensional matching Problem (3DMP) which is a well known NP-hard prob-
lem. The 3DMP takes a set X = I1∪I2∪I3 of 3n elements (|I1| = |I2| = |I3| = n)
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and a set S of triples (x, y, z) ∈ I1 × I2 × I3 as inputs and asks whether there
are n triples of S that are pairwise disjoint.

Let k ≥ 1 be a fixed integer and let I = (X ,S) be an instance of 3DMP. First,
we may assume that |X | = 3kn since, if not, it is sufficient to take k disjoint
copies of (X ,S). Moreover, we may assume that m = |S| is such that 2m−1 ≡ 0
mod k (for instance by adding dummy triples if needed). Let X = {x1, · · · , x3kn}
and S = {S1, · · · , Sm}.

Let us build the graph G = (V,E) as follows. Let the vertex-set V = X ∪
X ′′ ∪S ∪{s}∪ {q} be such that X = X1 ∪ . . .∪Xk+2 with Xi = {xi1, · · · , xi3kn}
for every 1 ≤ i ≤ k + 2; X ′′ = {x′′1 , . . . , x′′(k+2)m}; and S = S1 ∪ . . . ∪ Sk+2

with Si = {sij , 1 ≤ j ≤ m} for every i ∈ J1, k + 2K. The vertex s is universal
(i.e., adjacent to every other vertex), the vertex q is adjacent to every vertex in
X ∪X ′′ and, for every j ∈ J1, 3knK and every g ∈ J1,mK such that xj ∈ Sg, there
is an edge between xij and sig for every i ∈ J1, k+ 2K. Intuitively, Xi is a “copy”

of X and Si is a “copy” of S for every 1 ≤ i ≤ k + 2.

Let p = m(k+2)−1
k ∈ N. We prove the theorem by showing that I = (X ,S)

admits a 3DM if and only if λk(G) ≤ (k+ 2)n+ p+ 1. Due to lack of space, the
proof is postponed to Appendix 5.1. ut

The same proof also works for the case with relative distances. Hence,

Theorem 2. Let k ≥ 2 be a fixed integer. Given a graph G with a universal
vertex and 1 ≤ ` ∈ N, the problem of deciding if λrelk (G) ≤ ` is NP-complete.

2.2 When the number ` of steps is fixed

Let ` ≥ 1 be a fixed integer. The `-Step Localization Problem takes a graph
G and an integer k ≥ 1 as inputs and asks whether κ`(G) ≤ k.

Theorem 3. Let ` ≥ 1 be a fixed parameter. The `-Step Localization Prob-
lem is NP-complete in the class of graphs with a universal vertex.

Sketch of proof. For ` = 1, the result follows from the fact that κ1(G) is exactly
the metric dimension and from its NP-completeness [6].

Let ` ≥ 2 be fixed. We focus on proving the NP-hardness of the `-Step Lo-
calization Problem, as it is clearly in NP. The proof is by reduction from the
Metric Dimension Problem restricted to the class of graphs with diameter 2,
which is known to be NP-hard [9]. Let thus < G, k > be an instance of Metric
Dimension where G has diameter 2. We construct, in polynomial time, an in-
stance < G′, k > of the `-Step Localization Problem such that MD(G) ≤ k
if and only if a target hidden in G′ can be located in at most ` steps by probing
at most k vertices per step, i.e., κ`(G) ≤ k.

The construction of G′ is as follows. Start from k(` − 1) + 1 disjoint copies
G1, ..., Gk(`−1)+1 of G. Add the vertices v1, ..., vk(`−1)+1 and add all the edges
from vi to every vertex of Gi for all integers 1 ≤ i ≤ k(`− 1) + 1. Add a vertex
u to the graph, and all edges between u and each vertex of the copies of G. Due
to lack of space, the proof is postponed to Appendix 5.2. ut
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A similar proof (but based on a reduction of Centroidal Dimension) works
for the case with relative distances. Hence,

Theorem 4. Let ` ≥ 1 be a fixed integer. Given a graph G with a universal
vertex and 2 ≤ k ∈ N, the problem of deciding if κrel` (G) ≤ k is NP-complete.

3 The Localization Problem in trees

This section is devoted to the study of the Localization Problem in the class
of trees. Note that, if the number of steps is ` = 1, the problem is equivalent to
the one of Metric dimension which can trivially be solved in polynomial-time
in trees [10, 17]. We first show that, if k and ` are part of the input, deciding
whether λk(T ) ≤ ` is NP-complete in the class of trees T . Our reduction actually
shows that the difficulty of the problem comes from the choice of the vertices
to be probed during the first step. Surprisingly, we show that the first step
is actually the only source of complexity. More precisely, our main result is
that, if the first step is given (intuitively, either given by an oracle or imposed
by an adversary), then an optimal strategy (according to this first pre-defined
step) can be computed in polynomial-time. This allows us to design a (+1)-
approximation algorithm for the Localization Problem in trees and to prove
that, in contrast with general graphs (Theorem 1), the k-Probe Localization
Problem is polynomial-time solvable in the class of trees.

3.1 NP-hardness

Theorem 5. The Localization Problem is NP-complete in the class of trees.

Sketch of proof. Again, the problem is in NP. To prove the NP-hardness, let us
reduce the Hitting-Set Problem. The inputs are an integer k ≥ 1, a ground-set
B = (b1, · · · , bn) and a set S = {S1, · · · , Sm} of subsets of B, i.e., Si ⊆ B for
every i ≤ m. The Hitting-Set Problem aims at deciding if there exists a set
H ⊆ B, |H| ≤ k and H ∩ Si 6= ∅ for every 1 ≤ i ≤ m.

Adding one new element to the ground-set and adding this element to one
single subset clearly does not change the solution. Therefore, by adding some
dummy elements (each one belonging to a single subset), we may assume that
all the subsets are of the same size σ and that σ − 1 ≡ 0 mod k.

Let γ be any integer such that γ − 1 ≡ 0 mod k and γ > n− k − 1.
The instance T of the Localization Problem is built as follows. Let us start

with n vertex-disjoint paths B1, · · · , Bn (the branches) of length 2m, where
Bi = (bi1, · · · , bi2m+1) for each 1 ≤ i ≤ n. Then, let us add one new vertex c
adjacent to bi1 for all 1 ≤ i ≤ n. For every 1 ≤ j ≤ m and for every 1 ≤ i ≤ n
such that bi ∈ Sj , let us add γ new vertices adjacent to bi2j . The subgraph induced

by bi2j and by the γ leaves adjacent to it is referred to as the star representing
the element i in the set Sj (or representing the set Sj in the branch i). The
obtained tree T is depicted in Figure 1.
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Fig. 1: An example of a tree T built from an instance (k,B,S) of hitting set
in the proof of Theorem 5. In this example, the elements bi′ , bi′′ , and bn belong
to the set S1 (but not the elements b1 and bi) as figured by the three “stars”
at level 2. The elements bi and bi′′ belong to Sj (stars at level 2j), but not the
elements b1, bi′ , and bn.

Intuitively, it will always be better for the target to be located in a leaf of
some star because γ is “huge”. During the first turn of any strategy, the level
(roughly, the distance to the root) of the target can be identified. Each even level
2j corresponds to a set Sj . If, during the first turn, one star corresponding to
each even level can be eliminated from the possible locations (which corresponds
to hit every subset), then the strategy finishes one step earlier than if all subsets
cannot be hit (if so, all stars would have to be checked).

More formally, we show that λk(T ) ≤ 1 + σ−1
k + γ−1

k if and only if there is
a hitting set of size at most k. Due to lack of space, the proof is postponed to
Appendix 5.3. ut

3.2 Algorithm in trees

The proof above actually shows that, in our reduction, choosing the vertices to
be probed during the first step to ensure an optimal strategy is equivalent to
finding a minimum hitting set. We show below that the first step is actually the
only “part” of the problem that is difficult.

The key argument is the following easy remark. Let us consider a tree T
where a target is hidden and assume that a single vertex r ∈ V (T ) is probed.
After this single probe, the distance d ∈ N between the target and r is known.
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Therefore, from the second step, the instance becomes equivalent to a tree T ′ (a
subtree of T ) rooted in r, with all leaves the same distance d from r, and where
the target is known to occupy some leaf of T ′. We first present an algorithm that
computes in polynomial-time (independent of k and `) an optimal strategy to
locate the target in such instances.

Let T be the set of rooted trees with all leaves the same distance from the
root. Given a rooted tree (T, r) ∈ T (in what follows, we omit r when it is clear
from the context), let λLk (T ) be the minimum integer h such that there exists
a k-strategy that locates a target in at most h steps knowing a priori that the
target occupies some leaf of T . The next claim is one of the key arguments that
makes the problem easier in the class T when the target is known to occupy a
leaf.

Claim 1 Let (T, r) ∈ T rooted in r, let v be a child of r and Tv the subtree rooted
in v. If the target is known to occupy a leaf of T , then probing any vertex in Tv
allows to learn if the target occupies a leaf of Tv or a leaf of T \ Tv.

Proof of claim. Let d be the distance between r and the leaves of T . Let w be
any vertex of Tv and let d′ be the distance between w and r. The target occupies
a leaf of Tv if and only if its distance to w is < d+ d′. �

Let T ∈ T rooted in r, let v be a child of r and let us assume that the secret
location of the target is some leaf of Tv. Note that (Tv, v) ∈ T . Let us assume
that Tv is not a path and let s be the first step of φ that probes some vertex of
Tv (such a step s must exist since otherwise the target would never be detected
in Tv). By Claim 1, it is sufficient to probe a single vertex of Tv to learn that the
target occupies a leaf of Tv. Then, applying an optimal strategy φv in Tv will
locate the target in a total of at most s+ λLk (Tv) steps. But it may be possible
to do better. Indeed, probing several vertices of Tv during the sth step of φ may
serve not only to detect the target in Tv but also to “play” the first step of
φv. Doing so, the strategy will take only s + λLk (Tv) − 1 steps. So, elaborating,
an optimal strategy will consist of doing a tradeoff between probing one single
vertex in a subtree (and detect “quickly” in which subtree the target is hidden
since several subtrees are considered simultaneously) and probing more vertices
in a subtree in order to get a head start for the strategy in the case the target
is in this subtree.

For any tree T , let π(T ) be the minimum integer q such that there exists a
k-strategy that locates a target in at most λLk (T ) steps, knowing a priori that
the target occupies some leaf of T , and such that at most q vertices are probed
during the first step.

To illustrate the need of a tradeoff, let us consider the following simple exam-
ple utilizing π. Consider two children v1 and v2 of r such that (λLk (Tv1), π(Tv1)) =
(6, 4) and (λLk (Tv2), π(Tv2)) = (6, 3). Let k = 6. Then, at the first step, we can-
not probe π(Tv1) + π(Tv2) = 7 vertices. W.l.o.g., let us assume that at most
3 < π(Tv1) vertices of Tv1 have been probed during the first step. Thus, by defi-
nition of π, a total of λLk (Tv1) + 1 = 7 steps are necessary if we learn at the first
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Algorithm 1 A1(k, (T, r)).

Require: An integer k and a tree T ∈ T rooted in r with children v1, · · · , vd∗
Ensure: (λL

k (T ), π(T ))
1: if (T, r) is a rooted path then
2: return (0, 0)
3: for i = 1 to d∗ do
4: Let (λi, πi) = A1(k, (T [i], vi)
5: Sort the (λi, πi)1≤i≤d∗ in non-increasing lexicographical order
6: return A2(k, (T, r), (λi, πi)1≤i≤d∗)

step that the target occupies some leaf of Tv1 . For a more detailed example of a
strategy in a tree, see the example in Appendix 5.4.

Let T ∈ T rooted in r and let v1, . . . , vd∗ be the children of r. From previous
arguments, the computation of an optimal strategy for T consists of determining,
for each subtree Tvi (1 ≤ i ≤ d∗), the first step for which a vertex of Tvi will be
probed (if the target has not been located in a different subtree at a previous
step). If 1 vertex is probed during this step, then λLk (Tvi) extra steps are needed
if the target occupies some leaf of Tvi . Furthermore, if we want to locate the
target in at most λLk (Tvi) − 1 extra steps (if the target occupies some leaf of
Tvi), π(Tvi) vertices of Tvi must be probed during this step.

Description of Algorithm 1. The main algorithm A1(k, (T, r)) takes an in-
teger k ≥ 1 and a rooted tree (T, r) ∈ T as inputs and computes (λLk (T ), π(T ))
and a corresponding k-strategy. It proceeds bottom-up by dynamic program-
ming from the leaves to the root. Precisely, let v1, . . . , vd∗ be the children of
r. For any 1 ≤ i ≤ j ≤ d∗, let T [i] = Tvi be the subtree rooted at vi, and
let T [i, j] = {r} ∪ Tvi ∪ . . . ∪ Tvj (T [i, j] = ∅ if i > j). To lighten the nota-
tions, let us set λi = λLk (T [i]) and πi = π(T [i]) for every 1 ≤ i ≤ d∗. Assume
that, (Λ,Π) = (λi, πi)1≤i≤d∗ have been computed recursively and sorted in non-
increasing lexicographical order. Then, A2(k, (T, r), (Λ,Π)), described in Algo-
rithm 2, takes the integer k ≥ 1, the rooted tree (T, r) ∈ T , and the sorted tuple
(Λ,Π) as inputs and computes (λLk (T ), π(T )) and a corresponding strategy.

Description of Algorithm 2. We now informally describeA2(k, (T, r), (Λ,Π)).
First, Line 2 to Line 5 deals with the subtrees Tvd+1

, · · · , Tv∗d that are rooted
paths (path rooted at one of its vertices of degree one, the other vertex is the
leaf). In other words, it concerns all the subtrees Tvi such that (λi, πi) = (0, 0).
Indeed, this case is somehow pathologic. Claim 2 proves that Line 2 to Line 5
computes (λLk (T [vd+1, d

∗]), π(T [vd+1, d
∗])). Let us define S ⊂ T as the set of

subdivided stars S (i.e., trees with at most one vertex of degree at least 3) with
all leaves the same distance from the root, where the root of S is the (unique)
vertex with degree > 2 or one of the two ends if S is a path. Due to lack of
space, the proof of Claim 2 is postponed to Appendix 5.4.

Claim 2 Let S ∈ S with δ = |V (S)|−1 (i.e., δ is the degree of the root r). Then,
λLk (S) = d δ−1k e and π(S) = −k(d δ−1k e − d

δ−1
δ e) + (δ − 1).
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Algorithm 2 A2(k, (T, r), (Λ,Π)).

Require: k ∈ N∗, a rooted tree (T, r) with v1, · · · , vd∗ the children of r such that
(Λ,Π) = (λi, πi)1≤i≤d∗ is sorted in non-increasing lexicographical order.

1: l← 1, p← k, d← d∗

2: if T [d∗] is a rooted path then
3: d← z with 0 ≤ z < d∗ the smallest integer such that T [z + 1] is a rooted path
4: l← 1 + d d

∗−d−1
k
e

5: p← k + k(d d
∗−d−1

k
e − d d

∗−d−1
d∗−d

e)− (d∗ − d− 1)
6: for i = d down to 1 do
7: if p = 0 or l < λi + 1 then
8: p← k, l← max(l + 1, λi + 1)
9: α← πi − (πi − 1)d(l − (λi + 1))/le

10: if α ≤ p then
11: p← p− α
12: else
13: p← k − 1, l← l + 1
14: return (l − 1, k − p)

We are now able to detail the second part of the algorithm (from Line 6).
Informally, A2(k, (T, r), (Λ,Π)) recursively builds, for i = d down to 1, an
optimal k-strategy φ for T [i, d∗] from an optimal k-strategy φ′ of T [i + 1, d∗]
and from an optimal k-strategy φ′′ of T [i] (the latter one being given as input
through (λi, πi)). In other words, (λLk (T [i, d∗]), π(T [i, d∗])) is computed from
(λLk (T [i + 1, d∗]), π(T [i + 1, d∗])) and (λi, πi). For every 1 ≤ i ≤ d + 1, let li
(resp., pi) denote the value of l (resp. of p) just before the (d+ 2− i)th iteration
of the for-loop (so, l1 and p1 are the final values of l and p). Intuitively, let us
assume that an optimal strategy for T [i + 1, d∗] has been computed, takes at
most li+1 − 1 steps and requires k− pi+1 = π(T [i+ 1, d∗]) vertices to be probed
during its first step. Roughly, there are five cases to be considered.

– If πi ≤ pi+1 and λi = li+1 − 1, the strategy φ follows φ′ but, in addition,
probes πi vertices of T [i] during its first step. If the target is in T [i], then
φ follows φ′′ (and takes a total of at most λi steps), otherwise, it proceeds
as φ′ (and takes a total of at most li+1 − 1 steps). We get li = li+1 and
pi = pi+1 − πi.

– Else if πi > pi+1 > 0 and λi = li+1 − 1, the first step of φ probes a unique
vertex in T [i]. If the target is in T [i], then φ follows φ′′ (and takes a total of
at most λi + 1 steps). Otherwise, it proceeds as φ′ (and takes a total of at
most li+1 steps). We get li = li+1 + 1 and pi = k − 1.

– Else, if pi+1 = 0 and λi ≤ li+1− 1, the first step of φ probes a unique vertex
in T [i]. If the target is in T [i], then φ follows φ′′ (and takes a total of at most
λi + 1 steps). Otherwise, it proceeds as φ′ (and takes a total of at most li+1

steps). We get li = li+1 + 1 and pi = k − 1.
– Else, if λi < li+1−1 and pi+1 > 0, the strategy φ follows φ′ but, in addition,

probes one vertex of T [i] during its first step. If the target is in T [i], then φ
follows φ′′ (and takes a total of at most λi + 1 steps), otherwise, it proceeds
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as φ′ (and takes a total of at most li+1 − 1 steps). We get li = li+1 and
pi = pi+1 − 1.

– Else (λi > li+1− 1), the strategy φ probes πi vertices in T [i] during the first
step. If the target is in T [i], then φ follows φ′′ (and takes a total of at most λi
steps), otherwise, it proceeds as φ′ (and takes a total of at most li+1 steps).
We get li = λi + 1 and pi = k − πi.

As the subtrees are sorted in non-increasing lexicographical order (of (λi, πi)),
we prove in Lemma 1 that the strategy φ described before is optimal for T [i, d∗],
that is, it computes (λLk (T [i, d∗]), π(T [i, d∗])). Due to lack of space, the proof of
this main technical lemma is postponed to Appendix 5.4.

Lemma 1. For every 1 ≤ i ≤ d+1, λLk (T [i, d∗]) = li−1 and π(T [i, d∗]) = k−pi.

Correctness and complexity of Algorithm 1 and Algorithm 2. We prove
in Theorem 7 that A1(k, (T, r)) computes (λLk (T ), π(T )) and a corresponding
k-strategy in time O(n log n), where n is the number of vertices. To do that,
Theorem 6 proves the correctness and the linear (in the number of children of
r) time complexity of A2(k, (T, r), (Λ,Π)).

Theorem 6. Let k ≥ 1, let (T, r) ∈ T be a rooted tree, and let v1, · · · , vd∗
be the children of r such that the tuples (Λ,Π) = (λi, πi)1≤i≤d∗ are sorted
in non-increasing lexicographical ordering. Then, A2(k, (T, r), (Λ,Π)) returns
(λLk (T ), π(T )) and a corresponding strategy. Furthermore, the time-complexity
of A2 is O(d∗) (independent of k).

Proof. The time-complexity is obvious and the correctness follows from Lemma 1
for i = 1. The fact that the strategy is also returned is not explicitly described
in Algorithm 2 but directly follows from the proof of Lemma 1. ut

Theorem 7. Let k ≥ 1, and let (T, r) ∈ T be an n-node rooted tree. Then,
A1(k, (T, r)) returns (λLk (T ), π(T )) and a corresponding strategy. Furthermore,
the time-complexity of A1 is O(n log n) (independent of k).

Proof. The correctness is simply proved by induction and by Theorem 6. For
the time-complexity, at every recursive call on a subtree Tv rooted at v (with
dv children), the additional number of operations is O(dv log dv) (sorting) plus
O(dv) (Algorithm A2, by Theorem 6). Since in a tree,

∑
v∈V (T ) dv = 2(n − 1),

this gives a total complexity of O(
∑
v∈V (T ) dv log dv) = O(n log n). Again, the

strategy is not explicit in our presentation but can be easily computed. ut

Main results. From A1(k, (T, r)) presented before, it is easy to get an efficient
approximation algorithm when k and ` are part of the input and a polynomial-
time algorithm when k is fixed.

Theorem 8. There exists an algorithm that, given any integer k ≥ 1 and any n-
node tree T , computes a k-strategy that locates a target in T in at most λk(T )+1
steps. Furthermore, the time-complexity of the algorithm is O(n log n),
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Proof. The strategy proceeds as follows. The first step probes any arbitrary
vertex r of T . Let d be the distance between r and the target, let L ⊆ V (T )
be the set of vertices at distance exactly d from r, and let T d be the subtree
induced by r and every vertex on a path between r and the vertices in L. Note
that (T d, r) ∈ T and that the target is occupying a leaf of T d. Hence, it is
sufficient to apply A1(k, (T d, r)).

By Theorem 7, the above strategy will locate the target in at most 1 +
maxd λ

L
k (T d) ≤ 1 + λk(T ) steps (by Claim 10). ut

Theorem 9. There exists an algorithm that, given any integer k ≥ 1 and any n-
node tree T , computes an optimal k-strategy for locating a target in T in at most
λk(T ) steps. Furthermore, the time-complexity of the algorithm is O(nk+2 log n).

Proof. The proof is similar to the one of the previous theorem, but instead
of probing a single vertex during the first step, we enumerate all the O(nk)
possibilities for the first step and enumerate each answer among the n possible.

ut

To conclude this section, it is important to mention that both Theorems 8
and 9 also hold in the case of edge-weighted trees. Indeed, distances are only
used in Claim 1 which clearly holds for edge-weighted trees.

4 Further Work

Our results in trees leave the open question of whether λk(T ) is Fixed Parameter
Tractable (in k) in the class of n-node trees T . Moreover, it would be interest-
ing to study the localization Problem in other graph classes such as interval
graphs and planar graphs. Also, what is the complexity of the `-step Local-
ization Problem in trees?

The relative-localization Problem seems to be much more intricate even
for simple topologies. A first step towards a better understanding of this problem
would be to fully solve it in the case of paths (i.e., to determine κrel1 (P ) for every
path P ), which has been partially solved in [7], before studying it in the class of
trees.
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5 Appendix

Notation. In the whole paper, G = (V,E) denotes a connected undirected
simple graph. For any v, u ∈ V , NG(v) denotes the set of neighbours of v and
dG(u, v) denotes the distance between u and v in G. A k-strategy is a localiza-
tion strategy that probes at most k vertices per step. After the sth step of a
localization strategy, Hs ⊆ V is the set of vertices that may still host the target.
Unless stated otherwise, H0 = V .

5.1 Proofs of Theorem 1 and Theorem 2

Theorem 1. Let k ≥ 1 be a fixed integer. The k-Probe Localization Prob-
lem is NP-complete in the class of graphs with a universal vertex.

Proof. Since any k-strategy in a graph G has length at most |V (G)|, the problem
is in NP. Let us prove it is NP-hard by a reduction from the 3-dimensional
matching Problem (3DMP) which is a well known NP-hard problem. The
3DMP takes a set X = I1 ∪ I2 ∪ I3 of 3n elements (|I1| = |I2| = |I3| = n)
and a set S of triples (x, y, z) ∈ I1 × I2 × I3 as inputs and asks whether there
are n triples of S that are pairwise disjoint.

Let k ≥ 1 be a fixed integer and let I = (X ,S) be an instance of 3DMP. First,
we may assume that |X | = 3kn since, if not, it is sufficient to take k disjoint
copies of (X ,S). Moreover, we may assume that m = |S| is such that 2m−1 ≡ 0
mod k (for instance by adding dummy triples if needed). Let X = {x1, · · · , x3kn}
and S = {S1, · · · , Sm}.

Let us build the graph G = (V,E) as follows.

– X = X1 ∪ . . .∪Xk+2 with Xi = {xi1, · · · , xi3kn} for every i ≤ k+ 2. Each of
the vertices xij , for i ∈ J1, k + 2K, represents the element xj , for j ≤ 3kn;

– X ′′ = {x′′1 , . . . , x′′(k+2)m};
– S = S1 ∪ . . .∪ Sk+2 with Si = {sij , 1 ≤ j ≤ m} for every i ∈ J1, k+ 2K. Each

of the vertices sij , for i ∈ J1, k + 2K, represents the element Sj , for j ≤ 3kn;

The set of edges is defined as follows.

– There is an edge between s and every vertex of V \ {s}.
– There is an edge between q and every vertex of X ∪X ′′.
– For every j ∈ J1, 3knK and every g ∈ J1,mK such that xj ∈ Sg, there is an

edge between xij and sig for every i ∈ J1, k + 2K.

The graph G is depicted in Figure 2.

Let p = m(k+2)−1
k ∈ N. We prove the theorem by showing that I = (X ,S)

admits a 3DM if and only if λk(G) ≤ (k + 2)n+ p+ 1.

Claim 3 If I admits a 3DM, then λk(G) ≤ (k + 2)n+ p+ 1.

14



X’’x’’1 x’’(k+2)m

x1
1 x2

1 x3
1 x3kn

1

S1

X1 x1
i x2

i x3
i x3kn

i

Xi x1
k+2 x2

k+2 x 3
k+2 x3kn

k+2

Xk+2

s (universal vertex)

Si Sk+2

stable set

stable setstable setstable set

stable set stable set stable set

q

Fig. 2: Graph G constructed from an instance of 3DMP for proof of Theorem 1.
A thin line between one vertex (blue circle) and one rectangle represents all
edges between this vertex and every vertex in the rectangle. The instance of the
3DMP is encoded in the edges between the vertices in Si (representing the sets)
and the vertices in Xi, for every i ≤ k + 1.

Proof of claim. Let Y ⊆ S be a 3DM of I = (X ,S) (of size |Y | = kn). Up to
renumbering the sets and the elements, let us assume that Y = {S1, S2, . . . , Skn}
and assume that Si = {x3(i−1)+1, x3(i−1)+2, x3(i−1)+3} for every i ∈ J1, knK. Note
that, because Y is a 3DM of size kn,

⋃
1≤i≤kn Si = X (i.e., all elements are

covered).

In the following, we describe a k-strategy Φ that locates the target in G in
at most (k + 2)n+ p+ 1 steps.

The first step of Φ consists of probing only the vertex q. Three cases may
occur. Either H1 = {q} in which case the target is located. Or the target is at
distance 2 from q, i.e., H1 = S, in which case, Φ sequentially probes every vertex
of S but one until the target is located, which takes at most p extra steps. Or
the target is at distance 1 from q and H1 = X ∪X ′′ ∪ {s}.

Hence, we may assume that H1 = X ∪X ′′ ∪ {s}. In this case, Φ proceeds by
phases of at most n steps each. There will be at most k + 2 phases. Intuitively,
during Phase i ≤ k + 2, the strategy Φ probes vertices in Si in such a way that
either the target is detected at one of the vertices of Xi, or at the end of the
phase, the target is known not to be in Xi.

Let us assume by induction on 1 ≤ i ≤ k + 2 and 1 ≤ j ≤ n that, before
the jth step of Phase i, if the target has not been located yet, the set of possible
locations for the target is

H1+(i−1)n+j−1 = σ ∪X ′′ ∪ {xi3k(j−1)+1, · · · , x
i
3kn} ∪ (

⋃
i<y≤k+2

Xy),
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where σ = {s} if i = j = 1 (or possibly, in the case k = 1, if i = 1 and j = 2),
and σ = ∅ otherwise.

This holds for i = j = 1. Then, the strategy Φ consists of probing the vertices
Pi,j = {sik(j−1)+1, · · · , s

i
kj}. There are three cases to be considered. Before going

into the details of the cases, recall that the sets Sk(j−1)+1, · · · , Skj belong to
the 3DM Y and so are pairwise disjoint. Hence, by construction of G, for every
a, b ∈ Pi,j , (NG(a) ∩Xi) ∩ (NG(b) ∩Xi) = ∅.

– Either, all vertices of Pi,j are at distance one from the target. In this case,
the target is located at s (this case may only happen for i = j = 1 or,
possibly, i = 1 and j = 2 in the case k = 1).

– Or exactly one vertex, say sik(j−1)+x for 1 ≤ x ≤ k, of Pi,j is at distance one

from the target. Let y = k(j − 1) + x. In this case, the target must be occu-
pying a vertex of xi3(y−1)+1, x

i
3(y−1)+2, x

i
3(y−1)+3 (the vertices corresponding

to the elements that are contained in Sy).

The strategy Φ probes two of these vertices, until the target is located in at
most 2 extra steps. Therefore, in this case, the target is located in at most
1 + (i− 1)n+ j + 2 ≤ (k + 2)n+ p+ 1 steps (since i ≤ k + 2 and j ≤ n).

– The last case is when all the vertices of Pi,j are at distance 2 from the
target. In this latter case, it means that the target cannot occupy a vertex
in U = {s} ∪ {xi3k(j−1)+1, · · · , x

i
3kj}. And so, if j < n, then H1+(i−1)n+j =

H1+(i−1)n+j−1 \ U = X ′′ ∪ {xi3kj+1, · · · , xi3kn} ∪ (
⋃
i<y≤k+2X

y), hence the
induction hypothesis holds for j + 1.

To conclude, if j = n, H1+in = H1+(i−1)n+n−1 \U = X ′′∪ (
⋃
i+1<y≤k+2X

y)
and the induction hypothesis holds for i + 1 and j = 1. In this case, the
Phase i+ 1 starts if i+ 1 ≤ k + 2.

After the nth step of Phase k+ 2, we get that H1+(k+2)n = X ′′. The strategy
Φ ends by sequentially probing every vertex of X ′′ but one. So the target can be
located in at most p extra steps. Therefore, λk(G) ≤ (k + 2)n+ p+ 1. �

Claim 4 If every 3DM of I has size < kn, then λk(G) > (k + 2)n+ p+ 1.

Proof of claim. Let us assume that every 3DM of I has size < kn. We show that
every k-strategy needs at least (k+2)n+p+2 steps to guarantee the localization
of the target.

To avoid technicality, let us assume that H0 = X ∪ X ′′, i.e., the target is
known a priori to occupy a vertex in X ∪ X ′′. We show that even with this
extra assumption (that is not favourable for the target), every k-strategy needs
at least (k + 2)n+ p+ 2 steps to guarantee the localization of the target.

Let Φ be any k-strategy. First, let us note that, since H0 = X ∪X ′′ and both
q and s are universal for X ∪ X ′′, then probing q or s does not bring further
information. Therefore, we may assume that Φ never probes q nor s.

Let us precisely describe the effect of probing one vertex depending on
whether it is in X,X ′′ or S.
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1. Let u ∈ X ′′. Note that, for every z ∈ X ∪X ′′ \ {u}, dG(u, z) = 2. Therefore,
probing u only determines if the target is on u or not, and gives no further
information. We say that probing u only allows to remove u from the set of
possible locations.

2. Let u ∈ Xi for any i ≤ k + 2. Note that, for every z ∈ X ∪ X ′′ \ {u},
dG(u, z) = 2. Therefore, similarly, probing u only allows to remove u from
the set of possible locations.

3. Let u ∈ Si for any i ≤ k + 2. Let {x, y, z} = NG(u) ∩ Xi, i.e., x, y, and
z are the vertices corresponding to the elements contained in the set that
corresponds to u. For every z ∈ X ∪X ′′ \ {x, y, z}, dG(u, z) = 2. Therefore,
probing u only allows to remove at most 3 vertices, namely x, y, z, from the
set of possible locations.

4. More generally, for any Z ⊆ Si with |Z| < kn. Probing all vertices of Z
allows to remove NG(Z) ∩ Xi, i.e., at most 3|Z| vertices from the set of
possible locations of the target.

5. Finally, let Z ⊆ Si with |Z| = kn. Because I has no 3DM of size kn, there
must be at least two vertices of Z whose neighbourhoods intersect in Xi.
That is, |NG(Z)∩Xi| ≤ 3kn− 1. Probing all vertices of Z allows to remove
at most 3kn− 1 vertices from the set of possible locations of the target.

Let P ⊆ X ∪X ′′ ∪ S be the set of all vertices that have been probed during
the (k + 2)n + p + 1 first steps of Φ. We will show that, at this point, the set
of possible locations for the target still contains at least two vertices and so an
extra step is required.

For every 0 ≤ j ≤ kn, let αj be the number of sets Si that contain exactly
kn− j vertices of P . Formally, αj = |{i | 1 ≤ i ≤ k + 2, |Si ∩ P | = kn− j}|. For
every kn < j ≤ m, let αj be the number of sets Si whose exactly j vertices have
been probed, i.e., αj = |{i | 1 ≤ i ≤ k + 2, |Si ∩ P | = j}|. By definition, since
|Si| = m for every i ≤ k + 2: ∑

0≤j≤m

αj = k + 2. (1)

Let y = |X ∩ P | be the total number of vertices probed in X and let x′′ =
|X ′′∩P | be the total number of vertices probed in X ′′. By definition of y, x′′, and
the α’s, the total number ρ of vertices that have been probed after (k+2)n+p+1
steps satisfies:

ρ = y + x′′ +
∑

kn<j≤m

jαj +
∑

0≤j≤kn

(kn− j)αj . (2)

Moreover, since at most k vertices can be probed each step:

ρ ≤ k[(k + 2)n+ p+ 1] (3)

Note that, by Item (1) above, if x′′ ≤ (k+ 2)m−2, then at least two vertices
have not been probed and, therefore, are still potential locations for the target
(as noticed above, a vertex of X ′′ can be removed from potential locations only
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by being probed). In such a case, another step would be needed to ensure the
localization. Therefore, we may assume that x′′ ∈ {(k + 2)m− 1; (k + 2)m}.

Let us assume that x′′ = (k + 2)m (below, we point out the few differences
in the case x′′ = (k+ 2)m−1). In that case, all vertices in X ′′ are removed from
the possible locations of the target that must be in X.

Let 0 < j ≤ kn and let i ≤ k+2 such that kn−j vertices have been probed in
Si. By item (4) above, the probes of the vertices in Si remove at most 3(kn− j)
vertices of Xi (and no other vertices) from the possible locations of the target.
In other words, it leaves at least 3j vertices of Xi as possible locations for the
target. Let i ≤ k + 2 such that kn vertices have been probed in Si. By item (5)
above, the probes of the vertices in Si remove at most 3kn − 1 vertices of Xi

(and no other vertices) from the possible locations of the target. In other words,
it leaves at least 1 vertex of Xi as a possible location for the target.

Summing over all j ∈ J0, knK, the vertices probed in S leave at least α0 +∑
1≤j≤kn

3jαj vertices of X as possible locations for the target. To ensure the

detection of the target without more steps, only one vertex of X must remain
as a possible location (in the case when x′′ = (k + 2)m − 1, i.e., one vertex of
X ′′ is still a possible location, then no vertex of X must remain possible). Since,
by item (2) above, only the vertices y probed in X may allow removing further
vertices from the set of possible locations, it follows that:

y + 1 ≥ α0 +
∑

1≤j≤kn

3jαj , (4)

(in the case x′′ = (k + 2)m− 1, it becomes y ≥ α0 +
∑

1≤j≤kn
3jαj).

We are now ready to show that the above equations lead to a contradiction,
proving that an extra step is required. For this purpose, let us consider again the
total number ρ of vertices that have been probed during the first (k+2)n+p+1
steps.

ρ = y + x′′ +
∑

kn<j≤m
jαj +

∑
0≤j≤kn

(kn− j)αj (Equation 2)

= y + x′′ +
∑

kn+1≤j≤m
(j − kn)αj + kn

∑
0≤j≤m

αj −
∑

0≤j≤kn
jαj

= y + x′′ +
∑

kn+1≤j≤m
(j − kn)αj + kn(k + 2)−

∑
0≤j≤kn

jαj (Equation 1)

= y + (k + 2)m+
∑

kn+1≤j≤m
(j − kn)αj + kn(k + 2)−

∑
0≤j≤kn

jαj

(if x′′ = (k + 2)m)

≥ α0+
∑

1≤j≤kn
3jαj−1+(k+2)m+

∑
kn+1≤j≤m

(j−kn)αj+kn(k+2)−
∑

0≤j≤kn
jαj

( Equation 4) (if x′′ = (k + 2)m)

= α0 +
∑

1≤j≤kn
3jαj + pk +

∑
kn+1≤j≤m

(j − kn)αj + kn(k + 2)−
∑

0≤j≤kn
jαj

(by definition of p)
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= k[n(k + 2) + p+ 1] +
∑

kn+1≤j≤m
(j − kn)αj + α0 +

∑
1≤j≤kn

2jαj − k

=
k[n(k+2)+p+1]+2(k+2)−2

∑
0≤j≤m

αj+
∑

kn+1≤j≤m
(j−kn)αj+α0+

∑
1≤j≤kn

2jαj−k

(Equation 1)

= k[n(k + 2) + p+ 1] + 4 +
∑

kn+1≤j≤m
(j − kn)αj − 2

∑
kn+1≤j≤m

αj − α0 +∑
1≤j≤kn

2(j − 1)αj + k

= k[n(k + 2) + p+ 1] + 4 +
∑

kn+2≤j≤m
(j − kn− 1)αj −

∑
kn+1≤j≤m

αj − α0 +∑
1≤j≤kn

2(j − 1)αj + k

≥ k[n(k + 2) + p+ 1] + 4 + k − α0 −
∑

kn+1≤j≤m
αj

ρ ≥ k[n(k + 2) + p+ 1] + 2 (Equation 1)

This contradicts Eq. 3 and concludes the proof. � ut

Theorem 2. Let k ≥ 2 be a fixed integer. Given a graph G with a universal
vertex and an integer ` ≥ 1, the problem of deciding whether λrelk (G) ≤ ` is
NP-complete.

Proof. The proof is exactly the same as for Theorem 1, but the strategy designed
in Claim 3 starts by probing both s and q (instead of only q). Moreover, in this
strategy, if the target is in S ∪ {s}, the localization may require one more step
than for the case with exact distances (but the claim still holds). ut

5.2 Proofs of Theorem 3 and Theorem 4

Theorem 3. Let ` ≥ 1 be a fixed parameter. The `-Step Localization Prob-
lem is NP-complete in the class of graphs with a universal vertex.

Proof. For ` = 1, the result follows from the fact that κ1(G) is exactly the metric
dimension and from its NP-completeness [6].

Let ` ≥ 2 be fixed. We focus on proving the NP-hardness of the `-Step Lo-
calization Problem, as it is clearly in NP. The proof is by reduction from the
Metric Dimension Problem restricted to the class of graphs with diameter 2,
which is known to be NP-hard [9]. Let thus < G, k > be an instance of Metric
Dimension where G has diameter 2. We construct, in polynomial time, an in-
stance < G′, k > of the `-Step Localization Problem such that MD(G) ≤ k
if and only if a target hidden in G′ can be located in at most ` steps, by probing
at most k vertices per step, i.e., κ`(G) ≤ k.

The construction of G′ is as follows. Start from k(` − 1) + 1 disjoint copies
G1, ..., Gk(`−1)+1 of G. Add the vertices v1, ..., vk(`−1)+1 and add all the edges
from vi to every vertex of Gi for all integers 1 ≤ i ≤ k(`− 1) + 1. Add a vertex
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u to the graph, and all edges between u and each vertex of the copies of G. The
resulting graph is G′. We will need the following claim.

Claim 5 For some 1 ≤ a ≤ k(`−1)+1, if the target is known to occupy a vertex
of Ga, then probing a vertex w ∈ V (G′ \Ga) does not remove any vertices in Ga
as possible locations for the target.

Proof of claim. u and va are universal to Ga and therefore, all vertices of Ga are
the same distance from u and va, and every shortest path from w to a vertex of
Ga includes either va or u and thus, any vertices of Ga cannot be distinguished
by their distance to w. �

Let us show that MD(G) ≤ k if and only if κ`(G) ≤ k.

– First let us assume that MD(G) ≤ k, we show that κ`(G
′) ≤ k. On step s

for 1 ≤ s ≤ `− 1, let us probe the vertices {v(s−1)k+1, · · · , vsk}. If the target
is at some vertex, say vi, probed at this step, then it is located immediately.
If the target is at distance 1 from such a probed vertex vi, then it occupies a
vertex in the corresponding Gi. Note that, because G has diameter 2, then
each of its copies Gi is an isometric subgraph of G′. Hence, any resolving
set of size k of G (it exists since MD(G) ≤ k) is also a resolving set for the
vertices of Gi in G′. Probing such a resolving set in Gi allows to locate the
target during the next step s+ 1.
If the target is at distance 2 of all vis, then it is located at u.
If on turn ` − 1, the target is at distance 4 from the probed vertices, then
it is located at vk(`−1)+1. Otherwise, it is in Gk(`−1)+1 and can be located
next turn since we have assumed that MD(G) ≤ k and each Gi is isometric
in G′.

– Now we prove the other direction, that is, we show that MD(G) > k implies
that κ`(G

′) > k.
Since there are k(`− 1) + 1 copies of Gi and only k(`− 1) probes may occur
in the first ` − 1 steps, then on the last step, regardless of strategy, there
will always exist a copy, say Ga for some 1 ≤ a ≤ k(` − 1) + 1, for which
no vertices in Ga have been probed. If the target is hidden in Ga, then by
Claim 5, all the vertices of Ga are still potential locations for the target.
The last step is not sufficient to locate a target hidden in Ga since probing
a vertex w ∈ V (G′ \ Ga) is useless by Claim 5, Ga is isometric in G′, and
MD(Ga) > k. Hence, κ`(G

′) > k. ut

Theorem 4. Let ` ≥ 1 be a fixed integer. Given a graph G with a universal
vertex and 2 ≤ k ∈ N, the problem of deciding if κrel` (G) ≤ k is NP-complete.

Proof. For ` = 1, the result follows from the fact that κrel1 (G) is exactly the
centroidal dimension and from its NP-completeness [7].

Let ` ≥ 2 be fixed. The problem is clearly in NP. To prove the NP-hardness,
let us reduce the Centroidal Dimension Problem restricted to the class of
graphs with diameter 2 that contain a universal vertex, which is known to be
NP-hard [7]. Let thus < G, k > be an instance of Centroidal Dimension where
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G has diameter 2 and contains a universal vertex. We construct, in polynomial
time, an instance < G′, k > of our problem such that CD(G) ≤ k if and only if
a target hidden in G′ can be located in at most ` steps, by probing at most k
vertices per step, i.e., κrel` (G) ≤ k.

The construction of G′ is as follows. Start from k(` − 1) + 1 disjoint copies
G1, ..., Gk(`−1)+1 of G. Let v be a universal vertex of G, and for 1 ≤ i ≤ k(` −
1) + 1, let vi denote the copy of v in Gi. Add all the edges so that vk(`−1)+1 is
a universal vertex in G′. The resulting graph is G′.

Claim 6 Let 1 ≤ a ≤ k(l − 1) + 1 and assume that the target is known to be
in Ga, and all the vertices of Ga remain as possible positions for the target. if
CD(G) > k, then probing k vertices is insufficient to locate the target in one
step.

Proof of claim. Assume k vertices are probed in Ga. Since CD(Ga) > k and Ga
is an isometric subgraph of G′, there exist at least two vertices y1, y2 ∈ Ga that
cannot be distinguished based on the information received. That is, the distance
orderings of the k probed vertices to y1 and y2 are identical. If any number of
the k vertices probed in Ga had instead been replaced by vertices in G′ \ Ga,
then the distance orderings of the k probed vertices to y1 and y2 may change but
they would still be identical to one another since vk(`−1)+1 is a universal vertex
(and thus, distance 1 from both y1 and y2) and a cut vertex which separates all
the copies of Gi for all 1 ≤ i ≤ k(`− 1) + 1. �

– First let us assume that CD(G) ≤ k, we show that κrel` (G′) ≤ k. On step s
for 1 ≤ s ≤ `− 1, let us probe the vertices {v(s−1)k+1, · · · , vsk}.
If the target is closest to one of the vertices {v(s−1)k+1, · · · , vsk} probed at
step s, say v(s−1)k+x for some integer 1 ≤ x ≤ k, then the target is at a ver-
tex in G(s−1)k+x. Indeed, all the Gis are separated by a cut vertex vk(`−1)+1

and since vk(`−1)+1 is universal, it is equidistant from all the vertices of
{v(s−1)k+1, · · · , vsk}. Note that each Gi is an isometric subgraph of G′.
Hence, any centroidal locating set of size k of G (it exists since CD(G) ≤ k)
is also a centroidal locating set for the vertices of Gi in G′. Probing such a
centroidal locating set in Gi allows to locate the target during the next step
s+ 1 ≤ `.
If the target is equidistant from each of the vertices {v(s−1)k+1, · · · , vsk}
probed at step s, then the target may not be at the vertices {v(s−1)k+1, · · · , vsk}
nor at the vertices of G(s−1)k+1, · · · , Gsk. Therefore, if s < ` − 1, then
Hs = {vsk+1, · · · , v(s+1)k+1} ∪

⋃
0≤i≤k V (Gsk+1+i). Hence, after s = ` − 1

steps, then Hs = V (Gk(`−1)+1). Then, since each Gi is an isometric subgraph
of G′ and CD(G) ≤ k, probing a centroidal locating set in Gk(`−1)+1 allows
to locate the target during the next step s+ 1 = `.

– Now we prove the other direction, that is, we show that CD(G) > k implies
that κrel` (G′) > k.
Whatever be the probing strategy, if on the last turn, there exists a copy,
say Ga for some 1 ≤ a ≤ k(`− 1) + 1, for which no vertices in Ga have been
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probed, then there is no way to know at which vertex of Ga, the target is
located. Indeed, all Gis are separated by a cut vertex, so probing a vertex
in some Gi provides no information on any other Gj , j 6= i. Since there are
k(`−1) + 1 copies of Gi and only k(`−1) probes may occur in the first `−1
steps, then on the last step, regardless of strategy, there will always exist a
copy, say Ga for some 1 ≤ a ≤ k(`− 1) + 1, for which no vertices in Ga have
been probed. The last step is not sufficient to locate the target by Claim 6.
Hence, κrel` (G′) > k. ut

5.3 Proof of Theorem 5

Let us start with simple results that will be used below.

Claim 7 Let Sn be the star with n leaves. Then λk(Sn) = dn−1k e.

Proof of claim. It comes from the fact that, in any star, the optimal strategy
consists of probing all leaves but one. �

Claim 8 Let 1 < r ∈ N be such that r − 1 ≡ 0 mod k. For 1 < n ∈ N, let Srn be
the tree obtained from r copies of Sn by adding one new vertex c adjacent to the
center of each of the r stars.

λk(Srn) =
r − 1

k
+ dn− 1

k
e.

Furthermore, MD(Srn) = r(n− 1).

Proof of claim. For 1 ≤ i ≤ r and 1 ≤ j ≤ n, let ci be the center of the ith copy of
Sn, denoted by Si, and let cij be the jth leaf of the ith copy of Sn. First, we prove

that λk(Srn) ≤ r−1
k + dn−1k e. Consider a strategy φ that at step 1 ≤ s ≤ r−1

k ,

probes the vertices c
(s−1)k+1
1 , · · · , csk1 . If at step s, one of the probed vertices,

say c
(s−1)k+x
1 for some 1 ≤ x ≤ k, is:

– distance 0 from the target, then the target is located at c
(s−1)k+x
1 .

– distance 1 from the target, then the target is located at c(s−1)k+x.
– distance 2 from the target and k = 1, then the target is located at c or

c
(s−1)k+x
y for some 2 ≤ y ≤ n. The target is then located in a total of at

most s + dn−1k e steps since it occupies a leaf of the subgraph induced by

c
(s−1)k+x
y and its neighbours which happens to be a star Sn that is also an

isometric subgraph of Srn.
– distance 2 from the target and k > 1, then the target is located at c if it is

also distance 2 from the other probed vertices. Otherwise, it is at c
(s−1)k+x
y

for some 2 ≤ y ≤ n. The target is then located in a total of at most s+dn−2k e
steps since it occupies a leaf of the subgraph induced by c

(s−1)k+x
y and all

its neighbours except for c, which happens to be a star Sn−1 that is also an
isometric subgraph of Srn.
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If at step s < r−1
k , all of the probed vertices are at distance 3 from the

target, then the target is located at one of the vertices csk+1, · · · , c(s+1)k. If at
step s < r−1

k , all of the probed vertices are at distance 4 from the target, then

the target is located at one of the vertices csk+1
j , · · · , c(s+1)kj .

If at step r−1
k , all of the probed vertices are at distance 3 from the target,

then the target is located at cr. If at step r−1
k , all of the probed vertices are

at distance 4 from the target, then the target is located at one of the vertices
crj . The target is then located in a total of at most r−1

k + dn−1k e steps since it
occupies a leaf of the subgraph induced by cr and all its neighbours except for
c which happens to be a star Sn that is also an isometric subgraph of Srn.

Now, we prove that λk(Srn) > r−1
k + dn−1k e − 1. We may assume that the

target is on a leaf as this is not favourable for the target.
Whatever be the probing strategy, if after some step, there exists a copy of

Sn, say Sa for some 1 ≤ a ≤ r, for which no vertices in Sa have been probed,
then there is no way to know at which vertex of caj , the target is located if it is
there. Indeed, all caj s are separated by a cut vertex that is universal to them, so
probing a vertex in Srn \Sa provides no information on the location of the target
at a vertex caj . Since there are r copies of Sn and only k r−1k probes may occur

in the first r−1
k steps, then after step r−1

k , there will always exist a copy of Sn,
say Sa for some 1 ≤ a ≤ r, for which no vertices in Sa have been probed. The
next dn−1k e − 1 steps of any strategy are not sufficient to locate the target if it
occupies a leaf of Sa as the subgraph induced by Sa is an isometric subgraph
of Srn and, as stated above, probing vertices in Srn \ Sa does not provide any
information. Therefore, dn−1k e steps are still required since Sa is a star with n
leaves.

By [10, 17], MD(Srn) = r(n− 1). �

Theorem 5. The Localization Problem is NP-complete in the class of trees.

Proof. Since there always exists a winning strategy with length at most O(n),
it is a certificate with polynomial size and so the problem is in NP.

To prove the NP-hardness, let us reduce the Hitting-Set Problem. The
inputs are an integer k ≥ 1, a ground-set B = {b1, · · · , bn} and a set S =
{S1, · · · , Sm} of subsets of B, i.e., Si ⊆ B for every i ≤ m. The Hitting-Set
Problem aims at deciding if there exists a set H ⊆ B such that |H| ≤ k and
H ∩ Si 6= ∅ for every i ≤ m.

Adding one new element to the ground-set and adding this element to one
single subset clearly does not change the solution. Therefore, by adding some
dummy elements (each one belonging to a single subset), we may assume that
all subsets are of the same size σ and that σ − 1 ≡ 0 mod k.

Let γ be any integer such that γ − 1 ≡ 0 mod k and γ > n− k − 1.
The instance T of the Localization Problem is built as follows. Let us

start with n vertex-disjoint paths B1, · · · , Bn (the branches) of length 2m, where
Bi = (bi1, · · · , bi2m+1) for each i ≤ n. Then, let us add one new vertex r adjacent
to bi1 for all i ≤ n. For every 1 ≤ j ≤ m and for every 1 ≤ i ≤ n such that
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bi ∈ Sj , let us add γ new vertices adjacent to bi2j . The subgraph induced by

bi2j and by the γ leaves adjacent to it is referred to as the star representing the
element i in the set Sj (or representing the set Sj in the branch i).

Intuitively, it will always be better for the target to be located in a leaf of
some star because γ is “huge”. During the first turn of any strategy, the level
(roughly, the distance to the root) of the target can be identified. Each even level
2j corresponds to a set Sj . If, during the first turn, one star corresponding to
each even level can be eliminated from the possible locations (which corresponds
to hit every subset) then the strategy finishes one step earlier than if all subsets
cannot be hit (if so, all stars would have to be checked).

More formally, we show below that λk(T ) ≤ 1 + σ−1
k + γ−1

k if and only if
there is a hitting set of size at most k.

Let us first show that, if there is a hitting set H of size at most k for (B,S),
then λk(T ) ≤ ` for any ` ≥ 1 + σ−1

k + γ−1
k . W.l.o.g. (up to renumbering the

elements), let us assume that H = {b1, · · · , bk} and let us present the corre-
sponding winning strategy. During the first turn, the vertices b12m+1, · · · , bk2m+1

are probed. There are two cases to be considered.

– First, if the target is at distance exactly 2m+ 1 from one of (actually from
all) the probed vertices, it is at r.

– Then, let us assume that the target is at distance < 2m + 1 from one of
the probed vertices, w.l.o.g., the target occupies a vertex in the branch B1

(including the leaves of the stars in this branch). If the target is at an odd
distance from b12m+1, then the target is identified since there is a unique
vertex at distance 2h + 1 from b12m+1 for each 0 ≤ h ≤ m. Otherwise, the
target is at distance d = 2(m − h) from d2m+1 for some 0 ≤ h < m (if
h = m, the target is trivially located). If b1 /∈ Sm−h, then b12m+1−d does not
belong to a star and b12m−d is the unique vertex at distance d from b12m+1

and the target is located. Otherwise, the target may occupy b12m+1−d or any
leaf adjacent to b12m+1−d. By Claim 7, this can be checked in dγk e steps by
sequentially checking each of these vertices but one.
Overall, in this case, the target is located in at most 1+dγk e steps (including
the first one).

– Hence, we may assume that the target is at distance at least 2m + 2 from
each of b12m+1, · · · , bk2m+1. Note that, in this case, the target is the same
distance from every probed vertex. Said differently, the information brought
by the first turn is that the target is at some distance d ≥ 1 from the root c
and not in branches B1, · · · , Bk.
If d is even, then the target can be at bk+1

d , · · · , bnd . Indeed, for every i ≤ n,
and any even distance d′, there is a unique vertex at distance d′ from r in
the branch Bi. By Claim 7, the target can be located in dn−k−1k e steps by
sequentially checking each of these vertices but one. Overall, it took 1 +
dn−k−1k e steps to locate the target.
Otherwise, d = 2j + 1 for some j ≤ m. Recall that H is a hitting set. In
particular, |Sj \ H| < |Sj | = σ. In the worst case, |Sj \ H| = σ − 1 and,
w.l.o.g. (up to renumbering), Sj \H = {bk+1, · · · , bk+σ−1}. In this case, the
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target can be located at bk+1
d , · · · , bnd or at any leaf adjacent to one of the

vertices bk+1
2j , · · · , bk+σ−12j (i.e., the leaves of the stars corresponding to the

set Sj in the branches that have not been hit). Then, the strategy continues
by sequentially probing the vertices bk+1

d , · · · , bn−1d (Note that we start by
the branches containing the stars that remain to be checked). There are two
cases to be considered.

• Either after checking bk+1
d , · · · , bk+σ−1d in σ−1

k steps (recall that σ−1 ≡ 0
mod k), the target is located to be in some star (this is the case if it is at
distance 2 from one probed vertex). Then, it remains to identify which
leaf of the star is the location of the target. This can be done in γ−1

k
steps by sequentially checking each of these leaves but one (Claim 7).
Overall, in this case, the target has been located in 1 + σ−1

k + γ−1
k steps.

• Or the target does not occupy a leaf of a star and is located after a total
of 1 + dn−k−1k e steps (including the first step).

To conclude, if the minimum size of a hitting set is at most k, then λk(T ) ≤ ` for
any ` ≥ 1 + max{dγk e, d

n−k−1
k e, σ−1k + γ−1

k } = 1 + σ−1
k + γ−1

k (the last equality
holds since γ > n− k − 1 and, since σ − 1 ≡ 0 mod k and σ > 1, σ−1

k ≥ 1).

Now, let us show that, if there are no hitting sets of size at most k, then
λk(T ) > ` for any ` ≤ 1 + σ−1

k + γ−1
k . Consider any strategy probing at most k

vertices per step. After the first turn, at most k branches have some vertex that
has been probed. These at most k branches correspond to at most k elements of
the ground-set B and, since all hitting sets have size at least k+1, there must be a
set that does not contain any of these k elements. W.l.o.g., let S1 = {b1, · · · , bσ}
be this set. After the first step, let us assume that the target is located at
distance 3 from the root (it is possible to decide this a posteriori since we are
considering a worst case). Therefore, the target may be located at any leaf of
some star corresponding to S1. More precisely, the target may be at any vertex in
{b13, · · · , bσ3} or at any leaf adjacent to one of the vertices {b12, · · · , bσ2}. Actually,
the target may also be at other vertices (the third vertex of other branches), but
we can ignore these choices. Indeed, even removing these choices (so making the
target less powerful), we show that the strategy will last long enough.

Indeed, after the first step, the instance becomes equivalent to an instance
that consists of a rooted tree whose root has degree σ and each child of the root
is adjacent to γ + 1 leaves, and the target is only known to occupy a leaf. By a
direct adaptation of Claim 8, locating the target takes another σ−1

k + dγk e steps.
Overall, locating the target requires at least 1 + σ−1

k + dγk e steps. Since

γ − 1 ≡ 0 mod k, dγk e >
γ−1
k and λk(T ) > 1 + σ−1

k + γ−1
k . ut

5.4 Algorithm in trees

Example. Figure 3 describes a simple example. The root r of T has 8 children
v1, . . . , v8 with the pairs (λLk (Tvi), π(Tvi)) being (4, 2), (4, 1), (3, 3), (3, 3), (2, 2),
(2, 2), (1, 1), and (0, 0), respectively. Let k = 4. There is a strategy φ which
identifies the target in at most 4 steps.
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Tv6 Tv7
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Tr

Fig. 3: A tree T rooted at r. The eight children of r are v1, . . . , v8. The pairs
(λLk (Tvi), π(Tvi)) are written below each subtree. In the figure, 1 (2, 3, resp.) j©
in a subtree corresponds to 1 (2, 3, resp.) vertex (vertices) of this subtree probed
during step j.

– Step 1. The probed vertices are those labeled 1 in Figure 3, that is, 2 vertices
of Tv1 , 1 vertex of Tv2 , and 1 vertex of Tv3 . If the target occupies some leaf
of Tv1 or Tv2 , then there is a strategy which will locate the target in at most
λLk (Tv1) − 1 = λLk (Tv2) − 1 = 3 extra steps because π(Tv1) (π(Tv2), resp.)
vertices of Tv1 (Tv2 , resp.) have been probed. If the target occupies some
leaf of Tv3 , then there is a strategy which will locate the target in at most
λLk (Tv3) = 3 extra steps (that is a total of 4 steps). Thus, assume that the
target occupies a leaf of some subtree Tvi , 4 ≤ i ≤ 8.

– Step 2. The probed vertices are those labeled 2 in Figure 3, that is, 3 vertices
of Tv4 and 1 vertex of Tv5 . If the target occupies some leaf of Tv4 or Tv5 ,
then using similar arguments to those above, we can show there is a strategy
which will locate the target in at most 2 extra steps (that is a total of 4
steps). Thus, assume that the target occupies a leaf of Tv6 , Tv7 or Tv8 .

– Step 3. The probed vertices are those labeled 3 in Figure 3, that is, 2 vertices
of Tv6 and 1 vertex of Tv7 . Again, if the target occupies some leaf of Tv6 or
Tv7 , then with at most 1 extra step, the target is located. Otherwise, the
target is on Tv8 and there is no need for an extra step.

Proof of Lemma 1 Let us first mention important claims.

Claim 9 λLk (T ) = 0 if and only if T is a rooted path, and π(T ) = 0 if and only
if T is a rooted path.

Claim 10 For any tree T and any subtree T ′ of T , λLk (T ′) ≤ λk(T ′) ≤ λk(T )
and λLk (T ′) ≤ λLk (T ).

Claim 11 For any tree T , there exists a k-strategy that locates the target in at
most λk(T ) + 1 steps (resp., in at most λLk (T ) + 1 steps if the target is known to
occupy a leaf) and that probes a single arbitrary vertex during its first step.

Claim 2 Let S ∈ S with d = |V (S)| − 1 (i.e., d is degree of the root r). Then,
λLk (S) = dd−1k e and π(S) = −k(dd−1k e − d

d−1
d e) + (d− 1).
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Proof of claim. The strategy consists of sequentially probing each leaf of S but
one. Either the target will be probed at some step, or it must be in the unique
leaf that has not been probed. During the first step, π(S) leaves are probed, and
exactly k leaves are probed during every other step. Such a strategy takes dd−1k e
steps.

For any strategy using less than dd−1k e steps, the vertices of at most k(dd−1k e−
1) ≤ d − 2 branches have been probed. Hence, there are at least two branches
of S for which no vertices have been probed and so it is not possible to decide
which one of these branches is occupied by the target.

Similarly, it can be checked that, for any strategy using at most dd−1k e steps
and that would probe less than π(S) vertices during the first step, there are at
least two branches of S for which no vertices have been probed. It makes the
proof easier to notice that π(S) = −k(dd−1k e−d

d−1
d e) + (d− 1), is equivalent to:

• π(S) = 0 if d− 1 = 0;
• π(S) = k if d− 1 > 0 and (d− 1) mod k = 0;
• π(S) = (d− 1) mod k otherwise.

�

Lemma 1. For every 1 ≤ i ≤ d+1, λLk (T [i, d∗]) = li−1 and π(T [i, d∗]) = k−pi.

Proof. The proof is by induction on d + 1 − i ≤ d + 1. For i = d + 1, there are
two cases to be considered.

– If d = d∗ (i.e., the condition on Line 2 is not satisfied), then, before the first
iteration, ld+1 = 1, pd+1 = k and T [d+1, d∗] = ∅, and so λLk (∅) = ld+1−1 = 0
and π(∅) = k−pd+1 = 0. So the induction hypothesis is satisfied for i = d+1.

– Otherwise, d < d∗ and Tvd+1
, · · · , Tvd∗ are rooted paths. That is, T [d +

1, d∗] ∈ S. Then, the induction hypothesis for i = d + 1 is satisfied by
Claim 2 and Lines 2 to 5 of Algorithm 2.

Let us assume that the induction hypothesis holds for 1 < i+1 ≤ d+1. That
is, at the end of the (d− i)th iteration of the for-loop, λLk (T [i+ 1, d∗]) = li+1− 1
and π(T [i + 1, d∗]) = k − pi+1. We will prove that it is also true after the next
iteration of the for-loop, i.e., λLk (T [i, d∗]) = li − 1 and π(T [i, d∗]) = k − pi.

It is very important to note that, Lines 2 and 3 imply that λi > 0 and πi > 0,
for every 1 ≤ i ≤ d.

There are five different cases to be considered depending on the values of
pi+1, πi, λi, and li+1.

– Case 0 < πi ≤ pi+1, li+1 = λi + 1.
By induction hypothesis, λLk (T [i+1, d∗]) = li+1−1 = λi and π(T [i+1, d∗]) =
k − pi+1.
Because the value of l at the beginning of this iteration of the for-loop is
li+1 = λi+1, then α = πi. Then, since πi ≤ pi+1, p becomes p−α = pi+1−πi
and l is not modified. Hence, li = li+1, and pi = pi+1 − πi.
We now prove that λLk (T [i, d∗]) = li+1 − 1 and π(T [i, d∗]) = k − pi+1 + πi.
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By Claim 10, λLk (T [i, d∗]) ≥ λLk (T [i+ 1, d∗]) = li+1 − 1.
To prove that λLk (T [i, d∗]) ≤ λLk (T [i + 1, d∗]) = li+1 − 1, it is sufficient to
describe a strategy φ for λLk (T [i, d∗]) with a total of at most li+1 − 1 steps.
Let φ′ be an optimal strategy for T [i+ 1, d∗] probing at most π(T [i+ 1, d∗])
vertices during the first step. Let also φ′′ be an optimal strategy for T [i]
probing at most πi vertices during the first step.
The first step of φ consists of probing πi vertices of T [i] (as φ′′) and π(T [i+
1, d∗]) = k − pi+1 vertices of T [i + 1, d∗] (as φ′). By assumption, πi ≤ pi+1,
and, by induction hypothesis, π(T [i + 1, d∗]) = k − pi+1, so πi + π(T [i +
1, d∗]) ≤ k and at most k vertices are probed. By Claim 1, this first step
allows to decide if the target is in T [i] or not (in the latter case, it is in
T [i + 1, d∗]). If the target is in T [i], then continue the strategy φ′′ in T [i]
which will locate the target in at most λi−1 = li+1−2 extra steps. Otherwise
(the target is in T [i+ 1, d∗]), continue the optimal strategy φ′ for T [i+ 1, d∗]
which will locate the target in at most λLk (T [i+ 1, d∗])− 1 = li+1 − 2 extra
steps. In all cases, φ locates the target in at most li+1 − 1 steps.
We prove that π(T [i, d∗]) = k − pi+1 + πi. For purpose of contradiction, let
us assume that there is a strategy locating the target in T [i, d∗] in at most
λi = li+1 − 1 steps and probing < k − pi+1 + πi vertices during the first
step. By definition, at least πi vertices of T [i] must be probed during the
first step to locate the target in at most λi = li+1 − 1 steps. Thus, it means
that < k − pi+1 vertices of T [i + 1, d∗] can be probed during the first step.
This contradicts that the strategy performs in at most λi = li+1 − 1 steps
since π(T [i+ 1, d∗]) = k − pi+1.

– Case πi > pi+1 > 0, li+1 = λi + 1.
In this case, it can be checked that α = πi and that the “else” (Line 12) is
executed and so li = li+1+1 and pi = k−1. We will prove that λLk (T [i, d∗]) =
li+1 and π(T [i, d∗]) = 1.
By induction hypothesis, λLk (T [i+1, d∗]) = li+1−1 = λi and π(T [i+1, d∗]) =
k − pi+1.
We prove that λLk (T [i, d∗]) ≥ λLk (T [i + 1, d∗]) + 1 = li+1. For purpose of
contradiction, let us assume that λLk (T [i, d∗]) < li+1 and let φ′ be a strategy
for T [i, d∗] locating the target in at most li+1 − 1 steps. Since li+1 − 1 = λi,
then at least πi vertices of T [i] must be probed during the first step. Since
λLk (T [i + 1, d∗]) = li+1 − 1 = λi and π(T [i + 1, d∗]) = k − pi+1, at least
k − pi+1 vertices of T [i + 1, d∗] must be probed during the first step. This
means that at least πi + k − pi+1 > k vertices must be probed during the
first step, a contradiction.
We now prove that λLk (T [i, d∗]) = li+1. It is sufficient to design a strategy φ
for T [i, d∗] locating the target in at most li+1 steps. By Claim 11, there is a
strategy φ′ for T [i] that locates the target in at most λi+1 steps and probes
a single vertex during the first step. Let also φ′′ be an optimal strategy for
T [i+ 1, d∗].
The first step of φ consists of probing one vertex of T [i]. If the target is in
T [i], the strategy continues with φ′ (in at most λi = li+1−1 steps), otherwise,
the strategy continues with φ′′ (in at most λLk (T [i+ 1, d∗]) = li+1− 1 steps).
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We deduce that π(T [i, d∗]) ≤ 1 and by definition of π, we get that π(T [i, d∗]) =
1.

– Case pi+1 = 0, li+1 ≥ λi + 1.

In that case, because of the “if” (Line 7), p is set to k and li = li+1 + 1.
Then, α = 1 and so (“if” on Line 10) pi = k − 1.

We will prove that λLk (T [i, d∗]) = li+1 and π(T [i, d∗]) = 1.

By induction hypothesis, λLk (T [i+1, d∗]) = li+1−1 ≥ λi and π(T [i+1, d∗]) =
k.

• We prove that λLk (T [i, d∗]) ≥ λLk (T [i + 1, d∗]) + 1 = li+1. For purpose
of contradiction, let us assume that λLk (T [i, d∗]) < li+1 and let φ be a
k-strategy for T [i, d∗] locating the target in at most li+1− 1 steps. First,
if a vertex of T [i] is probed during the first step of φ, it means that at
most k − 1 < k − pi+1 = k vertices of T [i + 1, d∗] are probed during
the first step of φ, contradicting that k − pi+1 = π(T [i + 1, d∗]) is the
minimum number of vertices of T [i+ 1, d∗] that must be probed during
the first step of an optimal k-strategy for T [i+ 1, d∗].

Hence, neither φ nor any k-strategy locating the target in T [i, d∗] in at
most li+1 − 1 steps can probe some vertex of T [i] during its first step.
Below, we will build such a strategy φ′ (that probes some vertex of T [i]
during its first step) from φ, which leads to a contradiction.

Since φ does not probe any vertex of T [i] during its first step, then
li+1− 1 > λi (otherwise, a target hidden in T [i] will not be located in at
most li+1 − 1 steps, by definition of λi > 0).

Let x > 1 be the first step of φ that probes a vertex of T [i] if the target
is in T [i] (such a step exists since T [i] is not a rooted path by definition
of d, i.e., since λi > 0). Then, li+1 − x ≥ λi since, otherwise, a target
hidden in T [i] could not be located by φ in at most li+1 − 1 steps. If
li+1 − x = λi, then the xth step of φ must probe πi vertices of T [i].
Otherwise, if li+1−x > λi, we may assume that the xth step of φ probes
a single vertex of T [i] (by Claim 11).

Let i + 1 ≤ j ≤ d∗ be such that the first step of φ probes some vertex
of T [j]. Because the subtrees have been sorted, λj ≤ λi < li+1 − 1 and
we may assume that the first step of φ probes one vertex in T [j] (by
Claim 11).

Let us define the k-strategy φ′ as follows. The strategy φ′ follows φ but,
during its first step, it probes one vertex of T [i] instead of probing some
vertices of T [j]. If the target is detected in T [i], φ′ applies an optimal
strategy in T [i] and locates the target in at most λi < li+1−1 extra steps.
Otherwise, φ′ continues to mimic the strategy φ until its xth step. If the
target has been detected in some subtree before the xth step, Strategy
φ′ continues to act as φ. Otherwise, the xth step of φ′ mimics the xth

step of φ but, instead of probing one vertex of T [i] (resp. πi vertices of
T [i] if li+1−x = λi), Strategy φ′ probes one vertex of T [j] (resp. πj ≤ πi
vertices of T [j] if li+1 − x = λi). Then, φ′ proceeds as φ.
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It is easy to show that φ′ is a k-strategy for T [i, d∗] locating the target
in at most li+1− 1 steps, and probing some vertex of T [i] during its first
step, a contradiction.

• We now prove that λLk (T [i, d∗]) = li+1 and that π(T [i, d∗]) = 1. It is
sufficient to design a strategy φ for T [i, d∗] locating the target in at most
li+1 steps. By Claim 11, there is a strategy φ′ for T [i] that locates the
target in at most λi + 1 steps and probes a single vertex during the first
step. Let also φ′′ be an optimal strategy for T [i+ 1, d∗].
The first step of φ consists of probing one vertex of T [i]. If the target is in
T [i], the strategy continues with φ′ (in at most λi ≤ li+1−1 extra steps),
otherwise, the strategy continues with φ′′ (in at most λLk (T [i+ 1, d∗]) =
li+1 − 1 extra steps).
We deduce that π(T [i, d∗]) ≤ 1 and by definition of π, we get that
π(T [i, d∗]) = 1.

– Case pi+1 > 0, li+1 > λi + 1.
In this case, the condition of the “if” (Line 7) is not satisfied, α = 1 and so the
condition of the “if” (Line 10) is satisfied. Hence, li = li+1 and pi = pi+1−1.
We will prove that λLk (T [i, d∗]) = li+1 − 1 and π(T [i, d∗]) = k − pi+1 + 1.
By induction hypothesis, λLk (T [i+1, d∗]) = li+1−1 > λi and π(T [i+1, d∗]) =
k − pi+1.
By Claim 10, λLk (T [i, d∗]) ≥ λLk (T [i+ 1, d∗]) = li+1 − 1.
To prove that λLk (T [i, d∗]) ≤ λLk (T [i + 1, d∗]) = li+1 − 1, it is sufficient to
describe a strategy φ for λLk (T [i, d∗]) with a total of at most li+1 − 1 steps.
By Claim 11, there is a strategy φ′ for T [i] that locates the target in at most
λi + 1 steps and probes a single vertex during the first step. Let φ′′ be an
optimal strategy for T [i+1, d∗] probing at most π(T [i+1, d∗]) = k−pi+1 < k
vertices during the first step.
The first step of φ consists of probing one vertex in T [i] (as φ′) and π(T [i+
1, d∗]) = k−pi+1 vertices of T [i+1, d∗] (as φ′′). By assumption, 0 < pi+1, so
1 + π(T [i+ 1, d∗]) ≤ k and at most k vertices are probed. By Claim 1, this
first step allows to decide if the target is in T [i] or not (in which case, it is
in T [i+ 1, d∗]). If the target is in T [i], then continue the strategy φ′ in T [i]
which will locate the target in at most λi < li+1 − 1 extra steps. Otherwise
(the target is in T [i+1, d∗]), continue the optimal strategy φ′′ for T [i+1, d∗]
which will locate the target in at most λLk (T [i+ 1, d∗])− 1 = li+1 − 2 extra
steps. In all cases, φ locates the target in at most li+1 − 1 steps.
Let us prove that π(T [i, d∗]) = k−pi+1 +1. For purpose of contradiction, let
us assume that there is a strategy φ locating the target in T [i, d∗] in at most
li+1−1 steps and probing < k−pi+1+1 vertices during the first step. We will
show that we can construct a strategy φ′ in T [i+1, d∗] that locates the target
in at most `i+1− 1 steps and probes at most k− pi+1− 1 vertices during the
first step, a contradiction. If the first step of φ probes at least one vertex of
T [i], then it probes at most k− pi+1− 1 vertices of T [i+ 1, d∗] contradicting
the fact that λLk (T [i+1, d∗]) = li+1−1 and π(T [i+1, d∗]) = k−pi+1. Hence,
we may assume that the first step of φ probes k−pi+1 vertices of T [i+1, d∗]
and no vertices in T [i].
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Let t > 1 be the minimum integer such that at least one vertex of T [i] is
probed during the tth step of φ. After step t, at most li+1−t−1 steps remain
and so li+1−t−1 ≥ λi−1. Let j ∈ Ji+1, d∗K be such that at least one vertex
of T [j] is probed during the first step of φ. Note that j > i and, because the
subtrees are ordered in non-increasing lexicographical order, either λj < λi
or (λj = λi and πj ≤ πi).
Let us consider the following strategy φ′ for T [i+ 1, d∗]. The first t− 1 steps
of the strategy φ′ follow the ones of φ but do not probe any vertex of T [j].
That is, for every j′ ∈ Ji+ 1, d∗K \ {j} and for every t′ < t, the step t′ of φ′

probes the same vertices of T [j′] as the step t′ of φ. In particular, the first
step of φ′ probes at most k − pi+1 − 1 vertices.

If the target has been detected in a subtree different from T [j] during the
first t − 1 steps, then φ′ continues as φ (but without probing the vertices
of T [i] since φ′ is a strategy for T [i + 1, d∗]). Otherwise, the tth step of φ′

proceeds as follows. For every j′ ∈ Ji+1, d∗K\{j}, the step t of φ′ probes the
same vertices of T [j′] as the step t of φ. Again, the strategy φ′ does not probe
any vertex of T [i]. Note that, during its step t, the strategy φ probes at least
one vertex of T [i], and it probes at least πi vertices of T [i] if li+1 − t = λi.
Therefore, there are two cases to be considered.

• If li+1 − t > λj , then φ′ probes one vertex of T [j] during step t. If the
target is detected in T [j] then the next steps of φ′ follow an optimal
strategy in T [j] and will locate the target in at most λj extra steps.
Otherwise, the next steps of φ′ follow the ones of φ.

• If li+1−t = λj , then it implies that li+1−t = λi (since `i+1−t ≥ λi ≥ λj)
and that the step t of φ was probing πi vertices in T [i]. The strategy φ′

replaces these πi probes by probing πj ≤ πi vertices of T [j]. If the target
is detected in T [j] then the next steps of φ′ follow an optimal strategy in
T [j] and will locate the target in at most λj − 1 extra steps. Otherwise,
the next steps of φ′ follow the ones of φ.

Overall, φ′ is a strategy that locates a target in T [i+1, d∗], in at most li+1−1
steps, and probing at most k − pi+1 − 1 vertices during the first step. This
contradicts the fact that π(T [i + 1, d∗]) = k − pi+1. Hence, π(T [i, d∗]) =
k − pi+1 + 1.

– Case li+1 < λi + 1.

In this case, because of the “if” (Line 7), p is set to k and li = λi + 1. Then,
α = πi and so (“if” on Line 10) pi = k − πi.
We will prove that λLk (T [i, d∗]) = λi and π(T [i, d∗]) = πi.

By induction hypothesis, λLk (T [i+1, d∗]) = li+1−1 < λi and π(T [i+1, d∗]) =
k − pi+1.

By Claim 10, λLk (T [i, d∗]) ≥ λLk (T [i]) = λi.

To prove that λLk (T [i, d∗]) ≤ λi, it is sufficient to describe a strategy φ for
λLk (T [i, d∗]) with a total of at most λi steps. Let φ′ be an optimal strategy for
T [i] probing at most πi vertices during the first step. Let φ′′ be an optimal
strategy for T [i+ 1, d∗] that locates the target in at most li+1− 1 < λi steps
and probing at most π(T [i+ 1, d∗]) = k− pi+1 vertices during the first step.
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The first step of φ probes πi vertices of T [i] (as φ′). By Claim 1, this first
step allows to decide if the target is in T [i] or not. If it is in T [i] then φ
follows φ′. Otherwise, φ executes φ′′ in T [i+ 1, d∗].
To conclude, let us prove that π(T [i, d∗]) = πi. The previous strategy φ
shows that π(T [i, d∗]) ≤ πi. Since λLk (T [i, d∗]) = λi, any strategy for T [i, d∗]
must probe at least πi vertices of T [i] during the first step by definition of
πi. This concludes the proof. ut
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