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1 Laboratoire d’Acoustique de l’Université du Maine UMR CNRS 6613, Le Mans, France
e-mail: charly.faure@univ-lemans.fr

2 Laboratoire Vibrations Acoustique, Univ Lyon, INSA-Lyon, LVA EA677, F-69621, Villeurbanne, France

Abstract
A good knowledge of elastic and damping properties of material is required to predict the dynamic and
vibroacoustic behavior of structures, because of their great influence. Recently, an approach derived from
the Force Analysis Technique (FAT), initially used to identify external efforts, has been proposed to identify
these material properties. The purpose of this work is to present an approach in the same spirit, where the
identification of material properties is considered from a Bayesian point of view. The principle of the inverse
problem is first exposed in a probabilistic framework where a priori and likelihood function are defined
precisely. The solving is then performed by using a Monte-Carlo Markov Chain (MCMC) method allowing
one to obtain values and uncertainties of results thanks to their probability densities assessments. After the
explanation of all steps of the proposed method, some examples are shown, where adjustments are discussed
and where elastic and damping material properties are identified on analytically modeled structures.

1 Introduction

Structural models usually serve for both direct and inverse problems, to predict vibration behavior of struc-
tures or to infer vibration sources. An error in the model would be propagated as a bias to the identification
of sources or displacement fields. The identification of structural parameters is then an important topic in
vibroacoustics.

Modal analysis theory based methods are commonly used to infer structural parameter from measure-
ments [1, 2]. However, boundaries conditions must be known, which is not always possible, and structural
parameters identification is often performed at natural frequencies of the structure. Another family of meth-
ods is based on the identification of the natural wavenumber of the structure, from what structural parameters
can be extracted [3–6]. Most of modal based methods limitations are overcomed since no boundary condition
is required and the analysis can be performed at any frequency.

This work is based on a method called Force Analysis Technique (FAT) initially developed for the identifi-
cation of vibration sources [7–9] and recently adapted to the structural parameters identification [10]. The
principle is to verify the local equation of motion of a structure in an area with no external source. Similarly
to the wavenumber based methods, this approach does not required boundary conditions and is applicable
at any frequency. The interest to improve the structural identification within the FAT rather than using a
wavenumber based method is to perform model and source identifications jointly in the same framework.

In this work, a new regularization strategy is proposed within the Bayesian framework [11] contrary to [10]
which is based on the residuals survey. Bayesian methods include Markov Chain Monte Carlo (MCMC)
algorithms [12, 13] for the inference of random variables. The Gibbs sampler, a particular case of MCMC



algorithms, is used in this work to perform an automatic and unsupervised regularization, besides the esti-
mation of confidence intervals.

After this introduction, the principle of the FAT based structural parameters identification method is presented
in section 2, followed by the adapted Bayesian regularization in section 3. The method is validated on
simulation data and results are discussed in section 4, before a conclusion part.

2 Structural parameters identification from FAT

The FAT is based on the equation of motion of a known structure. As an example, the method is presented
on a beam within Euler-Bernoulli beam theory. With temporal convention e+jωt defined for the angular
frequency ω, the harmonic transverse displacement of the beam satisfies Eq. (1),

E(1 + jη)I
∂4w(x, ω)

∂x4
− ρSω2w(x, ω) = f(x, ω), (1)

where E is the Young’s modulus, j2 =
√
−1 the imaginary number, η the loss factor, I the moment of

inertia, ρ the density, S the section, w(x, ω) and f(x, ω) the harmonic transverse displacement and the
vibration source distribution at location x and at angular frequency ω, respectively. In an area with no
external source applied to the beam, the right hand side of Eq. (1) is equal to zero and the equation of motion
can be rewritten as follows

∂4w(x, ω)

∂x4
= k4w(x, ω), (2)

with

k = 4

√
ρSω2

E(1 + jη)I
(3)

the natural wavenumber of the beam. Equation 2 means that where there is no external source, the fourth-
order partial derivative of the displacement field is proportional to the displacement field itself. Additionally,
the multiplicative constant verifying the perfect equality is directly linked to the natural wavenumber of
the structure. Considering that the geometry is completely known, as well as the driven frequency and the
density, the identification of k leads to the identification of the Young’s modulus and the loss factor by

E = <(k−4)
ρSω2

I
, (4)

η =
=(k−4)
<(k−4)

, (5)

where <(•) stands for the real part and =(•) for the imaginary part. To verify experimentally Eq. (2),
the displacement field can be obtained directly from measurements while its spatial derivative requires an
approximation approach. In this work, the derivative at location x, is estimated by numerical differentiation
using the centered finite difference method at first order

∂4w(xi, ω)

∂x4
≈ w(xi+2, ω)− 4w(xi+1, ω) + 6w(xi, ω)− 4w(xi−1, ω) + w(xi−2, ω)

∆4
x

, (6)

where ∆x is the spacing in the direction x. It can be seen that five displacement points are needed to calculate
one spatial derivative point. Shifting the centered stencil [1;−4; 6;−4; 1] of Eq. (6) by one point on a regular
mesh grid, most of displacement points can be reused and only one additional displacement point is needed to
identify the next derivative point. Following this reasoning and considering a subdomain of the beam (which
does not include necessarily its physical boundaries) without any external source, the spatial derivative of
the displacement field can be evaluated everywhere except at two points at each boundary of the subdomain.
Forward and backward stencils ([3;−14; 16;−24; 11;−2] and [−2; 11;−24; 16;−14; 3] respectively) can



then be used at these boundaries. Considering a homogeneous structure, the problem can be expressed in a
matrix form

δ4w = k4w (7)

where a unique scalar k4 is sufficient to satisfy the equation,w is the (N×1) vector of displacements and δ4
is a (N ×N ) square matrix build from centered, forward and backward schemes. The natural wavenumber
can thus be identified from Eq. (7) by a least-square approach. Taking into account the noise perturbation
inherent to experimental measurements, the equation of observation can be written as

y = w + n (8)

with y the (N × 1) vector of observations or noisy displacements and n the (N × 1) vector of noise. After
replacing the unknown quantity w by the only one known quantity y in Eq. (7), the least-square approach
is no longer sufficient to identify k because the noise is drastically amplified by the spatial derivative. An
appropriate regularization step is then needed.

3 Bayesian formulation of the identification problem

3.1 Bayes theorem

The Tikhonov regularization, commonly used in inverse problem, is not appropriate in this case because it
tends to minimize the source norm which is already null by assumption. The Bayesian framework is then
particularly suited to the regularization process because it can fit to specificities of each problem by including
different kind of a priori information.

Bayesian approaches are based on the following theorem to infer the probability of an event from both
experiences and a priori knowledge,

[A | B] ∝ [B | A] [A] , (9)

where∝means ”proportional to”. [A | B] is the conditional probability of the eventA knowingB, it is called
the a posteriori probability and refers to the solution of the inference. The conditional probability [B | A]
is the likelihood and corresponds to the information extracted from experiences. The quantity [A] stands for
the probability density of the random variable A, it is called the a priori probability since it encapsulates all
theoretical information on A.

3.2 MCMC algorithms

When several variables of the problem are unknown, for example a group of θi variables with i from 1 to
M , the quantity to infer is then the joint probability denoted [θ1, θ2, . . . , θM ]. However, the inference of
a multidimensional probability is often intractable analytically and must be performed numerically. More-
over, when the target probability is quite smooth (such as a multivariate Gaussian), it is not necessary to
infer the probability everywhere to catch most of the information, a discrete estimation is sufficient. MCMC
algorithms are then a powerful tool to perform this discrete inference. A specific feature of these random
algorithms is that consecutive samples converge towards the area of maximum of probability. The conver-
gence is then faster than a ’rain-on-the-roof’ sampling strategy. The Gibbs sampler, a special case of MCMC
algorithms, is used in this work because of its relative simplicity. It consists in sampling consecutively into
the conditional probability over each random variable θi until the convergence is reached. It can also be seen
as a global optimization procedure of a multidimensional cost function.



3.3 A priori probability of noise

The perturbation of noise propagates uncertainties to the other problem variables probabilities. It is then
important to model the noise probability. Considering an additive white noise, the a priori probability of n
is given by

[n] ∼ Nc
(
n; 0, σ2nI

)
(10)

with a zero mean vector and a scalar variance of noise σ2n. I stands for the N × N identity matrix and the
N-dimensional multivariate circular complex Gaussian density on x (see Ref. [14]) with mean vector µ and
covariance matrix Σ is defined as

Nc (x;µ,Σ) =
1

πN | Σ | exp
(

(x− µ)H Σ−1 (x− µ)
)
, (11)

where the exponent H stands for the Hermitian transposition. This a priori probability of noise

3.4 A posteriori probabilities

Three random variables are then totally unknown in this problem and must be inferred to perform the regu-
larization : the noiseless displacement field w, the wavenumber k and the noise variance σ2n.

3.4.1 Inference of w

Two information are available for the identification of w. Firstly, from the equation of observation and the
noise distribution (Eqs. (8 ,10)), the probability of the noiseless displacement field is simply expressed by
the following relation

[w | y, σ2n] ∼ Nc
(
w;y, σ2nI

)
. (12)

Secondly, from the equation of motion with no external source (Eq. (2)),

[y | w, σ2n, δ4] ∼ Nc
(
y; k−4δ4w, σ2nI

)
(13)

Equation (12) can be interpreted as the likelihood since it is always true whatever the structure, while Eq.
(13) acts as an a priori since it depends on the structure. Both being Gaussian probability (i.e. from the
exponential distribution family), their analytical manipulation is easier and the Bayesian theorem yields

[w | y, σ2n, δ4] ∝ [y | w, σ2n, δ4][w | y, σ2n] (14)

∝ Nc (w;µw,Σw) (15)

with :

Σw = σ2n

(
I +

(
k4k4

H
)−1

δ4δ
H
4

)−1
(16)

µw =
(
k4k4

H
I + δ4δ

H
4

)−1 (
k4k4

H
I + k4δH4

)
y (17)

The maximum of a Gaussian probability corresponds to its mean, so the Maximum A Posteriori (MAP),
i.e. the most probable value, is given by Eq. (17). The solution of the inference is then directly obtained
from µw. Two other observations can be made from here. Firstly, the noise variance does not affect the
mean of the a posteriori probability on w, it just influences the variance of the estimation from Eq. (16).
Secondly, the term applied to y in Eq. (17) is analogous to a low pass filter whose cutoff frequency is directly
linked to the natural wavenumber of the structure k. So the use of a low pass filter depending on the natural
wavenumber in Ref. [7] for the source identification seems to be a good intuition.



3.4.2 Inference of k4

The identification of the Young’s modulus and the loss factor from Eqs. (4, 5) is the primary objective before
the identification of the wavenumber, so it is preferable to apply the Bayesian theorem directly on k4 rather
than on k. Considering no one a priori information, the a posteriori probability is directly proportional to
the likelihood, from Eqs. (7, 8, 10). Since k4 is a scalar and δ4w and y are both vectors, each point i of the
subdomain can be interpreted as a scalar likelihood. The global likelihood is then simply the product of all
of them. The Bayesian theorem applied to the inference of k4 yields

[k4 | w,y, σ2n, δ4] ∝ [y | w, σ2n, δ4] (18)

∝
N∏
i

Nc
(
k4;

(δ4w)i
yi

, σ−2n

)
(19)

∝ Nc
(
k4;µk4 , σ

2
k4
)

(20)

with :

σ2k4 =
σ−2n
N

(21)

µk4 =
1

N

N∑
i

(δ4w)i
yi

(22)

where (δ4w)i and yi refer to the i-th element of vectors δ4w and y respectively. Here again, the solution of
the inference is given by the mean in Eq. (22) and is independent of the noise variance.

3.4.3 Inference of σ2n

As y is known from measurements and w is inferred from the Bayesian approach, it is possible to identify
the noise variance. A variance is always positive and different of zero, a practical choice is to set an inverse-
gamma a priori probability on σ2n. The inverse-gamma density on x with shape parameter α and scale
parameter β is defined as

Inv-G (x;α, β) =
βα

Γ(α)
x−α−1 exp

(
−β
x

)
(23)

with the gamma function Γ(t) =
∫∞
0 xt−1 exp(−x)dx. The product of this a priori probability and the

Gaussian likelihood from the equation of observation (Eq. (8)) yields

[σ2n | w,y] ∝ Nc
(
y;w, σ2nI

)
Inv-G

(
σ2n;αn, βn

)
(24)

∝ Inv-G
(
σ2n;αn +N, βn + (y −w)H(y −w)

)
(25)

From there, αn and βn values can be set so that the a priori on the noise variance reflects a particular
signal/noise ratio. Another possibility is to fix both parameters to zero. In this case Eq. (25) only depends
on the likelihood and no longer on the a priori, so the identification of σ2n is totally empirical.

4 Numerical validations

4.1 Synthesis of noisy displacements

To validate numerically this approach, the harmonic transverse displacement field of a simply supported
beam excited by a point source is synthesized by using an analytical wave decomposition approach (see
Ref. [15])

w(x, ω) =


A

2k3EI

(
sin(kx) sin(k(L−x0))sin(kL) − sinh(kx) sinh(k(L−x0))sinh(kL)

)
, for x ∈ [0;x0]

A
2k3EI

(
sin(k(L− x)) sin(kx0)sin(kL) − sinh(k(L− x)) sinh(kx0)sinh(kL)

)
, for x ∈ [x0;L]

, (26)



where k depends on ω from Eq. 3. All the geometric, structure, source and mesh parameters used for the
calculation of k and w from Eqs. (3 , 26) are listed in Tab. 1.

Length Moment of inertia Section
L [m] I [m4] S [m2]

1 1
12 × 10−11 1× 10−5

Young’s Modulus Structural damping Mass density
E [N/m2] η ρ [kg/m3]
70× 109 4× 10−2 2700

Source frequency Source position Source amplitude
ν [Hz] x0 [m] A [N]

280 1× 10−1 1

Observation domain Number of nodes Spatial sampling rate
x [m] N ∆x [m]

[0.3− 0.8] 101 5× 10−3

Table 1: Geometric, structure, source and mesh characteristics used for the synthesis of the displacement
field w.

Following Eq. (8), an additive white noise n is then added to the simulated displacement to mimic measure-
ments as close to reality as possible

n =
(ε′ + jε′′)√

2
σw10−

SNR
20 (27)

with ε′ and ε′′ two independent random vectors with the same size asw and sampled from standard complex
normal distribution, σw the standard deviation of the simulated displacement w and SNR the signal/noise
ratio in decibels (dB). The SNR is set to 30 dB in this simulation. Real part of w and y are shown in Fig. 1.
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Figure 1: Real part of w and y with SNR = 30 dB.

4.2 Identification of elastic and damping properties

The standard Gibbs sampler consists in sampling consecutively in a posteriori probabilities from Eqs. (15 ,
20 , 25) until convergence is reached. However, each sample wmcmc from Eq. (15) leads to a displacement



as noisy as y, even after convergence. Its spatial derivative is quite noisy and the identification of k4 is
as perturbed as with a least-square approach discussed in section 2. It is like if no one regularization was
applied. It is then preferable to take some liberties with the standard algorithm and simply identify the MAP
from Eq. (17), which corresponds indeed to the filtered y measurements. The two others variables, k4 and
σ2n, are still sampled from their full a posteriori probability, leading to a better exploration of probabilities
and to confidence intervals.

The modified Gibbs sampler is initialized with arbitrary values : σ2ninitial
= 1, k4initial = 108, winitial = 0,

while theoretical values are approximately σ2nth
≈ 1.9 × 10−11 and k4th ≈ 1.4 × 106 − j5.7 × 104. The

number of iterations is set to 250.

Figures 2 and 3 presents the concatenation of samples, also called a Markov chain, of E and η respectively.
These results are obtained from the Markov chain of k4 and from Eqs. (4 , 5). The identification of E
is quite close to the theoretical value represented by the horizontal red line : the mean of the converged
samples is 70.77 × 109 N/m2, namely a relative error of 1.1%. Confidence intervals can also be estimated
from the histogram of these converged samples, the centered 90% confidence interval is then in the range of
69.13× 109 to 72.45× 109 N/m2.

By definition of Eq. (5), =(k−4) is much lower than <(k−4). At the same time, the perturbation of =(k4)
is of the same order as the one of <(k4) because of the circular Gaussian noise. The estimation of η is then
much more dispersed, as seen in Fig. 3. Nonetheless, the mean of the converged samples is 4.01× 10−2 and
the centered 90% confidence interval is in the range of 1.22×10−2 to 6.59×10−2. The mean may vary from
a simulation to another depending on the number of samples or the snapshot of noise n, so the mean result
may not be as good as it seems. Anyway, several runs of the algorithm allow an estimation of the relative
error of 10% approximately. In the same way displacements samples are drawn directly from the MAP, k4

samples could be drawn from Eq. (22) to increase the mean precision of η, but the information of dispersion
given by confidence intervals would be lost.
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Figure 2: Markov Chain on E, with theoretical value represented by horizontal red line.

The chain of displacements samples is presented in Fig. 4. The variability is solely due to the k4 chain one
since the noise does not appear in Eq. (17). Confidence intervals from these samples would not reflect the
complete dispersion of displacements and should not be evaluated.

The mean of the converged displacements samples is presented in Fig. 5 and compared to noisy measure-
ments y and to the noiseless displacements w. The result of the MCMC procedure is completely smoothed
and closed to w even if small differences are visible at anti-nodes.

Figure 6 corresponds to the equivalent low pass filter of Eq. (17) applied to measurements y, calculated with
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Figure 3: Markov Chain on η, with theoretical value represented by horizontal red line.
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Figure 4: Markov Chain on <(wmcmc).

the mean value of the converged k4 samples. Each line or column represents a typical low pass kernel similar
to the sinc function, but it also takes into account the specificity of the differential operator with different
stencils at boundaries.

The Markov chain of the noise variance σ2n is finally presented in Fig. 7 on a logarithmic scale. Here
again, the identification is quite close to the theoretical variance injected in the simulation. The SNR can be
evaluated from the variance of the displacements samples mean and from this noise variance. Considering
only the variability of the noise variance to evaluate confidence intervals, the identified SNR is 29.98 dB
while the injected SNR is 30 dB, the centered 90% confidence interval is in the range of 29.09 to 30.74 dB.
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Figure 5: Comparison of w , y and the mean of wmcmc.
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Figure 6: Low pass filter applied to y when convergence is reached.

5 Conclusion

This work is based on Ref. [10] where structural parameters have been inferred from displacement measure-
ments of a structure and two simple assumptions : no external source is applied in the measurements area
and the type of structure is known. The use of the Bayesian framework to properly regularize this inverse
problem shows some significant improvements. First of all, the procedure is completely unsupervised, it
requires only a few parameter initializations which only affects the number of iterations needed to reach con-
vergence. Secondly, the MCMC algorithm allows the propagation of uncertainties and so the identification
of confidence intervals. Another interesting point is that the regularization is theoretically independent of the
noise variance since the noise influences only precisions of the other random variables but not their modes.
Concerning the prospects of the method, the assumption of homogeneous structure may be too restricted,
structural parameters can vary spatially in some cases so the method should take it into account. Moreover,
this method should be tested on experimental data for a wide frequency range and on different types of
structure.
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[7] C. Pezerat, Méthode d’identification des efforts appliqués sur une structure vibrante, par résolution et
régularisation du problème inverse, Ph.D. thesis, INSA de Lyon (1996).

[8] M. Djamaa, N. Ouelaa, C. Pezerat, J.-L. Guyader, Reconstruction of a distributed force applied on a
thin cylindrical shell by an inverse method and spatial filtering, Journal of sound and vibration, Vol.
301, No. 3, (2007), pp. 560–575.



[9] C. Renzi, C. Pezerat, J.-L. Guyader, Vibratory source identification by using the finite element model of
a subdomain of a flexural beam, Journal of Sound and Vibration, Vol. 332, No. 3, (2013), pp. 545–562.
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