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Jeffrey Galkowski†, Matthieu Léautaud‡
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Abstract

We consider a compact Riemannian manifold M (possibly with boundary) and Σ ⊂ M \ ∂M an interior
hypersurface (possibly with boundary). We study observation and control from Σ for both the wave and heat
equations. For the wave equation, we prove controllability from Σ in time T under the assumption (TGCC)
that all generalized bicharacteristics intersect Σ transversally in the time interval (0,T ). For the heat equation
we prove unconditional controllability from Σ. As a result, we obtain uniform lower bounds for the Cauchy
data of Laplace eigenfunctions on Σ under TGCC and unconditional exponential lower bounds on such
Cauchy data.
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1 Introduction
Let (M, g) be a compact n dimensional Riemannian manifold possibly with boundary ∂M and denote ∆g the
(non-positive) Laplace-Beltrami operator on M. We study the observability and controllability questions from
interior hypersurfaces in M.

To motivate the more involved developments in control theory, let us start by stating (slightly informally)
the counterpart of our observability/controllability results for lower bounds for eigenfunctions, i.e. solutions
to

(−∆g − λ
2)φ = 0, φ|∂M = 0. (1.1)

For more precision, see Section 1.3.
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Theorem 1.1. Assume M is connected and let Σ be a nonempty interior hypersurface. Then there exists c > 0
so that for all λ ≥ 0 and φ ∈ L2(M) solutions to (1.1), we have

‖φ|Σ‖L2(Σ) + ‖∂νφ|Σ‖L2(Σ) ≥ ce−λ/c‖φ‖L2(M). (1.2)

Furthermore, if we assume that all generalized geodesics of some finite length cross Σ transversally, then there
is c > 0 so that for all λ ≥ 0 and φ ∈ L2(M) solutions to (1.1), we have

‖φ|Σ‖L2(Σ) + ‖〈λ〉−1∂νφ|Σ‖L2(Σ) ≥ c‖φ‖L2(M). (1.3)

Here, we write 〈λ〉 := (1+|λ|2)1/2. Generalized geodesics are usual geodesics of g inside Int(M), and reflect
on ∂M according to laws of geometric optics (see below). As far as the authors are aware (1.2) is the first
general lower bound to appear for restrictions of Laplace eigenfunctions to hypersurfaces and (1.3) is the first
uniform lower bound for such restrictions without either taking a full density subsequence of eigenfunctions or
imposing restrictive assumptions on M. We will prove Theorem 1.1 in the process of studying controllability
for the heat and wave equations from interior hypersurfaces. Because of this, we postpone further discussion
of Theorem 1.1 (including optimality of (1.2) and (1.3)) to Section 1.3.

We define interior hypersurfaces as follows:

Definition 1.2. We say that Σ is a hypersurface of M if there is Σ0 a compact embedded submanifold of M of
dimension n − 1, possibly with boundary, such that Σ is the closure of an open subset of Σ0. The manifold Σ0
shall be referred to as an extension of Σ.

- We say that Σ is an interior hypersurface if moreover Σ ⊂ Int(Σ0) ⊂ Int(M).

- We say that Σ is a compact interior hypersurface if it is a compact embedded submanifold of Int(M) of
dimension n − 1, without boundary.

- We say that Σ is cooriented if Σ0 is (i.e. the normal bundle TΣ0 M/TΣ0 is an orientable vector bundle)1.
If not mentioned, all hypersurfaces considered in this paper are assumed to be coorientable.

In the particular case Σ is a compact interior hypersurface, then it is an interior hypersurface with Σ0 = Σ. Since
M is endowed with a Riemannian structure, the coorientability assumption is equivalent to that of having a
smooth global vector field ∂ν normal to Int(Σ0). Note that the coorientability condition can be slightly relaxed,
see the discussion in Section 1.5 below.

Given an interior hypersurface Σ, the main goal of this paper is to study the controllability of some evolu-
tion equations with a control force of the form

f0δΣ + f1δ′Σ, (1.4)

where the distributions f0δΣ and f1δ′Σ are defined by

〈 f0δΣ, ϕ〉 =

∫
Σ

f0ϕdσ, 〈 f1δ′Σ, ϕ〉 = −

∫
Σ

f1∂νϕdσ. (1.5)

In this expression σ denotes the Riemannian surface measure on Σ induced by the metric g on M. This
contrasts with usual control problems for PDEs, for which the control function appears in the equation:

• either as a localized right handside (distributed or internal control) 1ω f , where ω is an open subset of
M, and typically, the control function f is in L2((0,T ) × ω);

• or, in case ∂M , ∅, as a localized boundary term, e.g. under the form u|∂M = 1Γ f , where Γ is an open
subset of ∂M, and typically, the control function f is in L2((0,T ) × Γ) (here, u denotes the function to
be controlled).

1In case M is oriented, note that Σ0 is cooriented iff it is oriented. However, if M is not orientable, Σ0 might be orientable without
being coorientable, and vice versa.
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Concerning the wave equation, the main result is the Bardos-Lebeau-Rauch Theorem [BLR92, BG97] pro-
viding a necessary and sufficient condition for the exact controllability with such control forces (see also
e.g. [DL09, LL16, LLTT16] for recent developments). Concerning the heat equation, the question of null-
controllability with internal or boundary control was solved independently by Lebeau-Robbiano [LR95] and
Fursikov-Imanuvilov [FI96]. The aim of the present paper is threefold:

• Formulating a well-posedness result as well as an analogue of the Bardos-Lebeau-Rauch Theorem, for
the wave equation with control like (1.4) (see Section 1.1);

• Formulating an analogue of the Lebeau-Robbiano-Fursikov-Imanuvilov Theorem for the heat equation
with control like (1.4) (see Section 1.2);

• Formulating general lower bounds for restrictions on Σ of eigenfunctions on M (see Theorem 1.1 above
and Section 1.3). These are analogues of the observability inequalities used to prove the above control-
lability statements and are of their own interest.

1.1 Controllability for the wave equation
In this section, we state our main result concerning the wave equation controlled by an interior hypersurface
Σ, namely 

�v = f0δΣ + f1δ′Σ on (0,T ) × Int(M),
v = 0 on (0,T ) × ∂M,
(v, ∂tv)|t=0 = (v0, v1) in Int(M).

(1.6)

where � denotes the D’Alembert operator on R × M,

� = ∂2
t − ∆g.

Before considering the control problem, we need to investigate conditions on f0, f1 under which the Cauchy
problem of (1.6) is well-posed. Both the well-posedness and the control statements require the introduction
of some geometric/microlocal definitions.

For a pseudodifferential operator P on R × M, we write

Char(P) = {q ∈ T ∗(R × M) \ 0 | σ(P)(q) = 0}

and σ(P) denotes the principal symbol of P. In particular, writing |ξ|g =
√

g(ξ, ξ) the Riemannian norm of a
cotangent vector, we are interested in

σ(�)(t, x, τ, ξ) = −τ2 + |ξ|2g, Char(�) = {(t, x, τ, ξ) ∈ T ∗(R × M) \ 0 | |ξ|2g = τ2}.

Next, we define the glancing and the elliptic sets for � above Σ as

G = Char(�) ∩ ι(T ∗(R × Int(Σ)), GΣ = ι−1(G),

E = {q ∈ T ∗(R × M) \ 0 | σ(�)(q) > 0} ∩ ι(T ∗(R × Int(Σ))), EΣ = ι−1(E),
(1.7)

where
ι : T ∗(R × Int(Σ0)) ↪→ T ∗(R × M) (1.8)

is the inclusion map. A more explicit expression of these sets in normal coordinates is given in Section 2.3
below.

Roughly speaking, the elliptic set E (resp. EΣ) consists in points (t, x, τ, ξ) in the whole phase space (resp.
in tangential phase space to Σ) such that x ∈ Int(Σ) in which no “ray of optics” for � lives. The glancing set
G (resp. GΣ) consists in points (t, x, τ, ξ) in the whole phase space (resp. in tangential phase space to Σ) such
that x ∈ Int(Σ), through which “rays of optics” for � may pass tangentially. The complement of G ∪ E in
the characteristic set of � above R × Int(Σ) is the set of point through which “rays of optics” for � may pass
transversally.
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Figure 1: Here M is the standard unit sphere S 2 in R3 and Σ gives an example where (Σ, 2π + ε) satisfies
TGCC for ε > 0.

Definition 1.3. We say that (Σ,T ) satisfies the transverse geometric control condition (TGCC) if every gen-
eralized bicharacteristic of � intersects T ∗(0,T )×Int(Σ)(R × M) \ G. We say that Σ satisfies TGCC if (Σ,T ) does
for some T > 0.

Definition 1.3 roughly says that TGCC is satisfied if every ray of geometric optics intersects Int(Σ) in the
time interval (0,T ) at a transversal point, i.e. a non-tangential point. In case ∂M = ∅, "generalized bicharac-
teristics" are only bicharacteristics of � and project on geodesics on M (see e.g. [DLRL14, Section 2.2]). For
a precise definition of generalized bicharacteristics in case ∂M , ∅ (and the geodesics of M have no contact
of infinite order with ∂M), we refer to [MS78, Section 3], [Hör85, Chapter 24], or [LLTT16, Section 1.3.1].
For a simple example of a compact manifold M and a compact interior hypersurface Σ satisfying TGCC, see
Figure 1.

With these definitions in hand, our well-posedness result may be stated as follows.

Theorem 1.4. For all (v0, v1) ∈ L2(M)×H−1(M) and for all f0 ∈ H−1
comp(R∗+×Int(Σ)) and f1 ∈ L2

comp(R∗+×Int(Σ))
such that

WF−
1
2 ( f0),WF

1
2 ( f1) ∩ GΣ = ∅, (1.9)

there exists a unique v ∈ L2
loc(R∗+; L2(M)) solution of (1.6).

We refer e.g. to [Ler10, Definition 1.2.21] for a definition of the Hs wavefront set WFs of a distribution.
The wavefront condition states roughly that ( f0, f1) should have improved (namely H−

1
2 × H

1
2 ) microlocal

regularity near the glancing set GΣ (when compared to overall the H−1(R × Σ) × L2(R × Σ) regularity) for
the Cauchy problem to be well-posed. A more precise version of this result is given in Theorem 3.7 below
(where, in particular, the meaning of “solution” is made precise in the sense of transposition, see [Lio88]).
This wavefront set condition on f0, f1 is far from sharp because we use a very rough analysis of solutions to
the free wave equation near G. A more detailed analysis near G, similar to that in [Gal16], would yield sharper
regularity requirements.

With this well-posedness result and the definition of TGCC, we now give a sufficient condition for the
null-controllability of (1.6) from Σ.

Theorem 1.5. Assume that the geodesics of M have no contact of infinite order with ∂M and that (Σ,T )
satisfies TGCC. Then for any (v0, v1) ∈ L2(M) × H−1(M) there exist ( f0, f1) ∈ H−1

comp((0,T ) × Int(Σ)) ×
L2

comp((0,T ) × Int(Σ)) with
WF( f0),WF( f1) ∩ (GΣ ∪ EΣ) = ∅,
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so that the solution to (1.6) has v ≡ 0 for t ≥ T.

Here, WF stands for the usual C∞ wavefront set. Theorem 1.5 follows from an observability inequality
given in Theorem 4.1 below.

Of course, it is classical to check that a necessary condition for controllability to hold is that all generalized
bicharacteristics intersect T ∗(0,T )×Σ

(R×M). As for the well-posedness problem, the issue of rays touching R×Σ

only at points of GΣ is very subtle, and will be addressed in future work. See the discussion in Section 1.4
below.

1.2 Controllability from a hypersurface for the heat equation
We next consider the controllability of the heat equation from a hypersurface, namely

(∂t − ∆)v = f0δΣ + f1δ′Σ on (0,T ) × Int(M),
v = 0 on (0,T ) × ∂M,
v|t=0 = v0 in Int(M).

(1.10)

Well-posedness in the sense of transposition follows from the standard parabolic estimates, and is proved in
Section 5.1. We only state a null-controllability result for (1.10).

Theorem 1.6. Suppose M is connected and Σ is any nonempty interior hypersurface. Then there exist C, c > 0
such that for all T > 0 and all v0 ∈ H−1(M), there exist f0, f1 ∈ L2((0,T ) × Σ) with

‖ f0‖L2((0,T )×Σ) + ‖ f1‖L2((0,T )×Σ) ≤ Ce
c
T ‖v0‖H−1(M),

such that the solution v of (1.10) satisfies v|t=T = 0.

Note that we also provide an estimate of the cost of the control as T → 0+, similar to the one in case of
internal/boundary control [FI96, Mil10].

1.3 Eigenfunction Restriction Bounds
As usual, the above two control results (or rather, the equivalent observability estimates) have related impli-
cation concerning eigenfunctions, stated in Theorem 1.1 above. We now formulate these results under the
(stronger) form of resolvent estimates. Below, we write 〈λ〉 := (1 + |λ|2)1/2.

Theorem 1.7 (Universal lower bound for eigenfunctions). Assume M is connected and Σ is a nonempty
interior hypersurface. Then there exist C, c > 0 so that for all λ ≥ 0 and all u ∈ H2(M) ∩ H1

0(M) we have

‖u‖L2(M) ≤ Cecλ(‖u|Σ‖L2(Σ) + ‖ 〈λ〉−1 ∂νu|Σ‖L2(Σ) + ‖(−∆g − λ
2)u‖L2(M)

)
. (1.11)

As far as the authors are aware, estimates (1.2)-(1.11) are the first general lower bounds to appear for
restrictions of eigenfunctions. Moreover, these estimates are sharp in the sense that simultaneously neither the
growth rate ecλ nor the presence of both u and ∂νu can be improved in general. This is demonstrated by the
following example.

Proposition 1.8. Consider the manifold
M = [−π, π] × T1,

with variables (z, θ), endowed with the warped product metric

g(z, θ) = dz2 + R(z)2dθ2.

Assume that R is smooth, that

R(z) = R(−z), R(z) ≥ 1 for all z ∈ [0, π], R(0) = 1, R(
π

2
) =
√

5, R(π) =
1
√

2
.
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Let Σ = {z = 0} × T1 ⊂ M. Then, there exist C, c > 0 and sequences λ
e/o
j → +∞ and φ

e/o
j ∈ L2(M) such that

(−∆ − (λ
e/o
j )2)φ

e/o
j = 0, ‖φ

e/o
j ‖L2(M) = 1, φ

e/o
j (±π) = 0,

with
∂νφ

e
j |Σ = 0, ‖φe

j |Σ‖L2(Σ) ≤ Ce−cλe
j , and φo

j |Σ = 0, ‖∂νφ
o
j |Σ‖L2(Σ) ≤ Ce−cλo

j .

This result is proved in Appendix B.
We expect that the symmetry in this example is the obstruction for removing one of the traces in the right

handside of (1.2), and formulate the following conjecture.

Conjecture 1. Let (M, g) be a Riemannian manifold and Σ an interior hypersurface with positive definite
second fundamental form. Then there exists C, c, λ0 > 0 so that for all (λ, φ) ∈ [λ0,∞)×L2(M) satisfying (1.1),
we have

‖φ‖L2(M) ≤ Cecλ‖φ|Σ‖L2(Σ), and ‖φ‖L2(M) ≤ Cecλ‖λ−1∂νφ|Σ‖L2(Σ).

Note that if Σ has positive definite second fundamental form, then it is geodesically curved and in partic-
ular, not fixed by a nontrivial involution. This prevents the construction of counterexamples via the methods
used to prove Lemma 1.8.

Under the geometric control condition TGCC the estimate (1.11) can be improved.

Theorem 1.9 (Improved lower bound for eigenfunctions under TGCC). Assume that the geodesics of M have
no contact of infinite order with ∂M and that Σ satisfies TGCC. Then there exists C > 0 so that for all λ ≥ 0
and u ∈ H2(M) ∩ H1

0(M), we have

‖u‖L2(M) ≤ C
(
‖u|Σ‖L2(Σ) + ‖〈λ〉−1∂νu|Σ‖L2(Σ) + 〈λ〉−1‖(−∆g − λ

2)u‖L2(M)
)
. (1.12)

Conjecture 2. Let (M, g) be a Riemannian manifold and Σ an interior hypersurface with positive definite
second fundamental form satisfying TGCC. Then there exists C, c, λ0 > 0 so that for all (λ, φ) ∈ [λ0,∞) ×
L2(M) satisfying (1.1) we have

‖φ‖L2(M) ≤ C‖φ|Σ‖L2(Σ), and ‖φ‖L2(M) ≤ C‖λ−1∂νφ|Σ‖L2(Σ).

Other known lower bounds come from the quantum ergodic restriction theorem and apply to a full density
subsequence of eigenfunctions rather than to the whole sequence [TZ12, TZ13, DZ13, TZ17]. These hold
under a ergodicity assumption on the geodesic (or the billiard) flow, together with a microlocal asymmetry
condition for the surface Σ. This assumption states roughly that the measure of the set of geodesics through
Σ whose tangential momenta agree at adjacent intersections with Σ is zero. In another direction, the work of
Bourgain–Rudnick [BR12, BR11, BR09] shows that on the torus Td, d = 2, 3 for any hypersurface Σ with
positive definite curvature, (1.3) holds with the normal derivative removed from the left hand side. While the
results of Bourgain–Rudnick do not hold on a general Riemannian manifold, we expect that either of the terms
in the left hand side of (1.2) can be removed whenever Σ is not totally geodesic (which is even weaker that Σ

having positive definite second fundamental form).

1.4 Weakening Assumption TGCC
One might hope that Theorem 1.9 and its analog for the wave equation (the control result of Theorem 1.5
above and the observability inequality of Theorem 4.1 below) when the assumption TGCC is replaced by the
(weaker) assumption that

every generalized bicharacteristics of � intersects T ∗((0,T ) × Int(Σ)) (1.13)

(rather than T ∗((0,T ) × Int(Σ)) \ GΣ). The following example shows that this is more subtle (see Appendix C
for the proof).

Proposition 1.10. Assume M = S 2 and Σ is a great circle. Then there exists a sequence (λ j, φ j) satisfying
(−∆g − λ

2
j )φ j = 0 together with λ j → +∞ and

φ j|Σ = 0, ‖λ−1
j ∂νφ j|Σ‖L2(Σ) ≤ λ

−1/4
j ‖φ j‖L2(M).
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In particular, this shows that Theorem 1.9 and associated observability inequality for the wave equation
cannot hold under only (1.13). Moreover, the proof shows that φ j is microlocalized λ−1

j close to the glancing
set on Σ, this calculation suggests that one must scale the normal derivative and restriction of an eigenfunction
as in [Gal16] to obtain an analog of Theorem 1.9 under (1.13). More precisely,

Conjecture 3. Suppose that Σ is a compact interior hypersurface. Then there exists C > 0 so that if (λ, φ)
satisfies (1.1), then

‖(1 + λ−2∆Σ)1/4
+ φ|Σ‖L2 + ‖[(1 + λ−2∆Σ)+ + λ−1]−1/4λ−1∂νφ|Σ‖L2(Σ) ≤ ‖φ‖L2(M).

Suppose moreover that Σ satisfies (1.13). Then there exists C > 0 so that if (λ j, φ j) satisfies (1.1), then

‖φ‖L2(M) ≤ C(‖(1 + λ−2∆Σ)1/4
+ φ|Σ‖L2 + ‖[(1 + λ−2∆Σ)+ + λ−1]−1/4λ−1∂νφ|Σ‖L2(Σ).

where ∆Σ is the Laplace-Beltrami operator on Σ induced from (M, g), and the operator (1 + λ−2∆Σ)+ is defined
via the functional calculus, see also [Gal16, Section 1].

1.5 Finite unions of hypersurfaces
In all of our results, one may replace Σ by any finite union of cooriented interior hypersurfaces ∪m

i=1Σi where
we replace the distribution f0δΣ + f1δ′Σ by

m∑
i=1

(
f i
0δΣi + f i

1δ
′
Σi

)
. (1.14)

Then, all above results generalize with the sole modification that generalized bicharacteristics need only
intersect one of the Σi’s transversally. This furnishes several simple examples for which our controllabil-
ity/observability results for waves holds. Take e.g. T2 ' [−π, π]2 with Σ1 = {0} × T1 and Σ2 = T1 × {0}.

This remark can also be used to remove the coorientability assumption. If the interior hypersurface Σ is
not coorientable, we can cover it by a union of overlapping cooriented hypersurfaces Σ = ∪m

i=1Σi and control
from Σ by a sum like (1.14). In this context, we still obtain controllability results with controls supported by
the hypersurface Σ, but the form of the control is changed slightly.

1.6 Sketch of the proofs and organization of the Paper
We start in Section 2 with the introduction of coordinates, some geometric definitions and Sobolev spaces on
Σ.

Section 3 is devoted to the proof of (a slightly more precise version of) the well-posedness result of The-
orem 1.4. The definition of solutions in the sense of transposition follows [Lio88]. The well-posedness result
relies on a priori estimates on an adjoint equation – the free wave equation. The well-posedness statement
then reduces to the proof of regularity bounds for restrictions on Σ. This is done in Section 3.1. Namely,
we show that if u is an H1 solution to �u = 0, then the restriction (u|Σ, ∂νu|Σ) belong to H

1
2 × H−

1
2 overall

R × Σ, and have the additional (microlocal) regularity H1 × L2 everywhere except near Glancing points (GΣ).
This fact is already known (see e.g. [Tat98]) but we rewrite a short proof for the convenience of the reader.
Then, Section 3.2 is aimed at defining the appropriate spaces for the statement of the precise version of the
well-posedness result. These are needed in particular to state the stability result associated to well-posedness,
as well as to formulate the duality between the control problem and the observation problem. They are (loc
and comp) Sobolev spaces on R × Σ that have different regularities near and away from the Glancing set GΣ.
With these spaces in hand, we define properly solutions of (1.6) and prove well-posedness in Section 3.3.

Section 4 is devoted to the proof of the control result of Theorem 1.4. Before entering the proofs, we
briefly explain how Theorem 1.9 is deduced from the observability inequality of Theorem 4.1. Firstly, we
prove in Section 4.1 that the condition TGCC implies a stronger geometric statement. Namely, using the
openness of the condition and a compactness argument, we prove that all rays intersect in (ε,T − ε) an open
set of Σ “ε-transversally” (i.e. ε far away from the glancing region) for some ε > 0. Secondly, this condition
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is used in Section 4.2 to prove an observability inequality, stating roughly that the observation of both traces
(u|Σ, ∂νu|Σ) of microlocalized ε far away from the glancing region in the time interval (ε,T − ε) determines the
full energy of solutions of �u = 0 (in appropriate spaces). The proof proceeds as in [Leb96] by contradiction,
using microlocal defect measures. It contains two steps: first, we prove that the strong convergence of a
sequence (uk |Σ, ∂νuk |Σ) → 0 near a transversal point of Σ implies the strong convergence of the sequence
uk in a microlocal neighborhood of the two rays passing through this point (using the hyperbolic Cauchy
problem). Then, a classical propagation argument (borrowed from [Leb96, BL01] in case ∂M , ∅) implies
the strong convergence of (uk) everywhere, which yields a contradiction with the fact that the energy of the
solution is normalized. This observability inequality contains, as in the usual strategy of [BLR92], a lower
order remainder term (in order to force the weak limit of the above sequence to be 0). The latter is finally
removed in Section 4.3 by the traditional compactness uniqueness argument of [BLR92], concluding the
proof of the observability inequality. Finally, in Section 4.4, we deduce the controllability statement Theorem
1.5 (or its refined version Theorem 4.8) from the observability inequality (Theorem 4.1) via a functional
analysis argument. The latter is not completely standard, since we do not know whether the solution of the
controlled wave equation 1.6 has the usual C0(0,T ; L2(M)) ∩ C1(0,T ; H−1(M)) regularity, but only prove
L2(0,T ; L2(M)). As a consequence, we cannot use data of the adjoint equation at time t = T as test functions.
The test functions we use are rather forcing terms F in the right hand-side of the adjoint equation, that are
supported in t ∈ (T,T1), that is, outside of the time interval (0,T ). Also, we construct control functions
having HN regularity near GΣ and prove that they do not depend on N, yielding the statement with the C∞

wavefront set.

Section 5 deals with the case of the heat equation and the universal lower bound of Theorem 1.7, in the
spirit of the seminal article [LR95]. First, Section 5.1 states the well-posedness result, in the sense of transpo-
sition. Again, it relies on the regularity of restrictions to Σ of solutions of the adjoint free heat equations. The
latter are deduced from standard parabolic regularity combined with Sobolev trace estimates. Then, to prove
observability/controllability, we proceed with the Lebeau-Robbiano method [LR95]. The starting point is a
local Carleman estimate near Σ, borrowed from [LR97], from which we deduce in Section 5.2 a global inter-
polation inequality for the operator −∂2

s −∆g. Theorem 1.7 directly follows from this interpolation inequality.
To deduce the observability of the heat equation, we revisit slightly (in an abstract semigroup setting) the orig-
inal Lebeau-Robbiano method (as opposed to the simplified one [LZ98, Mil06, LRL12], relying on a stronger
spectral inequality) in Section 5.3. The interpolation inequality yields as usual an observability result for a fi-
nite dimensional elliptic evolution equation (i.e. cutoff in frequency), from which we deduce observability for
the finite dimensional parabolic equation, with precise dependence of the constant with respect to the cutoff

frequency and observation time. The latter argument simplifies the original one by using an idea of Ervedoza-
Zuazua [EZ11b, EZ11a]. The observability of the full parabolic equation is finally deduced using the iterative
Lebeau-Robbiano argument combining high-frequency dissipation with low frequency control/observation.
We in particular use the method as refined by Miller [Mil10]. We explain in Section 5.4 how the heat equation
observed by/controlled from Σ fits into the abstract setting.

Appendix A contains some background information on pseudodifferential operators used in Sections 3
and 4. for the wave equation. Appendix B proves Proposition 1.8, i.e. constructs an example showing that
Theorem 1.7 is sharp. Finally, Appendix C gives a proof of Proposition 1.10.
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of (1.2). The first author is grateful to the National Science Foundation for support under the Mathematical
Sciences Postdoctoral Research Fellowship DMS-1502661. The second author is partially supported by the
Agence Nationale de la Recherche under grants GERASIC ANR-13-BS01-0007-01 and ISDEEC ANR-16-
CE40-0013.

2 Preliminary definitions

2.1 Fermi normal coordinates in a neighborhood Σ0

Throughout the article we shall use Fermi normal coordinates in a (sufficiently small) neighborhood, say Vε,
of Σ0. Namely since Σ0 is cooriented, for ε sufficiently small, there exists a diffeomorphism (see [Hör85,
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Appendix C.5])

[−ε, ε] × Int(Σ0)→ Vε

(x1, x′) 7→ x,

so that the differential operator −∆g takes the form

−∂2
x1

+ r(x1, x′,Dx′ ) + c(x,D),

where c(x,D) is a first order differential operator and r(x1, x′,Dx′ ) is an x1-family of second-order elliptic
differential operators on Int(Σ0), i.e. a tangential operator, with principal symbol r(x1, x′, ξ′), ξ′ ∈ T ∗x′ Int(Σ0),
that satisfies

r(x1, x′, ξ′) ∈ R, and C1|ξ
′|2 ≤ r(x1, x′, ξ′) ≤ C2|ξ

′|2, (2.1)

for some 0 < C1 ≤ C2 < ∞.
In these coordinates, note that we have in particular |x1(p)| = d(p,Σ), ∂ν = ∂x1 (up to changing x1 into

−x1), as well as
σ(−∆g) = ξ2

1 + r(x1, x′, ξ′)

and
−∆Σ0 = r(0, x′,Dx′ ), with σ(−∆Σ0 )(x′, ξ′) = r(0, x′, ξ′) =: r0(x′, ξ′),

where −∆Σ0 is the Laplacian on Int(Σ0) given by the induced metric on Σ0. We also recall that

σ(�) = −τ2 + σ(−∆g) = −τ2 + |ξ|2g = −τ2 + ξ2
1 + r(x1, x′, ξ′).

With a slight abuse of notation, we shall also denote by (x1, x′) ∈ R ×Rn−1 (and (ξ1, ξ
′) ∈ R ×Rn−1 associated

cotangent variables) local coordinates in a neighborhood of a point in Int(Σ0).
In these coordinates, the Hamiltonian vector field of � is given by

Hσ(�) = −2τ∂t + 2ξ1∂x1 − ∂x1 r(x1, x′, ξ′)∂ξ1 + ∂ξ′r(x1, x′, ξ′)∂x′ − ∂x′r(x1, x′, ξ′)∂ξ′ (2.2)

and generates the Hamiltonian flow of � (these coordinates beeing away from the boundary R × ∂M).

2.2 The compressed cotangent bundle over M

This section is independent of the hypersurface Σ and is only aimed at defining, in case ∂M , ∅, the space Z
on which the Melrose-Sjöstrand bicharacteristic flow is defined, as well as some properties of the flow. In case
∂M = ∅, this set is Char(�) ⊂ T ∗(R × M) \ 0, the flow is the usual bicharacteristic flow of �, and this section
not needed and may be skipped. We refer to [MS78], [Leb96, Appendix A2] for more complete treatments.

We first embed M ↪→ M̃ into a manifold, M̃, without boundary and write

T ∗(R × M) := T ∗R×M(R × M̃).

Let bT ∗(R × M) '
(
T ∗(R× Int(M)) \ 0

)
t

(
T ∗(R× ∂M) \ 0

)
denote the compressed cotangent bundle of of

R × M and
j : T ∗(R × M)→ bT ∗(R × M)

be the natural “compression” map. In any coordinates (x′, xn) on M where xn defines ∂M and xn > 0 on M, j
has the form

j(t, x, τ, ξ) = (t, x, τ, ξ′, xnξn). (2.3)

The map j endows bT ∗(R × M) with a structure of homogeneous topological space. We then write

Z = j(Char(�)), Ẑ = Z ∪ j
(
T ∗R×∂M(R × M)

)
, (2.4)

and
S Ẑ =

(
Ẑ \ (R × M)

)
/R∗+, (2.5)

the associated sphere bundle, which, endowed with the induced topology, are locally compact metric spaces.
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Away from the boundary, j is a bijection and we shall systematically identify bT ∗(R× Int(M)) with T ∗(R×
Int(M)) and Z ∩ bT ∗(R × Int(M)) with Char(�) ∩ T ∗(R × Int(M)). This will be the case in particular near the
hypersurface R × Σ.

Under the assumption that the geodesics of M have no contact of infinite order with ∂M, and with Z as
in (2.4), the (compressed) generalized bicharacteristic flow for the symbol 1

2 (−τ2 + |ξ|2g) is a (global) map

ϕ : R × Z → Z, (s, p) 7→ ϕ(s, p) (2.6)

We refer to [MS78, Section 3], [Hör85, Chapter 24], [BL01, Section 3.1] or [LLTT16, Section 1.3.1] for a
definition. In particular, it has the following properties

• ϕ coincides with the usual bicharacteristic flow of � (i.e. the Hamiltonian flow of σ(�)) in the interior
Char(�) ∩ T ∗(R × Int(M));

• ϕ satisfies the flow property

ϕ(t, ϕ(s, p)) = ϕ(t + s, p), for all t, s ∈ R, p ∈ Z; (2.7)

• ϕ is homogeneous in the fibers of Z, in the sense that

Mλ ◦ ϕ(sλ, ·) = ϕ(s,Mλ·), (2.8)

where Mλ denotes multiplication in the fiber by λ > 0; Hence, it induces a flow on S Ẑ.

• ϕ : R × Z → Z is continuous, see [MS78, Theorem 3.34].

2.3 Glancing Sets over Σ

For the following definitions, we use the above identification bT ∗R×Σ0
(R × M) � T ∗R×Σ0

(R×M) for the cotangent
bundle of R×M with foot points at R×Σ0, since in this case, we may assume in Definition 1.2 that Σ0∩∂M = ∅.
Using the coordinates of Section 2.1, the map ι defined in (1.8) reads

ι(t, x′, τ, ξ′) = (t, 0, x′, τ, 0, ξ′).

Still in coordinaltes, we define for ε ≥ 0, the sets

Gε = {(t, 0, x′, τ, ξ1, ξ
′) ∈ T ∗R×Int(Σ)(R × M) \ 0 | ξ2

1 + r(0, x′, ξ′) = τ2, ξ2
1 ≤ ετ

2},

Tε := {(t, 0, x′, τ, ξ1, ξ
′) ∈ T ∗R×Int(Σ)(R × M) \ 0 | ξ2

1 + r(0, x′, ξ′) = τ2, ξ2
1 > ετ

2}.

Let also

GΣ
ε :=

{
(t, x′, τ, ξ′) ∈ T ∗(R × Int(Σ0)) \ 0 | x′ ∈ Int(Σ), −ετ2 ≤ τ2 − r0(x′, ξ′) ≤ ετ2

}
.

T Σ
ε :=

{
(t, x′, τ, ξ′) ∈ T ∗(R × Int(Σ0)) \ 0 | x′ ∈ Int(Σ), ετ2 < τ2 − r0(x′, ξ′)

}
,

EΣ
ε :=

{
(t, x′, τ, ξ′) ∈ T ∗(R × Int(Σ0)) \ 0 | x′ ∈ Int(Σ), τ2 − r0(x′, ξ′) < −ετ2

}
.

(2.9)

Observe that GΣ
ε , π(Gε) (although GΣ

0 = π(G0)) where

π : T ∗Int(Σ0)(R × M)→ T ∗(R × Int(Σ0)) is projection along N∗(R × Int(Σ0)). (2.10)

In the above coordinates, π(t, 0, x′, τ, ξ1, ξ
′) = (t, x′, τ, ξ′). Observe also that G0 = G and GΣ

0 = GΣ where G
and GΣ are defined in (1.7).

Remark 2.1. In these coordinates, Σ0 = {x1 = 0} and, according to (2.2), we have 〈dx1,Hσ(�) 〉 = 〈dx1, 2ξ1∂x1〉 =

2ξ1. Since ξ1 , 0 on T0 this implies in particular that the vector field Hσ(�) is transverse to the Hypersurface
R × Σ on this set (which explains its name T0).

With these definitions, TGCC can be written as

Assumption GC-(0,T ). For all p ∈ Z,⋃
s∈R

{ϕ(s, p)} ∩ T0 ∩ T ∗((0,T ) × M) , ∅.
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2.4 Spaces on interior hypersurfaces
In case Σ is a compact internal hypersurface, then the Sobolev spaces Hs(Σ) have a natural definition. Here,
we give a definition adapted to the case ∂Σ , ∅.

Definition 2.2. Let S be an interior hypersurface of a d dimensional manifold X, and let S 0 be an extension
of S (see Definition 1.2). Given s ∈ R, we say that u ∈ H̄s(S ) (extendable Sobolev space) if there exists
u ∈ Hs

comp(S 0) such that u|S = u.
To put a norm on H̄s(S ), let χ ∈ C∞c (Int(S 0)) such that χ = 1 in a neighborhood of S . We denote by

(U j, ψ j) j∈J an atlas of S 0 such that for all j ∈ J

U j ∩ supp χ = ∅ or U j ∩ ∂S 0 = ∅,

and write JS = { j ∈ J,U j ∩ supp χ , ∅} and J∂ = { j ∈ J,U j ∩ (supp χ \ Int(S )) , ∅} ⊂ JS (possibly empty).
Let (χ j) j∈J be a partition of unity of S 0 subordinated to (U j) j∈J . Given , we define

‖u‖H̄s(S ) =
∑

j∈JS \J∂

‖(χ ju) ◦ ψ−1
j ‖Hs(Rd−1) + inf

u∈Eu

∑
j∈J∂

‖(χ jχu) ◦ ψ−1
j ‖Hs(Rd−1),

Eu := {u ∈ Hs
comp(Int(S 0)), u|S = u}.

(2.11)

The definition of the norm H̄s(S ) depends on S 0, χ, the choice of charts (U j, ψ j) and the partition of unity
(χ j). One can however prove that, once S 0 and χ are fixed, two such choices of charts (U j, ψ j) and partition
of unity (χ j) lead to equivalent norms H̄s(S ). In what follows, (U j, ψ j, χ j) shall be traces on S 0 of charts and
partition of unity on X. In case S is a compact interior hypersurface, then the spaces H̄s(S ), ‖ · ‖H̄s(S ) coincides
with usual Hs(S ) space.

3 Regularity of traces and well-posedness for the wave equation
The ultimate goal of the present section is to prove the well-posedness result for (1.6), see Theorem 1.4.
Defining solutions by transposition as in [Lio88], this amounts to proving regularity of traces on Σ of solutions
to the free wave equation.

3.1 Regularity of traces
We start by giving estimates on the restriction to Σ of a solution to

�u = F on R × Int(M),
u = 0 on R × ∂M,
(u, ∂tu)|t=0 = (u0, u1) (u0, u1) ∈ H1(M) × L2(M).

(3.1)

These bounds, indeed stronger bounds, can be found in [Tat98], but we choose to give the proof of the simpler
estimates here for the convenience of the reader. They are closely related to the semiclassical restriction
bounds from [BGT07, Tac10, Tac14, CHT15, Gal16].

Proposition 3.1. Fix T > 0. Then for any A ∈ Ψ0
phg(R × Int(Σ)), with principal symbol vanishing in a

neighborhood of GΣ
0 and all ϕ ∈ C∞c (R), there exists C > 0 so that for any (u0, u1) ∈ H1(M) × L2(M) and

F ∈ L2(R × M) with supp F ⊂ [0,T ] × M the solution u to (3.1) satisfies

‖ϕ(t)u|Σ‖2H̄1/2(R×Σ) + ‖ϕ(t)∂νu|Σ‖2H̄−1/2(R×Σ) + ‖Aϕ(t)(u|Σ)‖2H̄1(R×Σ) + ‖Aϕ(t)(∂νu|Σ)‖2L2(R×Σ)

≤ C(‖(u0, u1)‖2H1(M)×L2(M) + ‖F‖2L2 ) (3.2)

To prove Proposition 3.1 we need the following elementary lemma.

Lemma 3.2. Suppose that S is an interior hypersurface of the d dimensional manifold X (in the sense of
Definition 1.2) and P ∈ Ψm

phg(Int(X)) is elliptic on the conormal bundle to Int(S 0), N∗ Int(S 0). Then for any
s ∈ R, k ≥ 0 and ε > 0, there exists C = C(ε, k, s) > 0 so that for all u ∈ C∞(M),

‖∂k
νu|S ‖H̄s(S ) ≤ C(‖u‖Hs+k+1/2(X) + ‖Pu‖H1/2+k+ε−m(X)).
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Proof. We start by proving the case k = 0. In case s > 0, the stronger inequality ‖u|S ‖H̄s(S ) ≤ C‖u‖Hs+k+1/2(X)
holds as a consequence of standard trace estimates [Hör85, Theorem B.2.7] (that the H̄s(S ) norm is the
appropriate one in case S is not compact is made clear below).

We now assume that s ≤ 0, and estimate each term in the definition (2.11) of ‖u|S ‖H̄s(S ) in local charts.
For this, we use charts (Ωi, κi)i∈I of Int(X) such that S 0 ⊂

⋃
i∈I Ωi and such that (Ωi ∩ S 0, κi|S 0 )i∈I satisfy the

assumptions of Definition 2.2. In a neighborhood of S 0, we have u =
∑

i χ̃iu (where (χ̃i) is now a partition
of unity of S 0 associated to Ωi, and hence, (χ̃i|S 0 ) satisfies the assumptions of Definition 2.2), and estimating
‖u|S ‖H̄s(S ) amounts to estimating each

‖((χ̃ ju)|S 0 ) ◦ κ−1
j ‖Hs(Rd−1) = ‖(χ̌w)|x1=0‖Hs(Rd−1)

with χ̌ = χ̃ j ◦ κ
−1
j and w = u ◦ κ−1

j . We may now work locally, where S is a subset of {x1 = 0}, and estimate
the trace of z = χ̌w.

Let χ ∈ C∞c (R) have χ ≡ 1 on [−1, 1] with supp χ ⊂ [−2, 2], 0 ≤ χ ≤ 1 and fix δ > 0 small enough so that
P (which, by abuse of notation, we use for the operator in local coordinates) is elliptic on a neighborhood of

{|ξ1| ≥ δ
−1|ξ′|} ⊃ N∗({0} × Rd−1) = {ξ′ = 0}

and let χδ(ξ1, ξ
′) = χ

(
2|ξ′ |
δξ1

)
for ξ1 , 0 and χδ(0, ξ′) = 0. Then, we have

‖z|x1=0‖
2
Hs(Rd−1) =

∫
Rd−1
〈ξ′〉2s

∣∣∣∣∣∫
R

ẑ(ξ1, ξ
′)dξ1

∣∣∣∣∣2 dξ′ ≤ 2(A + B),

with

A =

∫
Rd−1
〈ξ′〉2s

∣∣∣∣∣∫
R

(1 − χδ)ẑ(ξ1, ξ
′)dξ1

∣∣∣∣∣2 dξ′, and B =

∫
Rd−1
〈ξ′〉2s

∣∣∣∣∣∫
R

χδẑ(ξ1, ξ
′)dξ1

∣∣∣∣∣2 dξ′.

We now estimate each term. With the Cauchy Schwarz inequality, the first term is estimated by

A =

∫
〈ξ′〉2s

∣∣∣∣∣∣
∫

(1 − χδ)
〈ξ〉s+1/2 〈ξ〉

s+1/2ẑ(ξ1, ξ
′)dξ1

∣∣∣∣∣∣2 dξ′

≤

∫
Rd−1

(∫
R

〈ξ′〉2s(1 − χδ)2

〈ξ〉2s+1 dξ1

) (∫
R

〈ξ〉2s+1|ẑ|2(ξ1, ξ
′)dξ1

)
dξ′

≤ Cs,δ‖z‖2Hs+1/2(Rd),

since ∫
R

〈ξ′〉2s(1 − χδ)2

〈ξ〉2s+1 dξ1 =

∫
R

1
(1 + t2)s+1/2

(
1 − χ

(
2|ξ′|
δ〈ξ′〉t

))2

dt

≤

∫
|t|≤2/δ

1
(1 + t2)s+1/2 dt =: Cs,δ

(which is large since s ≤ 0).
Again with the Cauchy Schwarz inequality, the second term is estimated by

B =

∫
Rd−1
〈ξ′〉2s

∣∣∣∣∣∣
∫
R

〈ξ〉1/2+εχδ

〈ξ〉1/2+ε
ẑ(ξ1, ξ

′)dξ1

∣∣∣∣∣∣2 dξ′

≤

∫
Rd−1

(∫
R

〈ξ′〉2s

〈ξ〉1+2ε dξ1

) (∫
R

〈ξ〉1+2εχ2
δ |ẑ|

2(ξ1, ξ
′)dξ1

)
dξ′

≤ Cε‖χδ(D)z‖2H1/2+ε (Rd),

since ∫
R

〈ξ′〉2s

〈ξ〉1+2ε dξ1 = 〈ξ′〉2s−2ε
∫
R

1
(1 + t2)1/2+ε

dt = 〈ξ′〉2s−2εCε ,
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with Cε finite as soon as ε > 0, and 〈ξ′〉2s−2ε ≤ 1 since s ≤ 0. Combining the last three estimates and recalling
that z = χ̌w yields

‖χ̌w|x1=0‖
2
Hs(Rd−1) ≤ Cs,δ‖χ̌w‖2Hs+1/2(Rd) + Cε‖χδ(D)χ̌w‖2H1/2+ε (Rd), (3.3)

Now, according to the definition of χδ, the operator P is elliptic on a neighborhood of supp(χ̌) × supp(χδ),
a classical parametrix construction (see for instance [Hör85, Theorem 18.1.9]) implies, for any N ∈ N,

‖χδ(D)χ̌w‖H1/2+ε (Rd) ≤ CN(‖ ˇ̌χPw‖H1/2+ε−m(Rd) + ‖ ˇ̌χw‖H−N (Rd)), (3.4)

where ˇ̌χ is supported in the local chart and equal to one in a neighborhood of supp(χ̌). Recalling that w is the
localization of u, and summing up the estimates (3.3)-(3.4) in all charts yields the sought result for k = 0.

We now show that the k = 0 case implies the k > 0 case. Let P̃ ∈ Ψm
phg(Int(X)) be elliptic on N∗(Int(S 0))

with WF(P̃) ⊂ {σ(P) , 0} (see e.g. Appendix A for a definition of WF(A) for a pseudodifferential operator
A). Then, applying the case k = 0 to the operator P̃, we obtain

‖∂k
νu|Σ‖H̄s(Σ) ≤ C

(
‖∂k

νu‖Hs+ 1
2

+ ‖P̃∂k
νu‖H 1

2 +ε−m

)
≤ C

(
‖u‖

Hs+k+ 1
2

+ ‖P̃∂k
νu‖H 1

2 +ε−m

)
. (3.5)

Now, we write
P̃∂k

νu = ∂k
νP̃u + [P̃, ∂k

ν]u.

Since P is elliptic on WF(P̃), by the elliptic parametrix construction, we can find E1 ∈ Ψk
phg(Int(X)), and

E2 ∈ Ψk−1
phg (Int(X)) so that

∂k
νP̃ = E1P + R1, [P̃, ∂k

ν] = E2P + R2

with Ri ∈ Ψ−∞phg(Int(X)). Hence, we obtain

‖P̃∂k
νu‖H 1

2 +ε−m ≤ C
(
‖E1Pu‖

H
1
2 +ε−m + ‖E2Pu‖

H
1
2 +ε−m + ‖u‖

Hs+k+ 1
2

)
≤ C

(
‖Pu‖

H
1
2 +k+ε−m + ‖u‖

Hs+k+ 1
2

)
,

which, combined with (3.5), yields the result. �

We now proceed with the proof of Proposition 3.1.

Proof of Proposition 3.1. First, observe that standard estimates for the Cauchy problem imply that for any
ϕ̃ ∈ C∞c (R),

‖ϕ̃u‖H1 ≤ CT,ϕ̃(‖(u0, u1)‖H1(M)×L2(M) + ‖F‖L2(0,T ;L2(M))),

so we may estimate by terms of the form ‖ϕ̃u‖H1 .
Second, notice that N∗(R × Int(Σ0)) ⊂ {τ = 0}, so � is elliptic on N∗(R × Int(Σ0)) and hence Lemma 3.2

implies
‖ϕ(t)u|Σ‖H̄1/2(R×Σ) + ‖ϕ(t)∂νu|Σ‖H̄−1/2(R×Σ) ≤ C(‖ϕ̃(t)u‖H1 + ‖ϕ̃F‖L2 )

where ϕ̃ ∈ C∞c (R) with ϕ̃ ≡ 1 on suppϕ.
Now, observe that since Σ is an interior hypersurface, we may work in a fixed compact subset, K of Int(M).

Note also that there exists Σ̃ an interior hypersurface with Σ̃ ⊂ Int(Σ) so that A = 1Σ̃A1Σ̃.

We proceed by making a microlocal partition of unity on a neighborhood T ∗(R × K). It suffices to obtain
the estimate

‖A(Op(χ)ϕ(t)u|Σ)‖2H̄1(R×Σ) + ‖A(∂ν Op(χ)ϕ(t)u)|Σ)‖2L2(R×Σ) ≤ C(‖(u0, u1)‖2H1(M)×L2(M) + ‖F‖2L2 ), (3.6)

for χ supported in a conic neighborhood of an arbitrary point, q0 = (t0, τ0, x0, ξ0) in T ∗(R × K). We will focus
on four regions: q0 < Char(�) (an elliptic point); q0 ∈ Char(�) but away from Σ; q0 ∈ T ∗

R×Σ̃
(R × M) ∩ T0 (a

transversal point); and q0 ∈ T ∗
R×Σ̃

(R × M) ∩ G0 (a glancing point).
In all regions, we shall use that given χ ∈ S 0

phg a cutoff to a conic neighborhood, U of q0, we have

‖�Op(χ)ϕu‖L2 ≤ ‖[�,Op(χ)ϕ]u‖L2 + ‖Op(χ)ϕ�u‖L2 ≤ C (‖ϕ̃u‖H1 + ‖ϕ̃F‖L2 ) . (3.7)
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First start with q0 in the elliptic region: q0 < Char(�). Shrinking the neighborhood if necessary, the
microlocal ellipticity of � near q0 with (3.7) yields

‖Op(χ)ϕu‖H2 ≤ C (‖ϕ̃u‖H1 + ‖ϕ̃F‖L2 ) .

Hence, rough trace estimates imply

‖(∂ν Op(χ)ϕu)|Σ‖L2(R×Σ) + ‖(Op(χ)ϕu)|Σ‖H̄1(R×Σ) ≤ C (‖ϕ̃u‖H1 + ‖ϕ̃F‖L2 ) ,

and boundedness of A proves (3.6) in this case.
Second, suppose that q0 ∈ Char(�) but x0 < Σ, then clearly there is a neighborhood U of q0 and χ elliptic

at q0 with supp χ ⊂ U so that

‖(∂ν Op(χ)ϕu)|Σ‖L2(R×Σ) + ‖(Op(χ)ϕu)|Σ‖H̄1(R×Σ) ≤ C‖ϕ̃u‖L2

and again boundedness of A proves (3.6).
Third, suppose q0 ∈ T ∗R×Σ

(R×M) is a transversal point. In that case, we use local Fermi normal coordinates
(see Section 2.1) near Σ0 so that x0 7→ (0, 0). Note that since q0 ∈ Char(�), we have σ(�)(q0) = −τ2

0 +

(ξ0)2
1 + r(x0, ξ

′
0) = 0. Since q0 ∈ T0, we have moreover r0(0, ξ′0) < τ2

0 and hence ∂ξ1σ(�)(q0) = 2(ξ0)1 , 0.
Therefore, by the implicit function theorem, there exist a neighborhood U of q0 and real valued symbols
b(τ, x, ξ′) ∈ C∞((−ε, ε); S 1

phg(T ∗(R × {x1 = 0}))) and e(τ, x, ξ) ∈ S 1
phg(T ∗R × Rn) elliptic near q0 so that in U

we have
σ(�) = e(τ, x, ξ)(ξ1 − b(τ, x, ξ′)).

Thus, letting χ̃ ∈ S 0
phg(R × Rn) with χ̃ ≡ 1 on supp χ and supp χ̃ ∩ N∗({x1 = 0}) = ∅ (this is possible since

we have Char(�) ∩ N∗({x1 = 0}) = ∅ and q0 ∈ Char(�), so that we may assume supp χ ∩ N∗({x1 = 0}) = ∅),
we have bχ̃ ∈ S 1

phg(T ∗R × Rn) (see [Hör85, Theorem 18.1.35]) and in particular Op(b) Op(χ̃) ∈ Ψ1
phg(R × Rn).

Therefore,
�Op(χ) = Op(e)(Dx1 − Op(b) Op(χ̃)) Op(χ) + R,

where R ∈ Ψ1
phg(R × Rn) and hence, using a microlocal parametrix for Op(e) on supp χ, we have, using (3.7)

‖(Dx1 − Op(b)) Op(χ)ϕu‖H1 ≤ C(‖ϕ̃u‖H1 + ‖ϕ̃F‖L2 )

and also

‖(Dx1 − Op(b))∂x1 (Op(χ)ϕu)‖L2 ≤ C(‖ϕ̃u‖H1 + ‖ϕ̃F‖L2 ).

So, by Lemma A.1, we obtain

‖(Op(χ)ϕu)|x1=0‖H1 ≤ C(‖ϕ̃u‖H1 + ‖ϕ̃F‖L2 ),
‖(∂x1 Op(χ)ϕu)|x1=0‖L2 ≤ C(‖ϕ̃u‖H1 + ‖ϕ̃F‖L2 ).

(3.8)

Boundedness of A and (3.8) implies (3.6).
Finally, it remains to show that for q0 ∈ T ∗R×Σ

(R × M) a glancing point (i.e. with τ2
0 − r0(0, ξ′0) = 0) and χ

supported sufficiently close to q0, we have

‖A(Op χϕu)|x1=0‖H̄1(R×Σ) + ‖A(∂x1 Op χϕu)|x1=0‖L2(R×Σ) ≤ ‖ϕ̃u‖H1(R×M).

Let ψ ∈ C∞c (R) with ψ ≡ 1 near 0 and define ψε(x1) = ψ(ε−1x1). Then define

Ãεu(x1, x′) = [ψε(x1)Au(x1, ·)](x′),

so that Ãεu|x1=0 = A(u|x1=0). Then by [Hör85, Theorem 18.1.35], Ãε Op(χ)ϕ(t) ∈ Ψ0
phg(R × M) and for ε > 0

small enough and χ supported sufficiently close to q0, σ(Ãε Op(χ)) = 0. In particular, Ãε Op(χ)ϕ(t) ∈ Ψ−1
phg(R×

M). Similarly, Ãε∂x1 Op(χ)ϕ(t) ∈ Ψ0
phg(R × M). Rough Sobolev trace estimates thus yield

‖Ãε Op(χ)ϕ(t)u|x1=0‖H̄1(R×Σ) ≤ C‖ϕ̃u‖H1(R×M),

‖Ãε∂x1 Op(χ)ϕ(t)u|x1=0‖L2(R×Σ) ≤ C‖ϕ̃u‖H1(R×M),

and the proof is finished.
�
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3.2 Microlocal spaces on the hypersurface
This section is aimed at defining the appropriate spaces for the statement of the well-posedness and control
results in the present context. All along the section, a sequence S = (ε j) j∈N, ε j → 0 is fixed and ε, ε′ ∈ S.
This precision is sometimes omitted for concision. Fix a family of interior hypersurfaces Σε with

Σε′ ⊂ Int(Σε) ⊂ Σε ⊂ Int(Σ), ε < ε′,
⋃
ε>0

Σε = Int(Σ). (3.9)

Let
Γ ⊂ T ∗(R × Int(Σ)) \ 0 be a closed and conic set. (3.10)

We define spaces adapted to Γ, i.e. measuring different regularities near and away from Γ. In the applications
below, we shall take Γ = GΣ for the study of the Cauchy problem and Γ = EΣ ∪ GΣ = E

Σ
for the study of the

control problem.
To this end, let ε 7→ Γε, ε ∈ S, be a family of closed conic subset of T ∗R × Int(Σ) \ 0 such that

Γε is closed and conic for any ε, Γε ⊂ Int(Γε′ ), ε < ε′, Γ =
⋂
ε>0

Γε. (3.11)

Next, fix a family of cutoff functions

ϕε ∈ C∞c ((0,T ) × Int Σ), ϕε ≡ 1 on [ε,T − ε] × Σε. (3.12)

and a family of cutoff operators

BΓ
ε ∈ Ψ0

phg((0,T ) × Int(Σ)), BΓ
ε selfadjoint on L2(R × Σ),

WF(BΓ
ε ) ∩ Γε = ∅, WF(ϕε(1 − BΓ

ε )) ∩ T ∗[ε,T−ε]×Σε
(R × Int(Σ)) \ Γ2ε = ∅,

WF(BΓ
ε′ ) ⊂ Ell(BΓ

ε ), ε < ε′ ∈ S, BΓ
εϕε = BΓ

ε = ϕεBΓ
ε .

(3.13)

Note that once Γ will be fixed, (see Sections 3.3 and 4), a more explicit expression for the symbol of the
operators BΓ

ε will be given.
Next, we define for k ≥ s, the Banach space

Hs,k
comp,Γ,ε(ΣT ) =

{
f ∈ Hs

comp((0,T ) × Int(Σ)), supp( f ) ⊂ [ε,T − ε] × Σε, (1 − BΓ
ε ) f ∈ Hk

comp((0,T ) × Int(Σ))
}
,

normed by
‖ f ‖2

Hs,k
comp,Γ,ε(ΣT )

:= ‖ f ‖2H̄s([0,T ]×Σ) + ‖(1 − BΓ
ε ) f ‖2H̄k([0,T ]×Σ)

Notice that (1−BΓ
ε ) measures regularity in Γε and therefore, for f ∈ Hs,k

comp,Γ,ε, we have f = ϕε f and WFk( f ) ⊂
T ∗(R × Int(Σ)) \ Γε. We define the Fréchet space

Hs,k
comp,Γ(ΣT ) =

⋃
ε>0

Hs,k
comp,Γ,ε(ΣT ) =

{
f ∈ Hs

comp((0,T ) × Int(Σ)),WFk( f ) ∩ Γ = ∅
}

with topology given by the seminorms ‖ · ‖Hs,k
comp,Γ,ε(ΣT ) (taken for a sequence of ε going to zero). Func-

tions/distributions in the space Hs,k
comp,Γ(ΣT ) are Hs overall and microlocally Hk (k ≥ s) on Γ. In case k = s, we

simply have Hs,k
comp,Γ(ΣT ) = Hk

comp((0,T ) × Int(Σ)).

Similarly, we define for k ≤ s, the vector space

Hs,k
loc,Γ,ε(ΣT ) =

{
u ∈ D′((0,T ) × Int(Σ)), ϕεu ∈ Hk

comp((0,T ) × Int(Σ)), BΓ
εu ∈ Hs

comp((0,T ) × Int(Σ))
}
,

endowed with the seminorm

‖u‖2
Hs,k

loc,Γ,ε(ΣT )
:= ‖ϕεu‖2H̄k([0,T ]×Σ) + ‖BΓ

εu‖2H̄s([0,T ]×Σ).
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We define as well the Fréchet space

Hs,k
loc,Γ(ΣT ) =

⋂
ε>0

Hs,k
loc,Γ,ε(ΣT )

=
{
f ∈ D′((0,T ) × Int(Σ)), f ∈ Hk

loc((0,T ) × Int(Σ)), B f ∈ Hs
comp((0,T ) × Int(Σ))

for all B ∈ Ψ0
phg((0,T ) × Int(Σ)), s.t. WF(B) ∩ Γ = ∅

}
,

with topology given by the seminorms ‖ · ‖Hs,k
loc,Γ,ε(ΣT ). Functions/distributions in the space Hs,k

loc,Γ(ΣT ) are locally

Hk overall and microlocally Hs (s ≥ k) outside of Γ. Remark again that in case k = s, we simply have
Hs,k

loc,Γ(ΣT ) = Hk
loc((0,T ) × Int(Σ)).

Lemma 3.3. For s, k ∈ R, s ≥ k the sesquilinear map

C∞c ((0,T ) × Int(Σ)) ×C∞((0,T ) × Int(Σ))→ C, ( f , u) 7→
∫

(0,T )×Σ

f (t, x)u(t, x)dtdσ(x),

extends uniquely as a continuous sesquilinear map

H−s,−k
comp,Γ × Hs,k

loc,Γ → C,

which we shall denote 〈 f , u〉H−s,−k
comp ×Hs,k

loc
. Moreover, for ( f , u) ∈ H−s,−k

comp,Γ,ε × Hs,k
loc,Γ,ε, we have

|〈 f , u〉H−s,−k
comp,Γ×Hs,k

loc,Γ
| ≤ ‖ f ‖H−s,−k

comp,Γ,ε(ΣT )‖u‖Hs,k
loc,Γ,ε(ΣT ).

Proof. Let ( f , u) ∈ C∞c ((0,T ) × Int(Σ)) ×C∞((0,T ) × Int(Σ)). Fix ε > 0 so that ϕε f = f . We compute

|( f , u)L2((0,T )×Σ)| = |( f , ϕεu)L2((0,T )×Σ)|

≤

∣∣∣∣( f , BΓ
εϕεu

)
L2((0,T )×Σ)

∣∣∣∣ +
∣∣∣∣( f , (1 − BΓ

ε )ϕεu
)

L2((0,T )×Σ)

∣∣∣∣
≤ ‖ f ‖H̄−s([0,T ]×Σ)‖B

Γ
εϕεu‖H̄s([0,T ]×Σ) + ‖(1 − BΓ

ε ) f ‖H̄−k([0,T ]×Σ)‖ϕεu‖H̄k([0,T ]×Σ)

≤ ‖ f ‖H−s,−k
comp,Γ,ε(ΣT )‖u‖Hs,k

loc,Γ,ε(ΣT ).

Then, the density of C∞c ((0,T ) × Int(Σ)) in H−s,−k
comp,Γ(ΣT ) and that of C∞((0,T ) × Int(Σ)) in Hs,k

loc,Γ(ΣT ) prove the
statement. �

Lemma 3.4. For all s, k ∈ R, k ≥ s, we have
(
Hs,k

comp,Γ(ΣT )
)′

= H−s,−k
loc,Γ (ΣT ).

Proof. Lemma 3.3 proves H−s,−k
loc,Γ (ΣT ) ⊂ (Hs,k

comp,Γ(ΣT ))′. Suppose µ ∈ (Hs,k
comp,Γ(ΣT ))′. Then, since C∞c ((0,T ) ×

Int(Σ)) ⊂ Hs,k
comp,Γ(ΣT ), µ ∈ D′((0,T ) × Int(Σ)). Fix ε > 0. Then for χ ∈ C∞c ((0,T ) × Int(Σ)),

|〈ϕεµ, χ〉| = |〈µ, ϕεχ〉| ≤ Cε(‖ϕεχ‖H̄s([0,T ]×Σ) + ‖(1 − BΓ
ε )ϕεχ‖H̄k([0,T ]×Σ)).

So, since k ≥ s, we obtain in particular

|〈ϕεµ, χ〉| ≤ Cε‖ϕεχ‖H̄k([0,T ]×Σ) ≤ Cε‖χ‖H̄k([0,T ]×Σ)

and hence ϕεµ ∈ H−k
comp((0,T ) × Int Σ) with

‖ϕεµ‖H̄−k([0,T ]×Σ) ≤ Cε. (3.14)

Fix any ε ∈ S and χ ∈ C∞c ((0,T ) × Int(Σ)). Then there exists ε0 > 0 depending only on ε such that for
ε0 > ε

′ ∈ S, BΓ
εχ ∈ Hs,k

comp,Γ,ε′ (ΣT ). Choose ε′ < ε0 small enough so that WF[(1 − BΓ
ε′ )B

Γ
ε ] = ∅. Then, we have

|〈BΓ
εµ, χ〉| = |〈µ, B

Γ
εχ〉| ≤ Cε′ (‖BΓ

εχ‖H̄s([0,T ]×Σ) + ‖(1 − BΓ
ε′ )B

Γ
εχ‖H̄k([0,T ]×Σ))

≤ Cε′ (‖BΓ
εχ‖H̄s([0,T ]×Σ) + ‖χ‖H̄−N ([0,T ]×Σ))

≤ Cε′‖χ‖H̄s([0,T ]×Σ).

Therefore, BΓ
εµ ∈ H−s

comp((0,T ) × Int(Σ)) with

‖BΓ
εµ‖H̄−s([0,T ]×Σ) ≤ Cε′ .

This, together with (3.14) proves that µ ∈ H−s,−k
loc,Γ (ΣT ), and hence the lemma. �
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3.3 Definition of solutions and well-posedness
Observe thatGΣ and ĒΣ := GΣ∪EΣ satisfy (3.10) and for k ≥ s, we therefore have Fréchet spaces Hs,k

comp,GΣ (ΣT ),

Hs,k
comp,ĒΣ

(ΣT ) with dual spaces H−s,−k
loc,GΣ (ΣT ), H−s,−k

loc,ĒΣ
(ΣT ).

With these definitions in hand, we can reformulate Proposition 3.1 as follows: For any T > 0, the map

H1
0(M) × L2(M) × L2(0,T ; L2(M))→ H1, 1

2

loc,GΣ (ΣT ) × H0,− 1
2

loc,GΣ (ΣT )

(u0, u1, F) 7→ (u|Σ, ∂νu|Σ)
(3.15)

(where u is solves (3.1)) is continuous.
We can now study the well-posedness for the control problem (1.6). We first recall that, given f0, f1 ∈

C∞c (R × Σ), f0δΣ and f1δ′Σ are usual distributions defined by (1.5).

Lemma 3.5. Given T > 0, assume that the functions v ∈ C∞([0,T ] × M \ Σ) ∩ C1((0,T ); L2(M)) u, F ∈
C∞([0,T ] × M) and f0, f1 ∈ C∞c ((0,T ) × Int(Σ)) solve

�v = f0δΣ + f1δ′Σ in D′((0,T ) × Int(M)), and �u = F.

Then, we have the identity[
(∂tv, u)L2(M) − (v, ∂tu)L2(M)

]T

0
+ (v, F)L2((0,T )×M) =

∫
(0,T )×Σ

(
f0u|Σ − f1∂νu|Σ

)
dtdσ.

The duality property of Lemma 3.3, together with the formula of Lemma 3.5, valid for smooth functions,

and (3.15) suggest that taking f0 ∈ H−1,− 1
2

comp,GΣ (ΣT ) and f1 ∈ H0, 1
2

comp,GΣ (ΣT ) could be an appropriate set of spaces
for control functions, as well as the following definition of transposition solutions for the control problem.

Definition 3.6. Given T > 0, (v0, v1) ∈ L2(M) × H−1(M), f0 ∈ H−1,− 1
2

comp,GΣ (ΣT ), f1 ∈ H0, 1
2

comp,GΣ (ΣT ), we say that v
is a solution of (1.6) if v ∈ L2((0,T ); L2(M)) and for any F ∈ L2((0,T ); L2(M)), we have∫ T

0
(v, F)L2(M)dt = 〈v1, u(0)〉H−1(M),H1(M) − (v0, ∂tu(0))L2(M)

+〈 f0, u|Σ〉
H
−1,− 1

2
comp,GΣ

(ΣT ),H
1, 1

2
loc,GΣ

(ΣT )
− 〈 f1, ∂νu|Σ〉

H
0, 1

2
comp,GΣ

(ΣT ),H
0,− 1

2
loc,GΣ

(ΣT )
.

where u is the unique solution to �u = F on (0,T ) × Int(M)
(u, ∂tu)|t=T = (0, 0) in Int(M).

(3.16)

Note in particular that taking F ∈ C∞c ((0,T ) × Int(M)) implies that such a solution is a solution of the first
equation of (1.6) in the sense of distributions.

Theorem 3.7. Let T > 0. For all (v0, v1) ∈ L2(M) × H−1(M) and for all f0 ∈ H−1,− 1
2

comp,GΣ (ΣT ) and f1 ∈

H0, 1
2

comp,GΣ (ΣT ), there exists a unique v ∈ L2((0,T ); L2(M)) solution of (1.6) in the sense of Definition 3.6. The
linear map

L2(M) × H−1(M) × H−1,− 1
2

comp,GΣ (ΣT ) × H0, 1
2

comp,GΣ (ΣT ) → L2(0,T ; L2(M))

(v0, v1, f0, f1) 7→ v

is continuous.

Remark 3.8. Note that, given two different times T < T ′, an initial data (v0, v1) and control functions f0, f1
compactly supported in (0,T ) ⊂ (0,T ′), the above definition/theorem yield two different solutions: one de-
fined on (0,T ) and one defined on (0,T ′). However, one can observe that these two solutions coincide by ex-
tending all test functions F ∈ L2((0,T ); L2(M)) by zero on (T,T ′) to obtain test functions in L2((0,T ′); L2(M)).
With this in mind, Theorem 1.4 is a direct consequence (and a simplified version) of Theorem 3.7.
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Proof of Theorem 3.7. First, we define

`(F) := 〈v1, u(0)〉H−1(M),H1(M) − (v0, ∂tu(0))L2(M)

+〈 f0, u|Σ〉
H
−1,− 1

2
comp,GΣ

(ΣT ),H
1, 1

2
loc,GΣ

(ΣT )
− 〈 f1, ∂νu|Σ〉

H
0, 1

2
comp,GΣ

(ΣT ),H
0,− 1

2
loc,GΣ

(ΣT )
,

and prove that it is as a continuous linear form on L2(0,T ; L2(M)), with appropriate norm. We have

|`(F)| ≤ ‖v1‖H−1‖u(0)‖H1
0

+ ‖v0‖L2(M)‖∂tu(0)‖L2(M) + R

≤ ‖(v0, v1)‖L2×H−1‖F‖L2(0,T ;L2(M)) + R,

with

R =

∣∣∣∣∣∣∣〈 f0, u|Σ〉H−1,− 1
2

comp,GΣ
(ΣT ),H

1, 1
2

loc,GΣ
(ΣT )
− 〈 f1, ∂νu|Σ〉

H
0, 1

2
comp,GΣ

(ΣT ),H
0,− 1

2
loc,GΣ

(ΣT )

∣∣∣∣∣∣∣ .
From the definition of the spaces in Section 3.2, there exists ε > 0 such that ( f0, f1) ∈ H−1,− 1

2

comp,GΣ,ε
(ΣT ) ×

H0, 1
2

comp,GΣ,ε
(ΣT ) and hence, we obtain from Lemma 3.3,

R ≤ ‖ f0‖
H
−1,− 1

2
comp,GΣ ,ε

(ΣT )
‖u|Σ‖

H
1, 1

2
loc,GΣ ,ε

(ΣT )
+ ‖ f1‖

H
0, 1

2
comp,GΣ ,ε

(ΣT )
‖∂νu|Σ‖

H
0,− 1

2
loc,GΣ ,ε

(ΣT )
.

Proposition 3.1 with A = 1 − BG
Σ

ε (satisfying the appropriate conditions) then yields

R ≤ Cε

‖ f0‖H−1,− 1
2

comp,GΣ ,ε
(ΣT )

+ ‖ f1‖
H

0, 1
2

comp,GΣ ,ε
(ΣT )

 ‖F‖L2(0,T ;L2(M)).

Coming back to `, we have obtained the existence of ε ∈ S,Cε > 0 such that

|`(F)| ≤ Cε

‖(v0, v1)‖L2×H−1 + Cε‖( f0, f1)‖
H
−1,− 1

2
comp,GΣ ,ε

(ΣT )×H
0, 1

2
comp,GΣ ,ε

(ΣT )

 ‖F‖L2(0,T ;L2(M)).

Hence, ` is a continuous linear form on L2(0,T ; L2(M)). There is thus a unique v ∈ L2(0,T ; L2(M)) such that
`(F) =

∫ T
0 (v(t), F(t))L2(M)dt for all F ∈ L2(0,T ; L2(M)), that is precisely the definition of a solution of (1.6)

in Definition 3.6. This solution moreover satisfies, for ( f0, f1) ∈ H−1,− 1
2

comp,GΣ,ε
(ΣT ) × H0, 1

2

comp,GΣ,ε
(ΣT ), the estimate

‖v‖L2(0,T ;L2(M)) ≤ ‖(v0, v1)‖L2×H−1 + Cε‖( f0, f1)‖
H
−1,− 1

2
comp,GΣ ,ε

(ΣT )×H
0, 1

2
comp,GΣ ,ε

(ΣT )
,

which is the continuity statement. This concludes the proof of the Theorem. �

4 Observability and controllability for the wave equation
The aim of this section is to study the observability of (3.1) from Σ. In particular, we prove

Theorem 4.1 (Observability). Let χ ∈ C∞(R) have χ ≡ 1 on (−∞,−1] and supp χ ⊂ (−∞,− 1
2 ]. Under

Assumption GC-(0,T), there exists δ0 > 0, so that for all δ ∈ (0, δ0), all Aδ ∈ Ψ0
phg((0,T ) × Int(Σ)) with

principal symbol χ
( r0(x′,ξ′)−τ2

δτ2

)
ϕδ, where ϕδ ∈ C∞c ((0,T )× Int(Σ)) with ϕδ ≡ 1 on [δ,T − δ]× Σδ where Σδ is as

in (3.9), for all N > 0, there exists cN > 0 so that for any solution u to (3.1), we have

cN‖(u0, u1)‖2H1×L2 ≤ ‖ϕδ∂νu|Σ0‖
2
H̄−N (R×Σ) + ‖ϕδu|Σ0‖

2
H̄−N (R×Σ)

+ ‖Aδ(∂νu|Σ0 )‖2L2(R×Σ) + ‖Aδ(u|Σ0 )‖2H̄1(R×Σ) + ‖F‖L2((0,T )×M).
(4.1)

Let us briefly explain why the observability inequality of Theorem 4.1 implies Theorem 1.9.
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Proof of Theorem 1.9. We apply Theorem 4.1 to the function u(t, x) = eitλv(x) with v ∈ H1
0(M)∩H2(M). First

observe that Aδ is bounded on L2 and hence

‖Aδ∂νu|Σ‖L2(R×Σ) ≤ C‖∂νu|Σ‖L2([0,T ]×Σ) ≤ C‖∂νv|Σ‖L2(Σ).

Observe also that there exists δ0 > 0 so that ϕδ0 Dt is elliptic on WF(Aδ) and therefore,

‖Aδu|Σ‖H̄1(R×Σ) ≤ C(‖ϕδ0 Dtu‖L2(R×Σ) + ‖u|Σ‖L2([0,T ]×Σ) ≤ C〈λ〉‖v‖L2(Σ).

Note also that
�u = eitλ(−∆g − λ

2)v

and hence the right hand side of (4.1) is bounded by

C
(
‖∂νv|Σ‖L2 + 〈λ〉‖v|Σ‖L2 + ‖(−∆g − λ

2)v‖L2((0,T )×M)

)
.

Finally, noticing that
(u|t=0, ∂tu|t=0) = (v, iλv),

gives
〈λ〉‖u‖L2(M) ≤ ‖(u|t=0, ∂tu|t=0)‖H1

0 (M)×L2(M),

finishing the proof of Theorem 1.9. �

4.1 The geometric assumption TGCC
To prove Theorem 4.1 we start with a dynamical lemma where we show that the a priori weaker assumption
GC-(0,T ) implies the stronger assumption

Assumption GC-(ε,T ). For all p ∈ Z, we have⋃
s∈R

{ϕ(s, p)} ∩ Tε ∩ T ∗(ε,T−ε)×Σε
(R × M) , ∅.

Recall that Z is as in (2.4).

Lemma 4.2. Suppose that Assumption GC-(0,T ) holds. Then there exists ε > 0 so that Assumption GC-(ε,T )
holds.

Proof. We define Z±1 := Z ∩ {τ = ±1, t = 0}. We shall show that Assumption GC-(0,T ) implies the existence
of ε > 0 such that ⋃

s∈R

{ϕ(s, p)} ∩ Tε ∩ T ∗(ε,T−ε)×Σε
(R × M) , ∅, for all p ∈ Z±1 . (4.2)

We first show that (4.2) implies the lemma. With the identification bT ∗(R × M) ' T ∗R × bT ∗M, consider
p = (t0, τ, q) ∈ (T ∗R × bT ∗M) ∩ Z. Let Mλ be multiplication in the fiber by λ > 0. Then,

p′ = ϕ(t0 sgn τ,M|τ|−1 (t0, τ, q)) ∈ Z+
1 ∪ Z−1 .

According to the homogeneity of ϕ, see (2.8), and the flow property (2.7), we have⋃
s∈R

{M|τ|−1ϕ(s, p)} =
⋃
s∈R

{ϕ(s|τ|,M|τ|−1 p)} =
⋃
s∈R

{ϕ(s|τ|, ϕ(t0 sgn τ,M|τ|−1 p))} =
⋃
s∈R

{ϕ(s, p′)}. (4.3)

But, by (4.2), since p′ ∈ Z+
1 ∪ Z−1 , we have⋃

s∈R

{ϕ(s, p′)} ∩ Tε ∩ T ∗(ε,T−ε)×Σε
(R × M) , ∅,

and hence homogeneity of ϕ,Tε and T ∗(ε,T−ε)×Σε
(R × M) together with (4.3) completes the proof of the lemma

from (4.2).
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We now prove (4.2), writing explicitly the argument for Z−1 . The case of Z+
1 is handled similarly. Notice

first that since ϕ is the generalized bicharacteristic flow for 1
2 (−τ2 + |ξ|2g), we have for p ∈ Z−1 , t(ϕ(s, p)) = s.

This, together with Assumption GC-(0,T ) implies that for each p ∈ Z−1 , we have⋃
s∈(0,T )

{ϕ(s, p)} ∩ T0 , ∅.

Therefore, for each p ∈ Z−1 , there exists εp > 0 and sp ∈ (εp,T − εp) such that

ϕ(sp, p) ∈ Tεp ∩ T ∗(εp,T−εp)×Σεp
(R × M).

Let β be a defining function for Σ0 near ϕ(sp, p), and consider g(s, q) = β ◦ π0 ◦ ϕ(s, q) for (s, q) in a neigh-
borhood Np of (sp, p), where π0 : T ∗(R × Int(M)) → R × Int(M) is the canonical projection. By [MS78,
Theorem 3.34], the Melrose–Sjöstrand generalized bicharacteristic flow ϕ is continuous and so g is continu-
ous on Np.

Moreover, since Σ is an interior hypersurface, there exists δp so that

g(·, q) : (sp − δp, sp + δp)→ j(T ∗(R × Int(M)) ∩ Char(�)) ⊂ Z

is C1 for q in a neighborhood of p since ϕ coincides with the usual bicharacteristic flow of � near ϕ(sp, p).
Notice that ϕ(sp, p) ∈ Tεp implies

∂sg(sp, p) = 〈dβ(π0 ◦ ϕ(sp, p))dπ0(ϕ(sp, p)),Hσ(�)(ϕ(sp, p))〉 , 0.

according to Remark 2.1. Hence by the implicit function theorem [Kum80], the equation g(s, q) = 0 defines a
continuous function s = s(q) near q = p. In particular, set

δ0 = min
( sp

2
,

T − sp

2

)
.

Then there is a neighborhood, Up of p and a continuous function s : Up → R with s(p) = sp, such that
ϕs(q)(q) ∈ Tεp/2 ∩ T ∗(εp/2,T−εp/2)×Σεp/2

(R × M) and |s(q) − sp| < δ0 for all q ∈ Up.
Since

Z−1 = j(Char(�) ∩ {τ = −1, t = 0})

is compact, we may extract from the cover Z−1 ⊂
⋃

p∈Z−1
Up a finite cover {Upi }

n
i=1. Then taking ε = min1≤i≤n εpi/2,

we have that for all p ∈ Z−1 , ⋃
s∈(0,T )

{ϕ(s, p)} ∩ Tε ∩ T ∗(ε,T−ε)×Σε
(R × M) , ∅.

In particular, (4.2) holds, which concludes the proof of the lemma. �

4.2 Observability at High Frequency
The aim of this section is to prove the following proposition, which is a high-frequency version of Theo-
rem 4.1. The estimates in these results differ in two respects: here in Proposition 4.4 there is ‖(u0, u1)‖2L2×H−1

in the right handside, so that this estimate does not care about low frequencies. The treatment of low frequen-
cies in Theorem 4.1 (see Section 4.3 below) requires the addition of observation terms in an arbitrary weak
norm ‖ϕδ∂νu|Σ0‖

2
H̄−N (R×Σ)

+ ‖ϕδu|Σ0‖
2
H̄−N (R×Σ)

, which is not needed here.

Proposition 4.3. Let χ ∈ C∞(R) have χ ≡ 1 on (−∞,−1] and supp χ ⊂ (−∞,− 1
2 ]. Under Assumption GC-

(0,T), there exists δ0 > 0, so that for all δ ∈ (0, δ0), all Aδ ∈ Ψ0
phg((0,T ) × Int(Σ)) with principal symbol

χ
( r0(x′,ξ′)−τ2

δτ2

)
ϕδ, where ϕδ ∈ C∞c ((0,T ) × Int(Σ)) with ϕδ ≡ 1 on [δ,T − δ] × Σδ where Σδ is as in (3.9), there

exists c > 0 so that for any solution u to (3.1), we have

c‖(u0, u1)‖2H1×L2 ≤ ‖Aδ(u|Σ0 )‖2H̄1(R×Σ) + ‖Aδ(∂νu|Σ0 )‖2L2(R×Σ) + ‖F‖2L2((0,T )×M) + ‖(u0, u1)‖2L2×H−1 . (4.4)
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We begin with two preliminary lemmas. We again work in fermi normal coordinates near Σ. A more
general of version of the following Lemma is given in [Hör85, Lemma 23.2.8], but we decided to include a
short proof in this particular context for the sake of readability.

Lemma 4.4. Denote � = −D2
t +D2

x1
+r(x,Dx′ )+c(x)Dx1 , where r is defined in Section 2.1. For any 0 < ν < 1,

there exist ε > 0 and Λ±, Λ̃± ∈ C∞((−ε, ε); Ψ1
phg(R × Rn−1)) with

σ(Λ±) = σ(Λ̃±) =

√
τ2 − r(x, ξ′) on {τ2 − r(x, ξ′) ≥ ντ2}

such that for all b ∈ C∞c
(
(−ε, ε); S 0

phg(T ∗(R × Rn−1))
)

with supp b ⊂ {τ2 − r(x, ξ′) ≥ ντ2},

Op(b)� = Op(b)
[
(Dx1 − Λ−)(Dx1 + Λ+) + R

]
Op(b)� = Op(b)

[
(Dx1 + Λ̃+)(Dx1 − Λ̃−) + R̃

]
where R, R̃ ∈ C∞((−ε, ε); Ψ−∞phg(R × Rn−1)).

Proof. Throughout this proof, we will write S k
tan for C∞

(
(−ε, ε); S k

phg(T ∗(R × Rn−1))
)

and Ψk
tan for the corre-

sponding quantization C∞((−ε, ε); Ψk
phg(R × Rn−1)). For an operator A ∈ Ψ∞tan, we will write

WF(A) =
⋃
x1

WF(Ax1 ),

where Ay1 is the pseudodifferential operator acting on Rn−1 at x1 = y1.
Given 0 < ν < 1, we let χ̌(t, x, τ, ξ′) ∈ S 0

tan with

χ̌ ≡ 1 on {τ2 − r(x, ξ′) ≥ ντ2/3}, supp χ̌ ⊂ {τ2 − r(x, ξ′) ≥ ντ2/4}.

Then, for (t, x, τ, ξ′) ∈ supp χ̌, we have the following factorization

σ(�) = −τ2 + ξ2
1 + r(x, ξ′) =

[
ξ1 +

√
τ2 − r(x, ξ′)

][
ξ1 −

√
τ2 − r(x, ξ′)

]
.

We thus let λ0(t, x, τ, ξ′) =
√
τ2 − r(x, ξ′) and Λ0 = Op(χ̌λ0).

Now, write Dx1 = Dx1 − Λ0 + Λ0 so that

� = (Dx1 − Λ0)Dx1 + Λ0Dx1 − D2
t + r(x,Dx′ ) + (Dx1 − Λ0)c(x) + [c(x),Dx1 ] + Λ0c(x)

= (Dx1 − Λ0)(Dx1 + Λ0 + c(x)) + Λ2
0 + [Λ0 + c(x),Dx1 ] − D2

t + r(x,Dx′ ) + Λ0c(x)
= (Dx1 − Λ0)Q0 + R̃0,

where

Q0 = Dx1 + Λ0 + c(x) ∈ Ψ0
tanDx1 + Ψ1

tan,

R̃0 = Λ2
0 + [Λ0 + c(x),Dx1 ] − D2

t + r(x,Dx′ ) + Λ0c(x) ∈ Ψ2
tan.

First, we remark that σ(Q0) = ξ1 + χ̌λ0. Second, noting that σ(R̃0) is independent of ξ1, we take ξ1 = λ0 on
χ̌ ≡ 1 in

σ(�) = ξ2
1 − τ

2 + r(x, ξ′) = (ξ1 − λ0χ̌)σ(Q0) + σ(R̃0)

to obtain σ(R̃0) = 0 on that set. This yields R̃0 = R0 + E0 with R0 ∈ Ψ1
tan and E0 ∈ Ψ2

tan with WF(E0) ∩
{τ2 − r(x, ξ′) ≥ ντ2} = ∅. Indeed for χ1 ∈ S 0

tan with suppχ1 ⊂ {χ̌ ≡ 1} and χ1 ≡ 1 in a neighborhood of
τ2 − r(x, ξ′) ≥ ντ2}, σ(Op(χ1)R̃0) = 0. Thus,

R̃0 = E0 + R0, E0 = Op(χ1)R̃ ∈ Ψ1
tan, R0 = Op(1 − χ1)R̃.

This implies the first factorization formula with R ∈ Ψ1
tan. We now proceed with an induction to improve this

remainder term.
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Suppose we have for some j ≥ 0

� = (Dx1 − Λ−, j)(Dx1 + Λ+, j) + R j + E j (4.5)

with Λ±, j ∈ Ψ1
tan, with principal symbol λ0χ̌, R j ∈ Ψ

1− j
tan , and E j ∈ Ψ2

tan with WF(E j)∩{τ2− r(x, ξ′) ≥ ντ2} = ∅.

Now, we want to adjust Λ±, j to improve the error R j. Let λ j+1 ∈ S − j
tan have

σ(R j) + λ j+1σ(Λ+, j + Λ−, j) = 0 in a neighborhood of χ̌ ≡ 1. (4.6)

This is possible since σ(Λ±, j) = χ̌λ0 is elliptic on a neighborhood of χ̌ ≡ 1.
Now, observe that

Op(λ j+1)(Dx1 + Λ+, j) + R j = Op(λ j+1)(Λ−, j + Λ+, j) + R j + Op(λ j+1)(Dx1 − Λ−, j)
= Op(λ j+1)(Λ−, j + Λ+, j) + R j + (Dx1 − Λ−, j) Op(λ j+1)

+ [Op(λ j+1),Dx1 − Λ−, j]
= R j+1,1 + E j+1,1 + (Dx1 − Λ−, j) Op(λ j+1),

where, according to (4.6), we have R j+1,1 ∈ Ψ
− j
tan and E j+1,1 ∈ Ψ

1− j
tan with WF(E j+1,1)∩ {χ̌ = 1} = ∅. So, coming

back to (4.5), we now obtain

� = (Dx1 − Λ−, j)(Dx1 + Λ+, j) + R j + E j

= (Dx1 − Λ−, j)(Dx1 + Λ+, j) − Op(λ j+1)(Dx1 + Λ+, j) + E j+1,1 + R j+1,1 + (Dx1 − Λ−, j) Op(λ j+1)
= (Dx1 − Λ−, j − Op(λ j+1))(Dx1 + Λ+, j) + E j+1,1 + R j+1,1

+ (Dx1 − Λ−, j − Op(λ j+1)) Op(λ j+1) + Op(λ j+1)2

= (Dx1 − Λ−, j − Op(λ j+1))(Dx1 + Λ+, j + Op(λ j+1)) + E j+1 + R j+1

where R j+1 ∈ Ψ
− j
tan and E j+1 ∈ Ψ

1− j
tan with WF(E j+1) ∩ {χ̌ = 1} = ∅. Putting Λ−, j+1 = Λ−, j + Op(λ j+1) and

Λ+, j+1 = Λ+, j + Op(λ j+1), we have (4.5) with j replaced by j + 1. Since we modified Λ−, j and Λ+, j by terms
in Ψ− j, summing asymptotically and composing on the left with Op(b) gives the desired result. Repeating the
argument but starting with Dx1 + Λ0 on the left, we obtain the second factorization. �

Lemma 4.5. Let q0 ∈ T0 ∩ T ∗((0,T ) × Rn). Suppose b0 ∈ S 0
phg

(
T ∗((0,T ) × Rn−1)

)
with supp b0 ⊂ T

Σ
0

and b0(π(q0)) = 1 (with π as in (2.10)). Then there exists a neighborhood U of q0 so that for all χ̌ ∈
S 0

phg
(
T ∗((0,T ) × Rn)

)
with supp χ̌ ⊂ U there exists ϕ̃ ∈ C∞c ((0,T ) × Rn) such that

‖Op(χ̌)u‖H1 ≤ C(‖Op(b0)Dx1 u|x1=0‖L2 + ‖Op(b0)u|x1=0‖H1 + ‖ϕ̃�u‖L2 + ‖ϕ̃u‖L2 )

Proof. Write q0 = (t0, 0, x′0, τ0, (ξ0)1, ξ
′
0). We consider the case (ξ0)1 > 0 (the case (ξ0)1 < 0 is treated

similarly) and denote by λ ∈ C∞((−ε, ε); S 0
phg(T∗(R × Rn−1)) a smooth symbol such that λ(t, x, τ, ξ′) =√

τ2 − r(x, ξ′) on a neighborhood of (−ε, ε) × supp(b0). Let b ∈ C∞((−ε, ε); S 0
phg(T ∗(R × Rn−1)) solve

∂x1 b − Hλb = 0, b|x1=0 = b0. (4.7)

Denote by Λ± the two operators given by Lemma 4.4 associated to λ, so that

Op(b)(Dx1 − Λ−)(Dx1 + Λ+) = Op(b)
(
� + R

)
,

with R ∈ C∞((−ε, ε)x1 ; Ψ−∞phg(R × Rn−1)). Letting Ωε = {x1 ∈ (−ε/2, ε/2)}, by Lemma A.1, we have

‖Op(b)(Dx1 + Λ+)u‖L2(Ωε ) ≤ C(‖Op(b0)[(Dx1 + Λ+)u]|x1=0‖L2 + ‖(Dx1 − Λ+) Op(b)(Dx1 + Λ+)u‖L2(Ωε ))
≤ C(‖Op(b0)[(Dx1 + Λ+)u]|x1=0‖L2 + ‖Op(b)(Dx1 − Λ+)(Dx1 + Λ+)u‖L2(Ωε )

+ C‖[(Dx1 − Λ+),Op(b)](Dx1 + Λ+)u‖L2(Ωε )). (4.8)
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Let us now estimate each term in the right hand-side. First, taking ϕ̌ such that ϕ̌ = 1 in a neighborhood of the
support of the kernel of Op(b) intersected with Ωε , and ϕ̃ ∈ C∞c ((0,T ) × Rn) with ϕ̃ = 1 in a neighborhood of
supp ϕ̌, we have

‖Op(b)(Dx1 − Λ+)(Dx1 + Λ+)u‖L2(Ωε ) = ‖Op(b)
(
� + R

)
u‖L2(Ωε )

≤ C‖ϕ̌
(
� + R

)
u‖L2(Ωε ) ≤ C(‖ϕ̃�u‖L2 + ‖ϕ̃u‖L2 ), (4.9)

where we used the L2 boundedness of R and Op(b) together with the fact that the quantization Op gives
operators whose kernels are compactly supported in ((0,T )×Rn)2. Second, with b̃0 ∈ S 0

phg
(
T ∗((0,T )×Rn−1)

)
with supp b̃0 ⊂ T

Σ
0 and b̃0 = 1 in a neighborhood of supp(b0), we obtain

‖Op(b0)[(Dx1 + Λ+)u]|x1=0‖L2 ≤ ‖Op(b0)Dx1 u|x1=0‖L2 + ‖Op(b0)Λ+u|x1=0‖L2

≤ ‖Op(b0)Dx1 u|x1=0‖L2 + ‖Λ+ Op(b0)u|x1=0‖L2 + ‖Op(b̃0)u|x1=0‖L2

≤ ‖Op(b0)Dx1 u|x1=0‖L2 + ‖Op(b̃0)u|x1=0‖H1 . (4.10)

Third, according to (4.7), the tangential operator [(Dx1 − Λ+),Op(b)] ∈ C∞((−ε, ε)x1 ; Ψ0
phg((0,T ) × Rn−1)) has

principal symbol 1
i {ξ1 − λ, b} = 1

i (∂x1 b − Hλb) = 0 and is hence in C∞((−ε, ε)x1 ; Ψ−1
phg((0,T ) × Rn−1)). This

yields

‖[(Dx1 − Λ+),Op(b)](Dx1 + Λ+)u‖L2(Ωε ) ≤ ‖[(Dx1 − Λ+),Op(b)]Dx1 u‖L2(Ωε ) + C‖ϕ̃u‖L2 . (4.11)

To eliminate the first term in the right handside, we let ϕ ∈ S 0
phg(R × Rn) with ϕ = 0 in a conic neighborhood

of |(τ, ξ′)| ≤ ε|ξ1| and ϕ = 1 in a conic neighborhood of |(τ, ξ′)| ≥ 2ε|ξ1|, with ε > 0 small enough so that ϕ = 1
on Char(�). We write

[(Dx1 − Λ+),Op(b)]Dx1 u = [(Dx1 − Λ+),Op(b)]Dx1 Op(ϕ)u + [(Dx1 − Λ+),Op(b)]Dx1 (1 − Op(ϕ))u

and remark first that [(Dx1−Λ+),Op(b)]Dx1 Op(ϕ) ∈ Ψ0
phg(R×Rn) due to pseudodifferential calculus (see [Hör85,

Theorem 18.1.35]), and hence

‖[(Dx1 − Λ+),Op(b)]Dx1 Op(ϕ)u‖L2(Ωε ) ≤ C‖ϕ̃u‖L2 . (4.12)

Now, 1−ϕ vanishes in a conic neighborhood of |(τ, ξ′)| ≥ 2ε|ξ1|, and hence we have [(Dx1−Λ+),Op(b)]Dx1 (1−
Op(ϕ)) ∈ Ψ1

phg(R × Rn) with principal symbol vanishing in a neighborhood of Char(�). The ellipticity of �
there yields

[(Dx1 − Λ+),Op(b)]Dx1 (1 − Op(ϕ)) = E� + R1, with E ∈ Ψ−1
phg(R × Rn),R1 ∈ Ψ−∞phg(R × Rn).

In particular,
‖[(Dx1 − Λ+),Op(b)]Dx1 (1 − Op(ϕ))u‖L2(Ωε ) ≤ C(‖ϕ̃�u‖L2 + ‖ϕ̃u‖L2 ),

which, combined with (4.9)-(4.10)-(4.11)-(4.12) in (4.8) implies

‖Op(b)(Dx1 + Λ+)u‖L2(Ωε ) ≤ C
(
‖Op(b0)Dx1 u|x1=0‖L2 + ‖Op(b̃0)u|x1=0‖H1 + ‖ϕ̃�u‖L2 + ‖ϕ̃u‖L2

)
For ψ ∈ S 0

phg(R × Rn) vanishing near |(τ, ξ′)| ≤ ε|ξ1| and such that ψ = 1 at q0, Op(ψ) Op(b)(Dx1 + Λ) ∈
Ψ1

phg(R × Rn). Moreover, since (ξ0)1 > 0 and b(t0, 0, x′0, τ0, ξ
′
0) = 1, the operator Op(ψ) Op(b)(Dx1 + Λ) is

elliptic at q0. Therefore, for χ̌ supported near enough to q0, adjusting ϕ̃ if necessary, we finally obtain

‖Op(χ̌)u‖H1 ≤ C
(
‖Op(ψ) Op(b)(Dx1 + Λ)u‖H1 + ‖ϕ̃u‖L2

)
≤ C

(
‖Op(b̃0)Dx1 u|x1=0‖L2 + ‖Op(b̃0)u|x1=0‖H1 + ‖ϕ̃�u‖L2 + ‖ϕ̃u‖L2

)
,

which concludes the proof of the lemma (up to changing b0 into b̃0 in the statement). �

We now turn to the proof of Proposition 4.3. We follow the general structure of proof introduced by Lebeau
in [Leb96], using the microlocal defect measures of Gérard [Gér91] and Tartar [Tar90]. Note that from the
quantitative estimate of Lemma 4.5, and in case ∂M = ∅, “constructive proofs” (i.e. using no contradiction
argument, and hence no defect measures) of Proposition 4.3 are possible, see [LL17] or [LL16].
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Proof of Proposition 4.3. We prove estimate (4.4) by contradiction. Assuming that estimate (4.4) is false,
there exist a sequence of data Fk ∈ L2((0,T ) × M) and (u0,k, u1,k) ∈ H1

0(M) × L2(M) with

‖(u0,k, u1,k)‖H1×L2 = 1 (4.13)

such that the associated solution (uk) to (3.1) satisfies

‖Aδ(uk |Σ0 )‖2H̄1(R×Σ) + ‖Aδ(∂νuk |Σ0 )‖2L2(R×Σ) + ‖Fk‖
2
L2((0,T )×M) + ‖(u0,k, u1,k)‖2L2×H−1 → 0. (4.14)

Classical energy estimates for then yield ‖uk‖H1([0,T ]×M) ≤ C together with ‖uk‖L2([0,T ]×M) → 0. Hence uk ⇀ 0
in H1 and, possibly after taking a subsequence, we may assume (see [Gér91, Tar90] in the case without
boundary and [Leb96] or [BL01] in the general case) there exists a nonnegative measure µ on S Ẑ (see (2.5)
for a defintion) so that,

(Auk, uk)H1(R×M) →

∫
( j−1)∗σ(A)dµ, (4.15)

for all A ∈ Ψ0
phg((0,T ) × Int(M)). Moreover, letting (x1, x′) be Fermi normal coordinates near ∂M, then the

convergence (4.15) also holds for A ∈ C∞([0, ε); Ψ2(R × ∂Mx′ )), for ε > 0. Note that in both cases ( j−1)∗σ(A)
lies in C0(S Ẑ) since σ(A) is independent of ξ1 for x1 small enough.

Let us first show that µ ≡ 0. Notice that Lemma 4.2 implies there exists ε > 0 so that Assumption GC-(ε,T)
holds. We first prove that µ = 0 on a neighborhood of Tε∩T ∗(ε,T−ε)×Σε

(R×M). Then, since µ is invariant under
the generalized bicharacteristic flow ϕ(s, ·) defined in (2.6) (which passes to the quotient space S Ẑ according
to homogeneity (2.8)), see [Leb96, BL01], Assumption GC-(ε,T) implies µ ≡ 0 (note that it is sufficient that
supp(µ) is invariant).

Suppose q0 ∈ Tε ∩ T ∗[ε,T−ε]×Σε
(R × M). Then for δ < ε, we have σ(Aδ)(π(q0)) = 1. Therefore, Lemma 4.5

applies with Op(b0) = Aδ and hence for χ̌ supported close enough to q0,

‖Op(χ̌)uk‖H1 ≤ C(‖AδDx1 uk |x1=0‖L2 + ‖Aδuk |x1=0‖H1 + ‖ϕ̃�uk‖L2(Ωε) + ‖ϕ̃uk‖L2(Ωε))).

Now, the right hand side tends to 0 by assumption. Thus, pseudodifferential calculus together with (4.15),
imply the existence of a conic neighborhood U of q0 so that µ(U/R∗+) = 0. Since this is true for any q0 ∈

Tε ∩ T ∗[ε,T−ε]×Σε
(R × M), there is a conic neighborhood U1 of Tε ∩ T ∗(ε,T−ε)×Σε

(R × M) so that µ(U1/R
∗
+) = 0.

Invariance of µ and Assumption GC-(ε,T) imply that µ vanishes identically, which precisely means

uk → 0 in H1((0,T ) × M). (4.16)

Now, we denote
Ek(t) := ‖∇uk(t, ·)‖2L2(M) + ‖∂tuk(t, ·)‖2L2(M),

and observe from (4.13)-(4.14) that Ek(0)→ 1. Moreover, for all s1, s2 ∈ [0,T ], we have

|Ek(s2) − Ek(s1)| ≤

∣∣∣∣∣∣12
∫ s2

s1

∂tEk(t)dt

∣∣∣∣∣∣ ≤ ‖Fk‖L2‖uk‖H1 → 0.

In particular, since this convergence is uniform in s1, s2,∫ T

0
Ek(t)dt =

∫ T

0
Ek(t) − Ek(0)dt + T Ek(0)→ T.

Together with (4.16), this yields

0 < T ←

∣∣∣∣∣∣
∫ T

0
Ek(t)dt

∣∣∣∣∣∣ ≤ ‖uk‖
2
H1 → 0,

and hence the sought contradiction. �
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4.3 Observability: the Low Frequencies. From Proposition 4.3 to Theorem 4.1
There are different ways of writing the compactness-uniqueness argument of [BLR92] (both reducing the
problem to a unique continuation property for Laplace eigenfunctions). The first one is the precise argu-
ment of [BLR92]: it uses again the geometric condition together with the propagation of wavefront sets (see
also [LLTT16]). A second form seems to be due to [BG02]: it is a bit longer but uses only that the observation
region is time invariant. We write this version of the proof in the present context.

We first need a weak unique continuation property from a hypersurface. This is a weak version of Theo-
rem 1.7, but we chose to give a proof since it is much less involved. Note that no compactness is assumed and
no boundary conditions are prescribed here.

Lemma 4.6 (Unique continuation). Let Σ be a nonempty interior hypersurface of a connected manifold M
and assume

(−∆g − λ
2)u = 0 in M, u|Σ = ∂νu|Σ = 0,

then u vanishes identically.

Proof. Let Ω be a nonempty connected open set of M such that Ω∩ Σ , ∅ and Ω = Ω+ ∪ (Ω∩ Σ)∪Ω− where
the union is disjoint. Then, setting

v(x) = u(x) for x ∈ Ω+, v(x) = 0 for x ∈ Ω−,

we have v ∈ L2(Ω), with, moreover (∂ν pointing towards Ω+)

(−∆g − λ
2)v = 0 − [v]Σδ

′
Σ + (c(x)[v]Σ − [∂νv]Σ)δΣ = −u|Σδ′Σ + (c(x)u|Σ − ∂νu|Σ)δΣ = 0.

This follows from the jump formula written in Fermi coordinate charts (x1, x′) with Ω+ = {x1 > 0} ∩ Ω and
−∆ = −∂2

x1
+ R(x1, x′,D′) + c(x)Dx1 with R tangential (see Section 2.1).

A classical unique continuation result for elliptic operators (see e.g. [LRL12, Theorem 4.2]) then implies
that v = 0 in all Ω. From the definition of v, this yields u|Ω+ = 0, and, using again the elliptic unique
continuation result and the connectedness of M, implies that u vanishes identically in M. �

We next define for any T > 0 and ε > 0 the set of invisible solutions from [ε,T − ε] × Σε where Σε is as
in (3.9):

N(ε,T ) =
{
(u0, u1) ∈ H1

0(M) × L2(M) such that the associated solution of (3.1) with F = 0
satisfies ∂νu|Σ = u|Σ = 0 inD′

(
(ε,T − ε) × Σε

)}
,

We have the following lemma, which is a consequence of Proposition 4.3.

Lemma 4.7. Suppose GC-(0,T) holds. Then there exists ε0 > 0 such that for all 0 < ε < ε0, we have
N(ε,T ) = {0}.

We denote byA the generator of the wave group, namely

A =

(
0 − Id
−∆g 0

)
, D(A) = (H2 ∩ H1

0(M)) × H1
0(M), (4.17)

so that the wave equation (3.1) with F = 0 may be rewritten as

∂tU +AU = 0, U |t=0 = U0 = (u0, u1). (4.18)

Proof. Step 1: N(ε,T ) is finite dimensional. First, Proposition 3.1 implies that N(ε,T ) is a closed linear
subspace of H1

0(M) × L2(M) for all ε > 0. Since Assumption GC-(0,T) holds, we may apply Proposition 4.3.
The kernel of the operator Aδ in (4.4) is compactly supported in (0,T )× Int(Σ), and hence in (ε0,T − ε0)×Σε0

for some ε0 > 0. Thus, for all 0 < ε < ε0, the relaxed observability inequality (4.4) applied to elements of
N(ε,T ) gives

c‖(u0, u1)‖2H1
0×L2 ≤ ‖(u0, u1)‖2L2×H−1 , for all (u0, u1) ∈ N(ε,T ), (4.19)
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since the kernel of the operator Aδ is compactly supported in (ε0,T − ε0) × Σε0 , and u|Σ, ∂νu|Σ vanish on this
set.

Using the compact imbedding H1
0 × L2 ⊂ L2 × H−1, this implies that the unit ball of N(ε,T ) for the

H1
0 × L2-norm is compact, that is, N(ε,T ) has finite dimension. Note also that it is thus complete for any

norm.

Step 2: N(ε,T ) ⊂ C∞(M) andAN(ε,T ) ⊂ N(ε,T ).
Taking η > 0, sufficiently small (namely η < ε0 − ε), we remark that (4.19) is also satisfied by all

U0 = (u0, u1) ∈ N(ε+η,T ). Taking U0 ∈ N(ε,T ) implies that, for all ε ∈ (0, η), we have e−εAU0 ∈ N(ε+η,T ).
We also have, for λ0 sufficiently large,

(λ0 +A)−1 1
ε

(Id−e−εA)U0 =
1
ε

(Id−e−εA)(λ0 +A)−1U0 →
ε→0+
A(λ0 +A)−1U0 in H1

0 × L2,

as (λ0 + A)−1U0 ∈ D(A). As a consequence, the sequence
( 1
ε
(Id−e−εA)U0

)
ε>0 is a Cauchy sequence in

N(T ′ − η), endowed with the norm ‖(λ0 + A)−1 · ‖H1
0×L2 . As all norms are equivalent in N(ε + η,T ), the

sequence
( 1
ε
(Id−e−εA)U0

)
ε>0 is thus also a Cauchy sequence in this space, endowed with the norm ‖ · ‖H1

0×L2 ,
which yields AU0 ∈ H1

0 × L2. Hence, we have N(ε,T ) ⊂ D(A). This argument may be inductively repeated
to prove that N(ε,T ) ⊂ D(Ak) for all k ∈ N, and yields in particular, that functions in N(ε,T ) are C∞(M).

Take now U0 ∈ N(ε,T ), and denote by U(t) the associated solution of (3.1), or equivalently (4.18). Then,
u ∈ C∞(R × M), and using the fact that ∂t is tangential to the manifold R × Σ (thus commuting with ∂ν), we
obtain that ∂tu|Σ(t, x) = 0 and ∂ν(∂tu)|Σ(t, x) = 0 for all (t, x) ∈ [ε,T − ε]× Σε (since this U0 ∈ N(ε,T ) implies
that this is satisfied by u). This is ∂tU |t=0 ∈ N(ε,T ). Remarking then that we haveAU0 = −∂tU |t=0 ∈ N(ε,T ),
this impliesAN(ε,T ) ⊂ N(ε,T ).

Step 3: reduction to unique continuation for Laplace eigenfunctions: end of the proof. SinceN(ε,T )
is a finite dimensional subspace of D(A), stable by the action of the operator A, it contains an eigenfunction
of A. There exist µ ∈ C and U = (u0, u1) ∈ N(ε,T ) such that AU = µU, that is, given the definition of A
in (4.17), −∆Du0 = −µ2u0 and u1 = −µu0. Hence u0 is an eigenfunction of the Laplace-Dirichlet operator
on M, associated to −µ2 ∈ R+, i.e. µ = iλ, λ ∈ R. The associated solution to (3.1) is u(t, x) = eiλtu0, and
U0 ∈ N(ε,T ) implies ∂νu0|Σ = u0|Σ = 0. This, together with the fact that u0 is a Laplace eigenfunction and
Lemma 4.6 proves that u0 = 0 and then U = 0. This proves that N(ε,T ) = {0}. �

From Lemma 4.7, we can now conclude the proof of Theorem 4.1.

Proof of Theorem 4.1. We proceed by contradiction and suppose that the observability inequality (4.1) does
not hold for any δ > 0. Thus, for any δ > 0, there exists a sequence (uk

0, u
k
1, F

k)k∈N of H1
0(M) × L2(M) ×

L2((0,T ) × M) such that, with uk the associated solution to (3.1), we have

‖(uk
0, u

k
1)‖H1

0×L2 = 1, (4.20)

‖ϕδ∂νuk |Σ‖
2
H̄−N (R×Σ) + ‖ϕδuk |Σ‖

2
H̄−N (R×Σ) + ‖Fk‖L2((0,T )×M) → 0, (4.21)

‖Aδ(∂νuk |Σ)‖L2(R×Σ) + ‖Aδ(uk |Σ)‖2H̄1(R×Σ) → 0. (4.22)

From (4.20), we may extract a subsequence of (uk
0, u

k
1) converging weakly in H1

0 × L2 to some (u0, u1). Denote
by u the associated solution to (3.1), with F = 0. Since Fk → 0 in L2 we may further extract from uk a
subsequence converging to u weakly in H1((0,T )×M). According to Proposition 3.1, we have ∂νuk |Σ ⇀ ∂νu|Σ
and uk |Σ ⇀ u|Σ weakly in H−1((0,T ′) × Σ). But according to (4.21), this yields

ϕδ∂νu|Σ = ϕδu|Σ = 0,

and in particular, taking δ < ε,
∂νu|Σ = u|Σ = 0, on [ε,T − ε] × Σε.

Thus,
(u0, u1) = (u(0), ∂tu(0)) ∈ N(ε,T ).
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So, from Lemma 4.7, we obtain (u0, u1) = 0. The imbedding H1
0 ×L2 ↪→ L2×H−1 being compact, this implies

‖(uk
0, u

k
1)‖L2×H−1 → ‖(u0, u1)‖L2×H−1 = 0. (4.23)

Finally, Proposition 4.3 implies that (4.4) holds for any δ < δ0. Therefore, taking δ < min(ε, δ0) and
using (4.20), (4.21), (4.22), (4.23) in the relaxed observability inequality (4.4), we obtain at the limit 0 < c ≤ 0,
which is a contradiction. �

4.4 Controllability of the Wave Equation
Theorem 1.5 is a straightforward corollary of the following theorem. Recall that ĒΣ = EΣ ∪ GΣ.

Theorem 4.8. Assume (Σ,T ) satisfies Assumption GC-(0,T ). Then there exists a continuous map

L2(M) × H−1(M) 3 (v0, v1) 7→ ( f0, f1) ∈
⋂
N∈N

H−1,N
comp,ĒΣ

(ΣT ) × H0,N
comp,ĒΣ

(ΣT )

(the latter space being a Fréchet space when endowed with the seminorms of all H−1,N
comp,ĒΣ

(ΣT )×H0,N
comp,ĒΣ

(ΣT ))
so that the associated solution to (1.6) has v ≡ 0 for t ≥ T.

Proof. Fix 0 < T < T1. Then define

L2([T,T1] × M) = {F ∈ L2([0,T1] × M), supp F ⊂ [T,T1]}

and for N ≥ 1
2 the map

K : L2([T,T1] × M)→ H1,−N
loc,ĒΣ

(ΣT ) × H0,−N
loc,ĒΣ

(ΣT )

given by
F 7→ (u|(0,T )×Σ,−∂νu|(0,T )×Σ)

where u solves 
�u = F on (0,T1) × Int(M),
u = 0 on (0,T1) × ∂M,
(u|t=T1 , ∂tu|t=T1 ) = (0, 0) in Int(M).

This map is well defined by (3.15). Define also the operator S : L2([T,T1] × M)→ H1
0(M) × L2(M) by

S (F) := (u|t=0, ∂tu|t=0). (4.24)

Now, suppose that Assumption GC-(0,T ) holds and let Aδ as in Theorem 4.1. For ε > 0 small BĒ
Σ

ε is
elliptic on WF(Aδ) and hence using the elliptic parametrix construction we write

Aδ = GBĒ
Σ

ε + R

with R ∈ Ψ−∞phg((0,T ) × Int(Σ)), and G ∈ Ψ0
phg((0,T ) × Int(Σ)). Therefore Theorem 4.1 implies that there exists

ε > 0 small enough depending only on (Σ,T ) and for all N ∈ N, there exists CN > 0 so that

‖S (F)‖H1
0 (M)×L2(M) ≤ CN‖K(F)‖H1,−N

loc,ĒΣ ,ε
(ΣT )×H0,−N

loc,ĒΣ ,ε
(ΣT ). (4.25)

Let (v0, v1) ∈ H−1(M) × L2(M) and define the linear functional `N : ran(K)→ C by

`N(K(F)) = 〈S (F), (−v1, v0)〉H1
0 (M)×L2(M),H−1(M)×L2(M)

where S is defined in (4.24). Then, `N is well defined and continuous by (4.25). In particular,

|`N(K(F))| ≤ CN‖(v0, v1)‖H−1(M)×L2(M)‖K(F)‖H1,−N
loc,ĒΣ ,ε

(ΣT )×H0,−N
loc,ĒΣ ,ε

(ΣT ).
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Since `N is a continuous linear functional defined on a subspace of H1,−N
loc,ĒΣ

(ΣT ) × H0,−N
loc,ĒΣ

(ΣT ) by the Hahn-
Banach theorem `N extends to a continuous linear functional on the whole space (still denoted `N) with

|`N(w1,w2)| ≤ CN‖(v0, v1)‖H−1(M)×L2(M)‖(w1,w2)‖H1,−N
loc,ĒΣ ,ε

(ΣT )×H0,−N
loc,ĒΣ ,ε

(ΣT ).

Thus, by Lemma 3.4, there exists ( f0,N , f1,N) ∈ H−1,N
comp,ĒΣ

(ΣT ) × H0,N
comp,ĒΣ

(ΣT ) so that for all (w1,w2) ∈

H1,−N
loc,ĒΣ

(ΣT ) × H0,−N
loc,ĒΣ

(ΣT ), we have

`N(w1,w2) = 〈(w1,w2), ( f0,N , f1,N)〉H1,−N
loc,ĒΣ

×H0,−N
loc,ĒΣ

,H−1,N
comp,ĒΣ

×H0,N
comp,ĒΣ

,

and hence for some ε′ > 0,

‖( f0,N , f1,N)‖H1,N
loc,ĒΣ ,ε′

(ΣT )×H0,N
loc,ĒΣ ,ε′

(ΣT ) ≤ CN,ε,ε′‖(v0, v1)‖H−1(M)×L2(M).

Let v be the unique solution to
�v = f0,NδΣ + f1,Nδ′Σ on (0,T1) × Int(M),
v = 0 on (0,T1) × ∂M,
(v, ∂tv)|t=0 = (v0, v1) in Int(M),

given by Definition 3.6 and Theorem 3.7. Then for any F ∈ L2([T,T1] × M) we have

〈v, F〉L2((0,T1)×M) = 〈v1, u(0)〉H−1(M),H1(M) − (v0, ∂tu(0))L2(M)

+ 〈 f0,N , u|Σ〉H−1,N
comp,ĒΣ

(ΣT ),H1,−N
loc,ĒΣ

(ΣT ) − 〈 f1,N , ∂νu|Σ〉H0,N
comp,ĒΣ

(ΣT ),H0,−N
loc,ĒΣ

(ΣT )

= 〈(v1,−v0), S (F)〉H−1(M)×L2(M),H1
0 (M)×L2(M)

+ 〈( f0,N , f1,N),K(F)〉H−1,N
comp,ĒΣ

×H1,N
comp,ĒΣ

,H1,−N
loc,ĒΣ

×H0,−N
loc,ĒΣ

= 〈(v1,−v0), S (F)〉H−1(M)×L2(M),H1
0 (M)×L2(M) + `N(K(F))

= 〈(v1,−v0), S (F)〉H−1(M)×L2(M),H1
0 (M)×L2(M)

+ 〈(−v1, v0), S (F)〉H−1(M)×L2(M),H1
0 (M)×L2(M) = 0.

Since this is true for all F ∈ L2([T,T1] × M), we obtain v ≡ 0 on [T,T1] × M.
Now, for k > N, the inclusion H−1,k

comp,ĒΣ
(ΣT ) × H0,k

comp,ĒΣ
(ΣT ) ⊂ H−1,N

comp,ĒΣ
(ΣT ) × H0,N

comp,ĒΣ
(ΣT ) is dense and

H1,−N
loc,ĒΣ

(ΣT )×H0,−N
loc,ĒΣ

(ΣT ) ⊂ H1,−k
loc,ĒΣ

(ΣT )×H0,−k
loc,ĒΣ

(ΣT ) is dense. So, in particular, `N extends to a linear functional

on H1,−k
loc,ĒΣ

(ΣT ) × H0,−k
loc,ĒΣ

(ΣT ) by density. This yields

〈(w1,w2), ( f0,k, f0,k)〉H1,−N
loc,ĒΣ

×H0,−N
loc,ĒΣ

,H−1,N
comp,ĒΣ

×H0,N
comp,ĒΣ

= 〈(w1,w2), ( f0,N , f1,N)〉H1,−N
loc,ĒΣ

×H0,−N
loc,ĒΣ

,H−1,N
comp,ĒΣ

×H0,N
comp,ĒΣ

for all (w1,w2) ∈ H1,−N
loc,ĒΣ

(ΣT ) × H0,−N
loc,ĒΣ

(ΣT ). This implies that f0,k = f0,N and f1,k = f1,N and hence that

f0,N ≡ f0 ∈
⋂

N

H−1,N
comp,ĒΣ

(ΣT ), f1,N ≡ f1 ∈
⋂

N

H0,N
comp,ĒΣ

(ΣT ),

which concludes the proof of the theorem. �

5 Controllability of the heat Equation

5.1 Well-posedness for the heat equation controlled from a hypersurface
The well-posedness theory is easier than that of the wave equation since the regularity theory for the heat
equation directly implies that the traces of the solution on Σ are “admissible” observations, in the usual sense,
see [Cor07, Chapter 2.3] and [TW09, Chapter 4.3].
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Lemma 5.1. Given T > 0, assume that the functions v ∈ C∞([0,T ] × M \ Σ) ∩ C0((0,T ); L2(M)) u, F ∈
C∞([0,T ] × M) and f0, f1 ∈ C∞c ((0,T ) × Int(Σ)) solve

(∂t − ∆)v = f0δΣ + f1δ′Σ in D′((0,T ) × Int(M)), and (−∂t − ∆)u = F.

Then, we have the identity[
(v, u)L2(M)

]T

0
+ (v, F)L2((0,T )×M) =

∫
(0,T )×Σ

(
f0u|Σ − f1∂νu|Σ

)
dσdt.

Also, we have the following “admisibility result” (regularity of traces).

Lemma 5.2. Given T > 0, there is C > 0 such that for all F ∈ L2((0,T ) × M), ũ ∈ H1
0(M) and u associated

solution of 
(−∂t − ∆)u = F on (0,T ) × Int(M),
u = 0 on (0,T ) × ∂M,
u|t=T = ũ in Int(M),

(5.1)

we have
‖∂νu|Σ‖2

L2(0,T ;H
1
2 (Σ))

+ ‖u|Σ‖2
L2(0,T ;H

3
2 (Σ))
≤ C‖F‖2L2((0,T )×M) + C‖ũ‖2H1(M).

Proof. This is a direct consequence of the regularity theory for the heat equation (5.1), namely u ∈ C0([0,T ]; H1
0(M))∩

L2(0,T ; H2(M)) ∩ H1(0,T ; H1
0(M)), with

‖u‖2L∞(0,T ;H1(M)) + ‖u‖2L2(0,T ;H2(M)) + ‖u‖2H1(0,T ;H1(M)) ≤ C‖F‖2L2((0,T )×M) + C‖ũ‖2H1(M),

see e.g. [Eva98, Chapter 7.1.3, Theorem 5]. The standard trace estimates then yield

‖∂νu|Σ‖2
L2(0,T ;H

1
2 (Σ))

+ ‖u|Σ‖2
L2(0,T ;H

3
2 (Σ))
≤ C‖u‖2L2(0,T ;H2(M)),

which concludes the proof of the lemma. �

This suggests the following definition (see [Cor07, Chapter 2.3]) of solutions of the controlled heat equa-
tion (1.10).

Definition 5.3. Given T > 0, v0 ∈ H−1(M), f0 ∈ L2(0,T ; H−
3
2

comp(Int(Σ))), f1 ∈ L2(0,T ; H−
1
2

comp(Int(Σ))), we say
that v is a solution of (1.6) if v ∈ C0([0,T ]; H−1(M)) and for any t ∈ [0,T ], for any ũ ∈ H1

0(M), we have

〈v(t), ũ〉H−1,H1
0

= 〈v0, u(0)〉H−1,H1
0

+

∫ t

0
〈 f0(s), u|Σ(s)〉

H
− 3

2
comp(Σ),H

3
2

loc(Σ)
− 〈 f1(s), ∂νu|Σ(s)〉

H
− 1

2
comp(Σ),H

1
2

loc(Σ)
ds.

where u is the unique solution to 
(−∂s − ∆)u = 0 on (0, t) × Int(M)
u = 0 on (0, t) × ∂M
u|s=t = ũ in Int(M),

(5.2)

i.e. u(s) = e(t−s)∆ũ.

The following result is a direct consequence of (a slight variation on) [Cor07, Theorem 2.37] and the
admissibility estimate of Lemma 5.2.

Theorem 5.4 (Well-posedness of the controlled heat equation). Let T > 0. There exist C > 0 such that for

all v0 ∈ H−1(M), f0 ∈ L2(0,T ; H−
3
2

comp(Int(Σ))), f1 ∈ L2(0,T ; H−
1
2

comp(Int(Σ))), there exists a unique solution v
of (1.10) in the sense of Definition 5.3 and we have:

‖v‖L∞(0,T ;H−1(M)) ≤ C
(
‖v0‖H−1(M) + ‖ f0‖

L2(0,T ;H
− 3

2 (Σ))
+ ‖ f1‖

L2(0,T ;H
− 1

2 (Σ))

)
.
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5.2 Global interpolation inequality and universal lower bound for traces of eigen-
functions

We follow the general Lebeau-Robbiano method [LR95] and use moreover a Carleman estimate of [LR97].
We refer to [LRL12] for an exposition of these works.

The global strategy [LR95] is the following:

1. Local Carleman estimates

2. =⇒ local interpolation estimates

3. =⇒ a global interpolation estimate

4. =⇒ finite dimensional observability/controllability for an elliptic evolution equation

5. =⇒ finite dimensional observability/controllability for the heat equation

6. =⇒ observability/controllability for the heat equation.

Also, the unique continuation estimate for eigenfunctions of Theorem 1.7 can be deduced from the global
interpolation estimate. The present section proves steps 1, 2, 3. The next section is devoted to that of steps
4, 5, 6.

In the following, for α > 0, we set Yα = (−α, α) × M, Σα = (−α, α) × Σ, and denote Q = −∂2
s − ∆g.

Theorem 5.5 (Global interpolation). Let S > β > 0. For all ψ ∈ C∞c (Σβ) not identically vanishing, there exist
C, δ > 0 such that

‖v‖H1(Yβ) ≤ C
(
‖Qv‖L2(YS ) + ‖ψv|Σβ‖L2(Σβ) + ‖ψ∂νv|Σβ‖L2(Σβ)

)δ
‖v‖1−δH1(YS ) (5.3)

for all v ∈ H2(YS ) such that v|(−S ,S )×∂M = 0.

If we were considering a second order elliptic operator Q on a manifold YS with smooth boundary, and
with Dirichlet condition on the whole ∂YS , this estimate would simply read

‖v‖H1(YS ) ≤ C
(
‖Qv‖L2(YS ) + ‖ψv|Σ0‖L2(Σ0) + ‖ψ∂νv|Σ0‖L2(Σ0)

)
.

However, here YS = (−S , S ) ×M is not smooth at (−S , S ) × ∂M and it is crucial for the next arguments that
no boundary condition is prescribed at the boundary ({−S } ∪ {S }) × M.

The proof of Theorem 5.5 follows from arguments of Lebeau and Robbiano [LR95, LR97]. The idea is
that such interpolation inequalities follow locally from Carleman estimates, and then propagate well. Hence,
our task is only

(i) to deduce from a local Carleman estimate near Σβ that the traces at the boundary “control” a small
nonempty open set near Σβ (i.e. that (5.3) holds with, in the l.h.s. the local H1 norm in this set)

(ii) to use a global interpolation inequality implying that such a small set “controls” the H1(Yβ) norm, and
then put the two inequalities together.

For the second point (ii), we can start from the following result of [LR95, Section 3, Estimate (1)].

Theorem 5.6. Let U ⊂ YS be any nonempty open set, then there is C > 0 and δ0 ∈ (0, 1) such that we have

‖v‖H1(Yβ) ≤ C
(
‖Qv‖L2(YS ) + ‖v‖H1(U)

)δ0
‖v‖1−δ0

H1(YS ) (5.4)

for all v ∈ H2(YS ) such that v|(−S ,S )×∂M = 0.
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As a consequence, it suffices to prove the first point (i), namely, that there exists such an U such that, for
some C, δ1 > 0 we have

‖v‖H1(U) ≤ C
(
‖Qv‖L2(YS ) + ‖ψv|Σβ‖L2(Σβ) + ‖ψ∂νv|Σβ‖L2(Σβ)

)δ1
‖v‖1−δ1

H1(YS ), (5.5)

which is now a local estimate. Indeed, (5.4) together with (5.5) directly yield (5.3) for δ = δ0δ1 (see
e.g. [LR95, Lemme 4]).

To prove (5.5), we shall take m ∈ Σ a point for which ψ(m) , 0, and assume that the set U is a small
neighborhood of m intersected with a single side of Σ. Also, we shall say that ∂ν is pointing towards U.
We now work in the local Fermi normal coordinates near m ∈ Σ, described in Section 2.1. The operator
Q = −∂2

s −∆g, still denoted by Q in these coordinates, is given, modulo conjugation by a harmless exponential
factor, by

Q = −∂2
x1
− ∂2

s + r(x1, x′,
∂x′

i
), with principal symbol q = ξ2

1 + ξ2
s + r(x1, x′, ξ′),

where

• (s, x′) are the variables in (−S , S ) × Σ, ξs ∈ R is the cotangent variable associated to s;

• variables are in a neighborhood of zero in the half space Rn+1
+ = Rs × R+,x1 × R

n−1
x′ (we only estimate

things on {x1 > 0}, where U is);

• ∂ν is given by ∂x1 in these coordinates.

Now, the proof of (5.5) relies on the following Proposition [LR97, Proposition 1]. Here, the variable s
does not play a particular role: hence, in what follows, we only write (with a slight abuse of notation) x ∈ Rn+1

for the overall variable, and accordingly q = q(x, ξ) = q(s, x1, x′, ξs, ξ1, ξ
′). We also use the notation

qϕ(x, ξ) = q(x, ξ + idϕ(x)).

Proposition 5.7. Let R > 0 and ϕ ∈ C∞ in a neighborhood of K := Rn+1
+ ∩ B(0,R) and such that

• ∂x1ϕ , 0 on K,

• (Hörmander subellipticity condition) ∀(x, ξ) ∈ K×Rn+1, qϕ(x, ξ) = 0 =⇒ {Re(qϕ), Im(qϕ)}(x, ξ) > 0.

Then, we have

h‖eϕ/hu‖2L2(Rn+1
+ ) + h3‖eϕ/h∇u‖2L2(Rn+1

+ )

. h4‖eϕ/hQu‖2L2(Rn+1
+ ) + h‖eϕ/hu|x1=0‖

2
L2(Rn) + h3‖eϕ/h∂x1 u|x1=0‖

2
L2(Rn) (5.6)

for all u ∈ C∞(Rn+1
+ ) such that supp(u) ⊂ B(0,R) and h ∈ (0, h0).

The end of proof of Theorem 5.6 is then similar to [LR95] or [LZ98, Appendix].

End of the proof of Theorem 5.6. We first fix R > 0 small enough such that B(0,R) is contained in the coordi-
nate chart and that the set B(0,R) ∩ {x1 = 0} (where the observation shall take place) is contained in the set
{ψ > 0} (where ψ is the cutoff function appearing in (5.3)). Second, we define the weight function ϕ(x) =

e−µ|x−xa | − e−µ|x
a |, where µ > 0 (large, to be chosen) and, for a ∈ (0,R), we have xa = (0, · · · , 0,−a) < Rn+1

+ .
Hence, ϕ is smooth and satisfies ∂x1ϕ , 0 on K = Rn+1

+ ∩ B(0,R).
According to classical computations (see e.g. [LRL12, Lemma A.1]), ϕ satisfies the Hörmander subellip-

ticity condition on K for µ large enough (depending on R and a, and fixed from now on).
Note that levelsets of ϕ are balls. Moreover, we have ϕ(0) = 0 and ϕ(x) < 0 if |x − xa| > |xa|, and in

particular on {x1 > 0}.
For ε > 0 sufficiently small (depending on R, a and µ), the set {ϕ ≥ −4ε} ∩ Rn+1

+ is contained in B(0,R) ∩
Rn+1

+ , where (5.6) holds. Also, the set {ϕ ≥ −4ε}∩ {x1 = 0} ⊂ B(0,R)∩{x1 = 0} is contained in the set {ψ > 0}.
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Finally, setting
U := {ϕ > −

ε

2
} ∩ {x1 > 0},

we have U , ∅ since ϕ(0) = 0 and ϕ < 0 on {x1 > 0}.
We let χ ∈ C∞(Rn+1) such that χ = 1 on {ϕ ≥ −2ε} and χ = 0 on {ϕ ≤ −3ε}, and apply (5.6) to u = χv. We

have ϕ ≤ 0 on the support of u so that

‖eϕ/hu|x1=0‖
2
L2(Rn) ≤ ‖χ|x1=0v|x1=0‖

2
L2(Rn) ≤ C‖ψv|x1=0‖

2
L2(Rn)

‖eϕ/h∂x1 u|x1=0‖
2
L2(Rn) ≤ ‖∂x1χ|x1=0v|x1=0‖

2
L2(Rn) + ‖χ|x1=0∂x1 v|x1=0‖

2
L2(Rn)

≤ C‖ψv|x1=0‖
2
L2(Rn) + C‖ψ∂x1 v|x1=0‖

2
L2(Rn).

Using that χ = 1 on {ϕ ≥ − ε2 } ⊂ {ϕ ≥ −ε} and U = {ϕ ≥ − ε2 } ∩ R
n+1
+ , we have that

h‖eϕ/hu‖2L2(Rn+1
+ ) + h3‖eϕ/h∇u‖2L2(Rn+1

+ ) ≥ h‖eϕ/hu‖2L2(U) + h3‖eϕ/h∇u‖2L2(U)

≥ h3e−ε/h‖v‖2H1(U) ≥ e−
3
2 ε/h‖v‖2H1(U).

Finally, we have Qχv = χQv + [Q, χ]v, where [Q, χ] is a first order differential operator with coefficients
supported in {−ε ≥ ϕ ≥ −2ε} ∩ Rn+1

+ . Thus, we have

h4‖eϕ/hQu‖2L2(Rn+1
+ ) . ‖eϕ/hχQv‖2L2(Rn+1

+ ) + ‖eϕ/h[Q, χ]v‖2L2(Rn+1
+ )

. ‖Qv‖2L2(K) + e−2ε/h‖v‖2H1(K).

Combining the last three estimates with (5.6), we find that there is C, h0 > 0 such that for any v ∈ C∞(Rn+1),
for all h ∈ (0, h0), we have

e−
3
2 ε/h‖v‖2H1(U) ≤ C‖ψv|x1=0‖

2
L2(Rn) + C‖ψ∂x1 v|x1=0‖

2
L2(Rn) + C‖Qv‖2L2(K) + Ce−2ε/h‖v‖2H1(K)

and hence, for all h ∈ (0, h0),

‖v‖2H1(U) ≤ Ce
3
2 ε/h

(
‖ψv|x1=0‖

2
L2(Rn) + ‖ψ∂x1 v|x1=0‖

2
L2(Rn) + ‖Qv‖2L2(K)

)
+ Ce−

1
2 ε/h‖v‖2H1(K)

After an optimization in the parameter h (see [Rob95]), this yields the existence of C > 0 and δ1 ∈ (0, 1) such
that

‖v‖2H1(U) ≤ C
(
‖ψv|x1=0‖

2
L2(Rn) + ‖ψ∂x1 v|x1=0‖

2
L2(Rn) + ‖Qv‖2L2(K)

)δ1
‖v‖2(1−δ1)

H1(K) ,

which, coming back to the original variables, implies (5.5), and then according to Theorem 5.6 and [LR95,
Lemme 4]), concludes the proof of Theorem 5.5 (see the above discussion). �

From Theorem 5.5, we deduce a proof of Theorem 1.7.

Proof of Theorem 1.7. For a non identically vanishing function ψ such that supp(ψ) ⊂ Σβ, we apply Theo-
rem 5.5 to v(s, x) = eλsu(x) ∈ C∞((−S , S ); H2(M) ∩ H1

0(M)), which satisfies

Qv = eλs(−∆g − λ
2)u, in Int(YS ),

as well as v|(−S ,S )×∂M = 0. Hence, Equation (5.3) gives

‖v‖2L2(Yβ) ≤ C
(
e2Sλ‖(−∆g − λ

2)u‖2L2(M) + ‖ψv|Σβ‖
2
L2(Σβ) + ‖ψ∂νv|Σβ‖

2
L2(Σβ)

)δ
‖v‖2(1−δ)

H1(YS ) (5.7)

and we estimate each remaining term. First, we have

‖v‖2L2(Yβ) ≥ C
e2βλ

λ
‖u‖2L2(M).
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Second, we write

‖v‖2H1(YS ) = ‖∂sv‖2L2(YS ) + ‖∇gv‖2L2(YS ) + ‖v‖2L2(YS )

= ‖u‖2L2(M)

∫ S

−S
2λ2e2λs + e2λsds + ((−∆g − λ

2)u, u)L2(M)

∫ S

−S
e2λsds

≤ Cecλ(‖u‖2L2(M) + ‖(−∆g − λ
2)u‖L2(M)‖u‖L2(M)).

We may assume that ‖(−∆g − λ
2)u‖L2(M) ≤ ‖u‖L2(M) since otherwise the inequality (1.11) holds trivially, and

therefore obtain
‖v‖2H1(YS ) ≤ Cecλ‖u‖2L2(M).

Third, we have

‖ψv|Σβ‖
2
L2(Σβ) + ‖ψ∂νv|Σβ‖

2
L2(Σβ) ≤

∫ S

−S
e2λs

(
‖u|Σ‖2L2(Σ) + ‖∂νu|Σ‖2L2(Σ)

)
ds

≤ 2S e2λS
(
‖u|Σ‖2L2(Σ) + ‖∂νu|Σ‖2L2(Σ)

)
.

Plugging the above three inequalities in (5.7) and dividing by ‖u‖2(1−δ)
L2(M) (if non zero) yields the sought result.

�

5.3 From interpolation inequality to observability in an abstract setting: the original
Lebeau-Robbiano method revisited

In this section, we explain how to deduce the observability estimate for the heat equation from the interpolation
inequality of Theorem 5.5. This follows the Lebeau-Robbiano method introduced in [LR95] in its original
form (used also in [Léa10]), as opposed to the simplified version (see e.g. [LZ98, LRL12]) which uses the
stronger spectral inequality [JL99, LZ98] (which we do not prove in the present context). We explain how
this method can be simplified using [Mil10, EZ11b, EZ11a].

We consider an abstract setting containing the above particular situation of the heat equation. Most results
presented here still hold in the much more general abstract setting of [Mil10]. In Section 5.4 below, we explain
how the problem of the heat equation controlled by a hypersurface is put in this general framework.

We denote by H (with norm ‖ · ‖) and K (with norm ‖ · ‖K) two Hilbert spaces, namely the state space
and the observation space. We denote by A : D(A) ⊂ H → H a non-positive selfadjoint operator on H, with
compact resolvent. We denote by (φ j) an orthonormal basis of eigenfunctions associated to the eigenvalues
λ2

j ≥ 0 of −A (we keep the notation used for the Laplace operator) and set

Eλ := span{φ j, λ j ≤ λ}, λ > 0. (5.8)

The operator A generates a contraction semigroup (etA) on H. We denote by B ∈ L(D(A); K) the obser-
vation operator. We say that B is an admissible observation for (etA) if there is T > 0 and Cadm,T > 0 such
that

‖BetAy‖L2((0,T ),K) ≤ Cadm,T ‖y‖, for all y ∈ D(A). (5.9)

On account of the semigroup property, (5.9) holds for all T > 0 if it holds for some T (see [Cor07, Sec-
tion 2.3]). Hence, under the above admissibility assumption, for any T > 0, the map u0 7→ (t 7→ BetAu0)
extends uniquely as a continuous linear map H → L2(0,T ; K), which we shall still denote BetA.

In our next lemma, we use the notation, for s ∈ N and τ > 0,

H s
τ =

s⋂
n=0

Hs−n
(
−τ, τ;D((−A)n/2)

)
,

normed by

‖v‖H s
τ

=

( ∑
n+m≤s

‖∂m
t (I − A)n/2v‖2L2(−τ,τ;H)

)1/2
.
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Lemma 5.8. Let S > β > 0 and ϕ ∈ C∞c (−S , S ). Assume there is C > 0 and δ ∈ (0, 1) such that for all
v ∈ H2

S , we have

‖v‖H1
β
≤ C

(
‖(−∂2

s − A)v‖H0
S

+ ‖ϕ(s)Bv‖L2(−S ,S ;K)

)δ
‖v‖1−δ
H1

S
. (5.10)

Then, there exists S ,C, c > 0 such that

‖v0‖
2 + ‖v1‖

2 ≤ Cecλ ‖ϕ(s)Bv(s)‖2L2(−S ,S ;K) , for all λ > 0, (v0, v1) ∈ Eλ × Eλ,

with

v(s) = cosh(s
√
−A)v0 +

sinh(s
√
−A)

√
−A

v1. (5.11)

Note that in the formula (5.11), we extend cosh(s
√
−A) (resp. sinh(s

√
−A)

√
−A

) by continuity by Id (resp. by
s Id) on ker(A). Thus, denoting by Π0 the orthogonal projector on ker(A) and Π+ = Id−Π0, (5.11) can be
rewritten more explicitely by

v(s) = cosh(s
√
−A)Π+v0 + Π0v0 +

sinh(s
√
−A)

√
−A

Π+v1 + sΠ0v1.

Hence v(s) in (5.11) is the unique solution to

(−∂2
s − A)v = 0, (v, ∂sv)|s=0 = (v0, v1).

Proof of Lemma 5.8. Note first that with v in (5.11), we have (−∂2
s − A)v(s) = 0 so that, in (5.10), it suffices to

estimate ‖v‖H1
S

from above and ‖v‖H1
β

from below. For (v0, v1) ∈ Eλ × Eλ, we denote by wk = Π0vk, k = 0, 1,

and w± = 1
2 (Π+v0 ± (−A)−1/2Π+v1). This is

Π+v0 = w+ + w−, Π+v1 =
√
−Aw+ −

√
−Aw−,

and the parallelogram law yields

‖(−A)
k
2 Π+v0‖

2 + ‖(−A)
k−1

2 Π+v1‖
2 = 2(‖(−A)

k
2 w+‖2 + ‖(−A)

k
2 w−‖2).

We also have, with w± =
∑

0<λ j≤λ w±j φ j,

v(s) = cosh(s
√
−A)v0 +

sinh(s
√
−A)

√
−A

v1 = es
√
−Aw+ + e−s

√
−Aw− + w0 + sw1

=
∑

0<λ j≤λ

(esλ j w+
j + e−sλ j w−j )φ j + w0 + sw1.

Now, we estimate ‖v‖H1
S

and ‖v‖H1
β

in terms of λ. Firstly, we have

‖v‖2
H1
β

≥ ‖v‖2
H0
β

=
∑

0<λ j≤λ

∫ β

−β

∣∣∣esλ j w+
j + e−sλ j w−j

∣∣∣2 ds +

∫ β

−β

‖w0 + sw1‖
2 ds

=
∑

0<λ j≤λ

e2βλ j − e−2βλ j

2λ j

(
|w+

j |
2 + |w−j |

2
)

+ 4βRe(w+
j w−j ) + 2β‖w0‖

2 +
2
3
β3‖w1‖

2

= 2β
∑

0<λ j≤λ

Q j
(
(w+

j ,w
−
j ), (w+

j ,w
−
j )
)

+ 2β‖w0‖
2 +

2
3
β3‖w1‖

2,

where Q j is the matrix

Q j =

 sinh(X j)
X j

1

1 sinh(X j)
X j

 , X j = 2βλ j.
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The eigenvalues of Q j are sinh(X j)
X j
± 1 ≥ εeX j/2 on the set [2βλ̃0,+∞[, where λ̃0 is the first non-zero eigenvalue

of −A, and ε only depends on 2βλ̃0. As a consequence, we obtain

‖v‖2
H1
β

≥ C
(
‖v0‖

2 + ‖v1‖
2
)
.

Secondly, we also have

‖v‖2
H1

S
=

∫ S

−S
‖∂sv‖2 + ‖(I − A)

1
2 v‖2 + ‖v‖2ds

≤
∑

0<λ j≤λ

(|w+
j |

2 + |w−j |
2)

∫ S

−S
(2λ2

j + 4)e2sλ j ds

+2
∫ S

−S
‖w0 + sw1‖

2 ds +

∫ S

−S
‖w1‖

2 ds

≤ Ce3Sλ
(
‖v0‖

2 + ‖v1‖
2
)
.

Combining the last two estimates together with (5.10) yields

‖v0‖
2 + ‖v1‖

2 ≤ C‖ϕ(s)Bv‖2δL2(−S ,S ;K)

(
Ce3Sλ(‖v0‖

2 + ‖v1‖
2))1−δ

,

and hence the sought result when dividing by
(
‖v0‖

2 + ‖v1‖
2)1−δ . �

The next step of the Lebeau-Robbiano method relies on a so-called “transmutation argument” to deduce
from the observability of the elliptic system on Eλ the observability of the heat equation on Eλ, with a pre-
cise estimate on the cost in terms of λ and T (observation time). Here, we use an idea of Ervedoza and
Zuazua [EZ11b, EZ11a] to simplify the original argument of Lebeau and Robbiano [LR95] (who used the
moment method of Russell to pass from the elliptic system to the parabolic system, and was quite technically
involved, see [Léa10] for a review of the method).

Lemma 5.9. Assume that there exists S ,C, c > 0 such that

‖v0‖ ≤ Cecλ

∥∥∥∥∥∥B
sinh(s

√
−A)

√
−A

v0

∥∥∥∥∥∥
L2(−S ,S ;K)

, for all λ > 0, v0 ∈ Eλ.

Then, there exist C, c > 0 such that

‖eT Au0‖ ≤ Cecλ+ c
T ‖BetAu0‖L2(0,T ;K), for all T > 0, λ > 0, u0 ∈ Eλ.

Note that in the assumption of Lemma 5.9, sinh(s
√
−A)

√
−A

can equivalently be replaced by cosh(s
√
−A).

We need the following lemma, which is a slight variant on [EZ11b, EZ11a].

Lemma 5.10. Given S ,T > 0, δ ∈ (0, 1), and α > S 2
(
1 + 1

δ

)
, there exists a function kT ∈ C∞([0,T ]× [−S , S ])

satisfying

(∂t − ∂
2
s)kT = 0, for (t, s) ∈ (0,T ) × (−S , S ), (5.12)

kT |t=0 = 0, kT |t=T = 0, for s ∈ (−S , S ),
kT |s=0 = 0, ∂skT |s=0 = e−α(

1
t + 1

T−t ), for t ∈ (0,T ),
(5.13)

|kT (t, s)| ≤ |s|e
1
τ

(
s2
δ −

α
1+δ

)
, τ = min(t,T − t), for (t, s) ∈ (0,T ) × (−S , S ). (5.14)

For the proof of Lemma 5.10, we follow [EZ11b, Section 3.1], where the authors go from the wave
equation to the heat equation. Here, we use the method to go from an elliptic equation to heat equation. The
only difference is that we take g2k+1 = g(k)

1 where Ervedoza and Zuazua [EZ11b, EZ11a] take g2k+1 = (−1)kg(k)
1

in the proof below.

35



Sketch of proof of Lemma 5.10. The starting point is that, if it converges, then the function

kT (t, s) =
∑
n∈N

sn

n!
gn(t), g2k = g(k)

0 , g2k+1 = g(k)
1 , k ∈ N, (5.15)

solves (5.12). Choose g0 = 0 and, for α > 0, choose g1 to be the Gevrey function

g1(t) =

e−α(
1
t + 1

T−t ) if t ∈ (0,T ),
0 otherwise.

Then, [EZ11a, Lemma 3.1] yields for all δ ∈ (0, 1), |g2k+1(t)| = |g(k)
1 (t)| ≤ k!

(δτ)k e−
α

(1+δ)τ with τ = min(t,T − t).

This implies (see [EZ11b, Equation (3.8)]) that for all δ ∈ (0, 1), S > 0 and α > S 2
(
1 + 1

δ

)
, the series (5.15)

converges towards kT ∈ C∞([0,T ] × [−S , S ]) with (5.14)-(5.13). �

With this lemma, the proof of Lemma 5.9 follows [EZ11b, Section 3.1].

Proof of Lemma 5.9. We first pick δ ∈ (0, 1), and α > S 2
(
1 + 1

δ

)
, and denote by kT the kernel then furnished

by Lemma 5.15. Given u0 ∈ Eλ, we define

v(s) :=
∫ T

0
kT (t, s)etAu0dt.

From the above properties of kT , the function v(s) satisfies

(v, ∂sv)|s=0 =

(
0,

∫ T

0
g1(t)etAu0dt

)
∈ Eλ × Eλ,

where g1(t) = e−α(
1
t + 1

T−t ), together with

∂2
sv(s) =

∫ T

0
∂2

skT (t, s)u(t)dt =

∫ T

0
∂tkT (t, s)etAu0dt = −

∫ T

0
kT (t, s)∂tetAu0dt

= −

∫ T

0
kT (t, s)AetAu0dt = −A

(∫ T

0
kT (t, s)etAu0dt

)
= −Av(s).

Hence, v(s) =
sinh(s

√
−A)

√
−A

(∫ T
0 g1(t)etAu0dt

)
, so that Lemma 5.9 yields the estimate∥∥∥∥∥∥

∫ T

0
g1(t)u(t)dt

∥∥∥∥∥∥ ≤ Cecλ‖Bv(s)‖L2(−S ,S ;K).

Now, writing u0 =
∑

j α jφ j, we have∥∥∥∥∥∥
∫ T

0
g1(t)etAu0dt

∥∥∥∥∥∥2

=
∑

j

∣∣∣∣∣∣
∫ T

0
g1(t)e−tλ2

jα jdt

∣∣∣∣∣∣2

≥
∑

j

(∫ T

0
g1(t)dt

)2

e−2Tλ2
j |α j|

2 =

(∫ T

0
g1(t)dt

)2 ∥∥∥eT Au0
∥∥∥2
≥

T 2

9
e−

9α
T

∥∥∥eT Au0
∥∥∥2
.

Also, we have from (5.14) the estimate

‖Bv(s)‖2L2(−S ,S ;K) =

∫ S

−S

∥∥∥∥∥∥
∫ T

0
kT (t, s)BetAu0dt

∥∥∥∥∥∥2

K
ds

≤

(∫
]0,T [×]−S ,S [

kT (t, s)2dtds
) ∫ T

0
‖BetAu0dt‖2Kdt

≤ CS T
∫ T

0
‖BetAu0dt‖2Kdt.

Combining the last three estimates concludes the proof of Lemma 5.9. �
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From the low frequency observability estimate with precise cost, we may now deduce the full observability
estimate. The original Lebeau-Robbiano strategy [LR95] does not provide with an optimal dependance on the
blow-up of the constant as T → 0+. The modified and simplified argument of [Mil10] does so, and we follow
it here.

Lemma 5.11. Assume B : D(A) ⊂ H → K is an admissible observation for (etA). Assume for some a0, a, b > 0
we have

‖eT Ay‖ ≤ a0eaλ+ b
T ‖BetAy‖L2(0,T ;K), for all y ∈ Eλ, λ > 0,T > 0. (5.16)

Then there is C, c > 0 such that we have

‖eT Ay‖ ≤ Ce
c
T ‖BetAy‖L2(0,T ;K), for all y ∈ H,T > 0.

A proof of this lemma (in much more generality) is included in the proof of [Mil10, Theorem 2.1], but we
give it for the sake of readability. The key feature of the semigroup (etA) we shall use is that

‖etAy‖H ≤ e−λ
2t‖y‖H , for all y ∈ E⊥λ , λ > 0, t > 0. (5.17)

We also make use of the following particular case of [Mil10, Lemma 2.1].

Lemma 5.12. Let T∗ > 0, q ∈ (0, 1) and f : (0,T∗]→ R∗+ increasing, such that limt→0+ f (t) = 0. Assume that
B is an admissible observation for (etA) and that

f (T )‖eT Ay‖2 − f (qT )‖y‖2 ≤ ‖BetAy‖2L2(0,T ;K), for all T ∈ (0,T∗) and y ∈ H.

Then we have

f ((1 − q)T )‖eT Ay‖2 ≤ ‖BetAy‖2L2(0,T ;K), for all T ∈ (0,T∗) and y ∈ H.

Proof of Lemma 5.11. For y ∈ H, we decompose y = yλ + rλ with yλ ∈ Eλ and rλ ∈ E⊥λ . Then, we estimate

‖eT Ay‖ ≤ ‖eT Ayλ‖ + ‖eT Arλ‖. (5.18)

Concerning the second term in (5.18), we only use (5.17) to write

‖eT Arλ‖ ≤ e−λ
2T ‖rλ‖ ≤ e−λ

2T ‖y‖.

Concerning the first term in (5.18), we write eT A = eεT Ae(1−ε)T A and apply (5.16) to e(1−ε)T Ayλ ∈ Eλ to obtain

‖eT Ayλ‖ ≤ a0eaλ+ b
εT ‖BetAe(1−ε)T Ayλ‖L2(0,εT ;K)

≤ a0eaλ+ b
εT
(
‖BetAe(1−ε)T Ay‖L2(0,εT ;K) + ‖BetAe(1−ε)T Arλ‖L2(0,εT ;K)

)
.

We remark that ‖BetAe(1−ε)T Ay‖L2(0,εT ;K) = ‖BetAy‖L2((1−ε)T,T ;K) ≤ ‖BetAy‖L2(0,T ;K) and estimate the last term
using (5.9), and then (5.17) as

‖BetAe(1−ε)T Arλ‖L2(0,εT ;K) ≤ Cadm,εT ‖e(1−ε)T Arλ‖ ≤ Cadm,εT e−λ
2(1−ε)T ‖rλ‖

≤ Cadm,εT e−λ
2(1−ε)T ‖y‖.

Combining the above three estimates in (5.18) implies for all y ∈ H, T > 0 and λ > 0,

‖eT Ay‖ ≤ a0eaλ+ b
εT ‖BetAy‖L2(0,T ;K) + e−λ

2(1−ε)T
(
a0eaλ+ b

εT Cadm,εT + e−ελ
2T

)
‖y‖.

We notice that Cadm,εT ≤ Cadm,T∗ for T ≤ T∗ and ε ∈ (0, 1), and denote m1 := Cadm,T∗ + 1
a0

. We then rewrite
this estimate for λ = 1

rT , with r > 0 to be chosen, as

1
a0

e−
1
T ( a

r + b
ε )‖eT Ay‖ ≤ ‖BetAy‖L2(0,T ;K) + m1e−

1−ε
r2

1
T ‖y‖, T ≤ T∗.
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Writing f (T ) = 1
2a2

0
e−

2
T ( a

r + b
ε ), and assuming the parameters ε ∈ (0, 1), r > 0, q ∈ (0, 1) are such that

1
q

(
a
r

+
b
ε

)
≤

1 − ε
r2 ,

(which we may, taking e.g. ε = q = 1/2 and r sufficiently small) we have
(
m1e−

1−ε
r2

1
T

)2
≤ f (qT ) for T ∈ (0,T ′]

for some T ′ ∈ (0,T∗], and we obtain

f (T )‖eT Ay‖2 ≤ ‖BetAy‖2L2(0,T ;K) + f (qT )‖y‖2.

Lemma 5.12 implies

f ((1 − q)T )‖eT Ay‖2 ≤ ‖BetAy‖2L2(0,T ;K), T ∈ (0,T ′], y ∈ H,

which is the sought result for t ∈ (0,T ′]. The case T > T ′ follows from the boundedness of the semigroup
and the case T < T ′. �

5.4 From interpolation inequality to the observability estimate for the heat equation
Let us now put the above context of the heat equation in the present abstract framework, and state the con-
sequences of the above abstract setting. We have H = H1

0(M), A = ∆D (the Dirichlet Laplacian) with
D(A) = {u ∈ H3(M), u|∂M = 0,∆gu|∂M = 0}. We also have K = L2(Σ) × L2(Σ) as well as

B : D(A) ⊂ H3(M) → L2(Σ) × L2(Σ)
u 7→ (u|Σ, ∂νu|Σ).

Lemma 5.2 implies that B is an admissible observation for (etA) in the sense of (5.9).
The first lemma is a consequence of the interpolation inequality of Theorem 5.5 and Lemma 5.8. Here,

Eλ is defined by (5.8) where φ j, λ j are an orthonormal basis of solutions to

(−∆g − λ
2
j )φ j = 0.

Lemma 5.13 (observability of finite dimensional elliptic equation). Assume M is connected and Σ is nonempy.
Then, for all S > 0, there exists C, c > 0 such that for all λ > 0, all (v0, v1) ∈ Eλ × Eλ and associated solution
v of 

(−∂2
s − ∆)v = 0 on (−S , S ) × Int(M),

v = 0 on (−S , S ) × ∂M,
(v, ∂sv)|s=0 = (v0, v1) in Int(M),

(5.19)

we have
‖(v0, v1)‖H2×H1 ≤ Cecλ

(
‖v|Σ‖L2((−S ,S )×Σ) + ‖∂νv|Σ‖L2((−S ,S )×Σ)

)
.

This together with Lemma 5.9 this implies the following result.

Lemma 5.14 (observability of finite dimensional heat equation with precise cost). Assume M is connected
and Σ is nonempy. Then, there exists C, c > 0 such that for all λ,T > 0, all u0 ∈ Eλ and associated solution u
of 

(∂t − ∆)u = 0 on (0,T ) × Int(M),
u = 0 on (0,T ) × ∂M,
u|t=0 = u0 in Int(M),

(5.20)

we have
‖u(T )‖H1 ≤ Cecλ+ c

T

(
‖u|Σ‖L2((0,T )×Σ) + ‖∂νu|Σ‖L2((0,T )×Σ)

)
.

Lemma 5.11 finally yields the following observability result.
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Theorem 5.15 (observability for heat equation). Assume M is connected and Σ is nonempy. Then, there exist
C, c > 0 such that for all T > 0, all u0 ∈ H1(M) and associated solution u of (5.20), we have

‖u(T )‖H1 ≤ Ce
c
T

(
‖u|Σ‖L2((0,T )×Σ) + ‖∂νu|Σ‖L2((0,T )×Σ)

)
.

From this observability estimate and the duality with the control problem (1.10), given by Definition 5.3,
we deduce the null-controllability of the heat equation Theorem 1.6. The proof is classical and we omit it (see
e.g. [Cor07, Chapter 2.3]).

A Facts and notations of pseudodifferential calculus
Here, we follow [Bur97, Section 1.1] or [DLRL14, Section 2.1] for the notation. We denote by X an open
set of a d dimensional manifold, which, in the main part of the article, is, with d = n − 1, n, n + 1, one of the
following:

X = Rd, X = Int(M), X = (0,T ) × Int(M), X = Int(Σ), X = (0,T ) × Int(Σ), X = Int(Σ). (A.1)

We also denote by x the variable in X (whereas, in case X = (0,T ) × Int(M) the variable in denoted (t, x) in
the main part of the article). We denote by π0 : T ∗X → X the canonical projection.

We write S m
hom(T ∗X) for the set of positively homogeneous degree m functions on T ∗X with compact

support in X. That is, a ∈ S m
hom(T ∗X) if and only if a ∈ C∞(T ∗X), π0(supp(a)) is a compact of X, and there is

R > 0 (depending on a) such that for (x, ξ) ∈ T ∗X, with |ξ| ≥ R λ ≥ 1, we have a(x, λξ) = λma(x, ξ). For any
m, the restriction to the sphere S ∗X = T ∗M/R+

∗

S m
phg(T ∗X)→ C∞c (S ∗X), a(x, ξ)→ lim

λ→∞
λ−ma(x, λξ), (A.2)

is onto, which identifies, for m fixed, smooth functions on the sphere with homogeneous symbols of degree m.
We also write S m

phg(T ∗X) for the set of polyhomogeneous symbols of order m on X with compact support
in X. That is, a ∈ S m

phg(T ∗X) if and only if a ∈ C∞(T ∗X), π0(supp(a)) is a compact of X, and there exist

a j ∈ S m− j
hom(T ∗X), such that for all N ∈ N, a −

∑N
j=0 a j ∈ S m−N−1(T ∗X). We recall that symbols in the class

S m
phg(T ∗Rd) behave well with respect to changes of variables, up to symbols in S m−1

phg (T ∗Rd) (see [Hör85,
Theorem 18.1.17 and Lemma 18.1.18]).

We denote by Ψm
phg(X) the space of polyhomogeneous pseudodifferential operators of order m on X, with

a compactly supported kernel in X × X: one says that A ∈ Ψm
phg(X) if

1. its kernel K(x, y) ∈ D′(X × X) is such that supp(K) is compact in X × X;

2. K(x, y) is smooth away from the diagonal ∆X = {(x, x); x ∈ X};

3. for every coordinate patch Xκ ⊂ X with coordinates Xκ 3 x 7→ κ(x) ∈ X̃κ ⊂ R
d and all φ0, φ1 ∈ C∞c (Xκ)

the map
u 7→ φ1

(
κ−1)∗Aκ∗(φ0u)

is in Op(S m
phg(Rd × Rd)). Note that for a ∈ S m

phg(Rd × Rd) we write Op(a) for the standard quantization
of a.

In case X is not compact (which happens in most examples of (A.1)), we also define a non-canonical
quantization procedure Op : S m

phg(T ∗X) → Ψm
phg(X). For this, fix χn ∈ C∞c (X; [0, 1]) so that χn(x) ↑ 1

for all x ∈ X uniformly on compact sets. Then fix (Xi, κi) a coordinate atlas for X. Let ψi ∈ C∞c (X) be a
partition of unity subordinate to Xi and ψ̃i ∈ C∞c (Xi) with suppψi ⊂ {ψ̃i ≡ 1}. For a ∈ S m

phg(X), notice that
ai(x, ξ) := ψi(κ−1

i (x))a(κi(x), ([∂κ−1
i (x)]−1)tξ) has ai ∈ S m

phg(Rd × Rd). We then define

Op(a) =
∑

i

χNκ
∗
i
[(

(κ−1
i )∗ψ̃i

)
Opi(ai)(κ−1

i )∗(ψ̃iχNu)
]
, N := inf{n | supp a ∩ supp(1 − χn) = ∅}.

Note that for all A ∈ Ψm
phg(X), there exists a ∈ S m

phg(T ∗X) so that

Op(a) − A = R ∈ Ψ−∞phg(X)
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(see e.g. [DZ, Appendix E]).
For A ∈ Ψm

phg(X), we denote by σm(A) ∈ S m
hom(T ∗X) the principal symbol of A (see [Hör85, Chapter 18.1]).

Note that the principal symbol is uniquely defined in S m
hom(T ∗X) because of the polyhomogeneous structure

(see the remark following Definition 18.1.20 in [Hör85]). When it will not lead to confusion, we abuse
notation slightly and write σ(A) for the principal symbol of a pseudodifferential operator without reference to
the order. The applications σm and Op enjoy the following properties:

• The sequence
0→ Ψm−1

phg (T ∗X)→ Ψm
phg(X)

σm
−→ S m

hom(T ∗X)→ 0

is exact.

• σm ◦ Op : S m
phg(T ∗X)→ S m

hom(T ∗X) is the natural projection map.

• For all A ∈ Ψm
phg(X), σm(A∗) = σm(A).

• For all A1 ∈ Ψ
m1
phg(X) and A2 ∈ Ψ

m2
phg(X), we have A1A2 ∈ Ψ

m1+m2
phg (X) with

σm1+m2 (A1A2) = σm1 (A1)σm2 (A2).

• For all A1 ∈ Ψ
m1
phg(X) and A2 ∈ Ψ

m2
phg(X), we have [A1, A2] = A1A2 − A2A1 ∈ Ψ

m1+m2−1
phg (X) with

σm1+m2−1([A1, A2]) =
1
i
{σm1 (A1), σm2 (A2)}.

Here, {a1, a2} denotes the Poisson bracket, given in local charts by

{a1, a2} =
∑

l

(∂ξl a1∂xl a2 − ∂xl a1∂ξl a2).

• If A ∈ Ψm
phg(X), then A maps continuously Hk

loc(X) into Hk−m
comp(X). In particular, for m < 0, A is compact

on Hk(X).

Given an operator A ∈ Ψm
phg(X), we define Char(A) = {ρ ∈ T ∗X \ 0, σm(A)(ρ) = 0} its characteristic set and

Ell(A) = (T ∗X \ 0) \ Char(A)

its elliptic set.

We define the wavefront set of an operator A ∈ Ψm
phg(X), denoted by WF(A) as follows (see [Hör85, Propo-

sition 18.1.26 p88]). We say (x0, ξ0) ∈ T ∗X is not in WF(A) if there exists B ∈ Ψ0
phg(X) with σ0(B)(x0, ξ0) = 1

and
BA : D′(X)→ C∞c (X).

Note that in local coordinates, the wavefront set this is given by the support of the full symbol of A (seen as a
subset of S ∗Rd).

Also, in the main part of the article, we use so-called “tangential” symbols, pseudodifferential operators
and pseudodifferential calculus. We write a ∈ C∞((−ε, ε); S m

phg(T ∗Rd)) if a = a(x1, x′, ξ′) is a smooth x1-
dependent family of symbols in the (x′, ξ′) variables. We write A ∈ C∞((−ε, ε); Ψm

phg(Rd)) for the associated
operators. The rules of pseudodifferential calculus are then as above.

Finally, in the main part of the article, we use estimates for the hyperbolic Cauchy problem. We state the
following Lemma from Hörmander [Hör85, Lemma 23.1.1].

Lemma A.1. Let ε > 0, suppose that λ = λ(x1, x′, ξ′) ∈ C∞((−ε, ε); S 1
phg(T ∗Rd)) is real valued and write

Λ = Op(λ). Then for all s ∈ R, there exists C > 0 so that for x1, y1 ∈ (−ε, ε) and all u, f solutions of

(Dx1 − Λ)u = f ,

we have
‖u(x1, ·)‖Hs(Rd) ≤ C(‖u(y1, ·)‖Hs(Rd) + ‖ f ‖L2((−ε,ε);Hs(Rd)))

and moreover
‖u(x1, ·)‖Hs(Rd) ≤ C(‖u‖L2((−ε,ε);Hs(Rd)) + ‖ f ‖L2((−ε,ε);Hs(Rd))).

Note that the second estimate is obtained from the first one by integrating in y1.
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B Sharpness of Theorem 1.7: Proof of Proposition 1.8
We start with an abstract simple lemma linking the symmetries of the manifold with that of solutions to related
elliptic problems.

Lemma B.1. Let (M, g) be a compact Riemannian manifold possibly with boundary and suppose that there
is an isometric involution j : M → M (i.e. a diffeomorphism such that j∗g = g and j2 = Id) and a compact
hypersurface Σ ⊂ M such that

M = M+ t M− t Σ, Fix( j) =: Σ

where
Fix( j) := {x ∈ M | j(x) = x}

and j(M+) = M−. Let V ∈ C∞(M) such that V ◦ j = V. Suppose that u, v solve

(−∆g + V)u = 0 in Int M+, u|Σ = 0, u|∂M = 0,
(−∆g + V)v = 0 in Int M+, ∂νv|Σ = 0, v|∂M = 0.

Then,

uo :=

u(x) x ∈ M+ ∪ Σ,

−u( j(x)) x ∈ M−,
ue :=

v(x) x ∈ M+ ∪ Σ,

v( j(x)) x ∈ M−,

satisfy uo, ue ∈ C∞(M) and solve

(−∆g + V)uo = 0 in Int M, uo|∂M = 0, uo|Σ = 0,
(−∆g + V)ue = 0 in Int M, ue|∂M = 0, ∂νue|Σ = 0.

Proof. Notice first that ∂M+ = Σ t (∂M ∩ M+) and by elliptic regularity, we have u, v ∈ C∞(M+). Moreover,
if w± ∈ C2(M±), then, in the distribution sense (with ∂ν pointing towards M+)

(−∆g + V)w(x) = 1M+
(−∆g + V)w+ + 1M− (−∆g + V)w− − (w+|Σ − w−|Σ)δ′Σ − (∂νw+|Σ − ∂νw−|Σ)δΣ.

Hence,
(−∆g + V)ue = (−∆g + V)uo = 0

as distributions and by elliptic regularity, ue, uo ∈ C∞ and hence have the desired properties. �

We may now proceed to the proof of Proposition 1.8.

Proof of Proposition 1.8. The Riemannian volume element is R(z)dzdθ and the Laplace Beltrami operator is
given by

∆g =
1

R(z)
∂zR(z)∂z +

1
R(z)2 ∂

2
θ = ∂2

z +
R′

R
∂z +

1
R2 ∂

2
θ .

The map
T : L2(M,R(z)dzdθ) → L2(M, dzdθ)

u 7→ Tu, (Tu)(z, θ) = R(z)
1
2 u(z, θ)

is an isometry and the conjugated operator of ∆g is

∆̃ = T∆gT−1 = R1/2∆gR−1/2 = ∂2
z +

1
4

(
R′

R

)2

−
1
2

R′′

R
+

1
R2 ∂

2
θ

= ∂2
z +

1
R(z)2 ∂

2
θ − V1(z),

where

V1(z) = −
1
4

R′(z)2

R(z)2 +
1
2

R′′(z)
R(z)2

is a smooth θ-independent potential on M.
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We now construct eigenfunctions of ∆̃ under the form φ̃k(z, θ) = eikθψk(z). Setting h = k−1, this amounts
to find eigenfunctions of the operator

Ph := −h2∂2
z +

1
R(z)2 + h2V1(z)

with Dirichlet boundary conditions on ±π. We shall rather consider this operator on (0, π), and then com-
plete the construction by symmetry with Lemma B.1. Recall that the potential V(z) = 1

R(z)2 satisfies V(0) =

1,V(π/2) = 1/5,V(π) = 2. Denoting by E
e/o
h the eigenvalues of Ph on (0, π) associated to Dirichlet on π and

Neumann on 0 for Ee
h, resp. Dirichlet on 0 for Eo

h. The Weyl law (see e.g. [DS99, Corollary 9.7], [Zwo12,
Theorem 6.8] or [SV97, Theorem 1.2.1]) implies

]{E
e/o
h ,

1
5
≤ E

e/o
h ≤

1
2
} ∼h→0+ (2πh)−1

∣∣∣∣∣∣
{

(z, ξ) ∈ (0, π) × R,
1
5
≤ ξ2 + V(z) ≤

1
2

}∣∣∣∣∣∣ ,
so that, recalling the form of V , there is h0 > 0 such that for h ∈ (0, h0), the set {E

e/o
h ,

1
5 ≤ E

e/o
h ≤

1
2 } is nonempty.

We pick such an eigenvalue E
e/o
h ∈ [ 1

5 ,
1
2 ], and denote ψ

e/o
h an associated eigenfunction, i.e., which satisfies

(Ph − E
e/o
h )ψ

e/o
h = 0, ‖ψ

e/o
h ‖L2(0,π) , 0, ψ

e/o
h (π) = 0, ∂zψ

e
h(0) = 0, ψo

h(0) = 0.

Applying now Lemma B.1 on M = [−π, π] with j(z) = −z, so that Fix( j) = {z = 0} allows to extend ψ
e/o
h by

parity/imparity as solutions of

(Ph − E
e/o
h )ψ

e/o
h = 0 on (−π, π), ‖ψ

e/o
h ‖L2(−π,π) , 0, ψ

e/o
h (±π) = 0, ∂zψ

e
h(0) = 0, ψo

h(0) = 0.

Now, since E
e/o
h ∈ [ 1

5 ,
1
2 ] and V(0) = 1

R(0)2 = 1 > 1
2 , 0 is in the classically forbidden region, so that classical

Agmon estimates (see e.g. [DS99, Chapter 6] or [Zwo12, Chapter 6]), yield for ε, h0 > 0 small enough, for
any N > 0, the existence of C, c > 0 such that for all h ∈ (0, h0)

‖ψ
e/o
h ‖HN (−ε,ε) ≤ Ce−c/h‖ψ

e/o
h ‖L2(−π,π).

Coming back to the variables (z, θ), setting (λ
e/o
k )2 = k2Ek−1 ∈ k2[ 1

5 ,
1
2 ] and φ̃

e/o
k (z, θ) = eikθψ

e/o
k−1 (z), we have

obtained for k ≥ k0 solutions to(
− ∆̃ − (λ

e/o
k )2)φ̃e/o

k = 0, φ̃
e/o
k (±π) = 0, ‖φ̃

e/o
k ‖L2 , 0,

together with
φ̃o

k |Σ = 0, ‖∂νφ̃
o
k |Σ‖L2(Σ) ≤ Ce−ck‖φ̃o

k‖L2(M) ≤ Ce−c′λo
k ‖φ̃o

k‖L2(M),

∂νφ̃
e
k |Σ = 0, ‖φ̃e

k |Σ‖L2(Σ) ≤ Ce−ck‖φ̃e
k‖L2(M) ≤ Ce−c′λe

k‖φ̃e
k‖L2(M).

Setting φ
e/o
k (z, θ) = R(z)−1/2φ̃

e/o
k (z, θ)‖φ̃

e/o
k ‖
−1
L2 concludes the proof of the lemma. �

C About TGCC: Proof of Proposition 1.10
Proof of Proposition 1.10. Here, M = S 2 and Σ is an equator. We take the following coordinates on S 2:

[0, 2π) × [0, π] 3 (θ, φ) 7→ (cos θ sin φ, sin θ sin φ, cos φ) ∈ S 2,

and let Σ := {φ = π
2 }.

Then an orthonormal basis of Laplace eigenfunctions is given by

Ym
l (θ, φ) =

(
(l − m)!(2l + 1)

4π(l + m)!

)1/2

eimθPm
l (cos φ), −l ≤ m ≤ l,

where Pm
l is an associated Legendre function (see for example [OLBC10, Section 14.30]). For the definition

of Pm
l see [OLBC10, Section 14.2]. Note that

(−∆S 2 − λ2
l )Ym

l = 0, λl :=
√

l(l + 1) ∼l→∞ l.
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We take φl = Y l−1
l , and recall that Σ = {φ = π

2 }. By [OLBC10, Section 14.30ii and Section 14.5(i)], we
have

φl|Σ = Y l−1
l

(
θ,
π

2

)
= 0,

since Pl−1
l (0) = 0. Moreover, using [OLBC10, Equation (14.5.2)] together with the definition of Y l−1

l , we have

|∂νφl|Σ| =

∣∣∣∣∣∂φY l−1
l

(
θ,
π

2

)∣∣∣∣∣ =

∣∣∣∣∣∣∣
(

(2l + 1)
4π(2l − 1)!

)1/2 2lπ1/2

Γ(−l + 1
2 )

∣∣∣∣∣∣∣ ∼ cl3/4. (C.1)

Indeed, note that for l ≥ 1,

Γ(
1
2
− l) =

(−1)lπ

Γ(l + 1
2 )

=
(−1)l √π22ll!

(2l)!
=

2l(−1)l √π∏l
j=1(2 j − 1)

and ∏l
j=1(2 j − 1)2

(2l − 1)!
=

l∏
j=2

2 j − 1
2 j − 2

= e
∑l

j=2 log(1+ 1
2 j−2 ).

Then, note that
l∑

j=2

log
(
1 +

1
2 j − 2

)
=

1
2

log l + O(1)

and in particular, ∏l
j=1(2 j − 1)
√

(2l − 1)!
∼ cl

1
4 .

The above four lines finally prove (C.1). Therefore, for l large enough, we obtain

λ−1/4
l ∼ l−1/4 = l−1/4‖Y l−1

l ‖L2(S 2) ≥ c‖l−1∂φY l−1
l ‖L2(Σ),

which concludes the proof of the lemma. �

References
[BG97] Nicolas Burq and Patrick Gérard. Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes.

C. R. Acad. Sci. Paris Sér. I Math., 325(7):749–752, 1997.

[BG02] Nicolas Burq and Patrick Gérard. Contrôle optimal des équations aux dérivées partielles. Cours de l’Ecole
Polytechnique, 2002.

[BGT07] Nicolas Burq, Patrick Gérard, and Nikolay Tzvetkov. Restrictions of the Laplace-Beltrami eigenfunctions to
submanifolds. Duke Math. J., 138(3):445–486, 2007.

[BL01] Nicolas Burq and Gilles Lebeau. Mesures de défaut de compacité, application au système de Lamé. Ann. Sci.
École Norm. Sup. (4), 34(6):817–870, 2001.

[BLR92] Claude Bardos, Gilles Lebeau, and Jeffrey Rauch. Sharp sufficient conditions for the observation, control,
and stabilization of waves from the boundary. SIAM J. Control Optim., 30:1024–1065, 1992.

[BR09] Jean Bourgain and Zeév Rudnick. Restriction of toral eigenfunctions to hypersurfaces. C. R. Math. Acad. Sci.
Paris, 347(21-22):1249–1253, 2009.

[BR11] Jean Bourgain and Zeév Rudnick. On the nodal sets of toral eigenfunctions. Invent. Math., 185(1):199–237,
2011.

[BR12] Jean Bourgain and Zeév Rudnick. Restriction of toral eigenfunctions to hypersurfaces and nodal sets. Geom.
Funct. Anal., 22(4):878–937, 2012.

[Bur97] Nicolas Burq. Mesures semi-classiques et mesures de défaut. Astérisque, (245):Exp. No. 826, 4, 167–195,
1997. Séminaire Bourbaki, Vol. 1996/97.

[CHT15] Hans Christianson, Andrew Hassell, and John A. Toth. Exterior mass estimates and L2-restriction bounds for
Neumann data along hypersurfaces. Int. Math. Res. Not. IMRN, (6):1638–1665, 2015.

43



[Cor07] Jean-Michel Coron. Control and nonlinearity, volume 136 of Mathematical Surveys and Monographs. Amer-
ican Mathematical Society, Providence, RI, 2007.

[DL09] Belhassen Dehman and Gilles Lebeau. Analysis of the HUM control operator and exact controllability for
semilinear waves in uniform time. SIAM J. Control Optim., 48(2):521–550, 2009.

[DLRL14] Belhassen Dehman, Jérôme Le Rousseau, and Matthieu Léautaud. Controllability of two coupled wave equa-
tions on a compact manifold. Arch. Ration. Mech. Anal., 211(1):113–187, 2014.

[DS99] Mouez Dimassi and Johannes Sjöstrand. Spectral asymptotics in the semi-classical limit, volume 268 of
London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1999.

[DZ] Semyon Dyatlov and Maciej Zworski. Mathematical theory of scattering resonances.

[DZ13] Semyon Dyatlov and Maciej Zworski. Quantum ergodicity for restrictions to hypersurfaces. Nonlinearity,
26(1):35–52, 2013.

[Eva98] Lawrence C. Evans. Partial differential equations. Graduate Studies in Mathematics. American Mathematical
Society, Providence, RI, 1998.

[EZ11a] Sylvain Ervedoza and Enrique Zuazua. Observability of heat processes by transmutation without geometric
restrictions. Math. Control Relat. Fields, 1(2):177–187, 2011.

[EZ11b] Sylvain Ervedoza and Enrique Zuazua. Sharp observability estimates for heat equations. Arch. Ration. Mech.
Anal., 202(3):975–1017, 2011.

[FI96] Andrei V. Fursikov and Oleg Yu. Imanuvilov. Controllability of evolution equations, volume 34 of Lecture
Notes Series. Seoul National University Research Institute of Mathematics Global Analysis Research Center,
Seoul, 1996.

[Gal16] Jeffrey Galkowski. The L2 behavior of eigenfunctions near the glancing set. Comm. Partial Differential
Equations, 41(10):1619–1648, 2016.

[Gér91] Patrick Gérard. Microlocal defect measures. Comm. Partial Differential Equations, 16(11):1761–1794, 1991.

[Hör85] Lars Hörmander. The Analysis of Linear Partial Differential Operators, volume III. Springer-Verlag, 1985.
Second printing 1994.

[JL99] David Jerison and Gilles Lebeau. Nodal sets of sums of eigenfunctions. In Harmonic analysis and partial
differential equations (Chicago, IL, 1996), Chicago Lectures in Math., pages 223–239. Univ. Chicago Press,
Chicago, IL, 1999.

[Kum80] Sadatoshi Kumagai. Technical comment to: “An implicit function theorem” [J. Optim. Theory Appl. 25
(1978), no. 4, 575–577; MR 80b:26018] by K. Jittorntrum. J. Optim. Theory Appl., 31(2):285–288, 1980.

[Léa10] Matthieu Léautaud. Spectral inequalities for non-selfadjoint elliptic operators and application to the null-
controllability of parabolic systems. J. Funct. Anal., 258:2739–2778, 2010.

[Leb96] Gilles Lebeau. Équation des ondes amorties. In Algebraic and geometric methods in mathematical physics
(Kaciveli, 1993), volume 19 of Math. Phys. Stud., pages 73–109. Kluwer Acad. Publ., Dordrecht, 1996.

[Ler10] Nicolas Lerner. Metrics on the phase space and non-selfadjoint pseudo-differential operators. Birkhäuser
Verlag, Basel, 2010.

[Lio88] Jacques-Louis Lions. Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1,
volume 8 of Recherches en Mathématiques Appliquées. Masson, Paris, 1988.

[LL16] Camille Laurent and Matthieu Léautaud. Uniform observability estimates for linear waves. ESAIM Control
Optim. Calc. Var., 22(4):1097–1136, 2016.

[LL17] Matthieu Léautaud and Nicolas Lerner. Energy decay for a locally undamped wave equation. Ann. Fac. Sci.
Toulouse Math. (6), 26(1):157–205, 2017.

[LLTT16] Jérôme Le Rousseau, Gilles Lebeau, Peppino Terpolilli, and Emmanuel Trélat. Geometric control condition
for the wave equation with a time-dependent observation domain. Preprint https://hal.archives-ouvertes.fr/hal-
01342398, 2016.

[LR95] Gilles Lebeau and Luc Robbiano. Contrôle exact de l’équation de la chaleur. Comm. Partial Differential
Equations, 20:335–356, 1995.

[LR97] Gilles Lebeau and Luc Robbiano. Stabilisation de l’équation des ondes par le bord. Duke Math. J., 86:465–
491, 1997.

[LRL12] Jérôme Le Rousseau and Gilles Lebeau. On Carleman estimates for elliptic and parabolic operators. Ap-
plications to unique continuation and control of parabolic equations. ESAIM Control Optim. Calc. Var.,
18(3):712–747, 2012.

44



[LZ98] Gilles Lebeau and Enrique Zuazua. Null-controllability of a system of linear thermoelasticity. Arch. Rational
Mech. Anal., 141:297–329, 1998.

[Mil06] Luc Miller. On the controllability of anomalous diffusions generated by the fractional laplacian. Mathematics
of Control, Signals, and Systems, 3:260–271, 2006.

[Mil10] Luc Miller. A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups. Discrete Contin.
Dyn. Syst. Ser. B, 14(4):1465–1485, 2010.

[MS78] Richard B. Melrose and Johannes Sjöstrand. Singularities of boundary value problems. I. Comm. Pure Appl.
Math., 31(5):593–617, 1978.

[OLBC10] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. NIST handbook of mathematical
functions. U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC;
Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX).

[Rob95] Luc Robbiano. Fonction de coût et contrôle des solutions des équations hyperboliques. Asymptotic Anal.,
10:95–115, 1995.

[SV97] Yuri Safarov and Dmitri Vassiliev. The asymptotic distribution of eigenvalues of partial differential operators,
volume 155 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI,
1997. Translated from the Russian manuscript by the authors.

[Tac10] Melissa Tacy. Semiclassical Lp estimates of quasimodes on submanifolds. Comm. Partial Differential Equa-
tions, 35(8):1538–1562, 2010.

[Tac14] Melissa Tacy. Semiclassical L2 estimates for restrictions of the quantisation of normal velocity to interior
hypersurfaces. Preprint arXiv:1403.6575, 2014.

[Tar90] Luc Tartar. H-measures, a new approach for studying homogenisation, oscillations and concentration effects
in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A, 115(3-4):193–230, 1990.

[Tat98] Daniel Tataru. On the regularity of boundary traces for the wave equation. Ann. Scuola Norm. Sup. Pisa Cl.
Sci. (4), 26(1):185–206, 1998.

[TW09] Marius Tucsnak and Georges Weiss. Observation and control for operator semigroups. Birkhäuser Advanced
Texts: Basel Textbooks. Birkhäuser Verlag, Basel, 2009.

[TZ12] John A. Toth and Steve Zelditch. Quantum ergodic restriction theorems. I: Interior hypersurfaces in domains
wth ergodic billiards. Ann. Henri Poincaré, 13(4):599–670, 2012.

[TZ13] John A. Toth and Steve Zelditch. Quantum ergodic restriction theorems: manifolds without boundary. Geom.
Funct. Anal., 23(2):715–775, 2013.

[TZ17] John Toth and Steve Zelditch. Nodal intersections and geometric control. Preprint arXiv:1708.05754, 2017.

[Zwo12] Maciej Zworski. Semiclassical analysis, volume 138 of Graduate Studies in Mathematics. American Mathe-
matical Society, Providence, RI, 2012.

45


	Introduction
	Preliminary definitions
	Regularity of traces and well-posedness for the wave equation
	Observability and controllability for the wave equation
	Controllability of the heat Equation
	Facts and notations of pseudodifferential calculus
	Sharpness of Theorem 1.7: Proof of Proposition 1.8
	About TGCC: Proof of Proposition 1.10

