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Abstract

This article is concerned with quantitative unique continuation estimates for equations involving a
“sum of squares” operator L on a compact manifoldM assuming: (i) the Chow-Rashevski-Hörmander
condition ensuring the hypoellipticity of L, and (ii) the analyticity ofM and the coefficients of L.

The first result is the tunneling estimate ‖ϕ‖L2(ω) ≥ Ce−λ
k
2 for normalized eigenfunctions ϕ of L

from a nonempty open set ω ⊂M, where k is the hypoellipticity index of L and λ the eigenvalue.
The main result is a stability estimate for solutions to the hypoelliptic wave equation (∂2

t +L)u = 0:
for T > 2 supx∈M(dist(x, ω)) (here, dist is the sub-Riemannian distance), the observation of the
solution on (0, T )×ω determines the data. The constant involved in the estimate is CecΛ

k

where Λ is
the typical frequency of the data.

We then prove the approximate controllability of the hypoelliptic heat equation (∂t+L)v = 1ωf in
any time, with appropriate (exponential) cost, depending on k. In case k = 2 (Grushin, Heisenberg...),
we further show approximate controllability to trajectories with polynomial cost in large time.

We also explain how the analyticity assumption can be relaxed, and a boundary ∂M can be added
in some situations.

Most results turn out to be optimal on a family of Grushin-type operators.
The main proof relies on the general strategy developed by the authors in [LL15].
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1 Introduction and main results

1.1 Introduction
Let M be a smooth compact connected d-dimensional manifold without boundary. We denote X∞ the
space of smooth vector fields on M (with real coefficients), which we identify to derivations on M. We
assumeM is endowed with a smooth positive density measure ds, so that we may integrate functions on
M1. We may then define the space L2(M) = L2(M, ds) of square integrable functions with respect to
this measure. For X ∈ X∞, we define by X∗ its formal dual operator for the duality of L2(M), that is2,∫

M
X∗(u)(x)v(x)ds(x) =

∫
M
u(x)X(v)(x)ds(x), for any u, v ∈ C∞(M).

Given m ∈ N and m vector fields3 X1, · · · , Xm ∈ X∞, we are interested in properties of the following
(non-positive) second order operator, associated to the Xi’s (namely the so-called type I Hörmander
operator)4

L =

m∑
i=1

X∗i Xi. (1.1)

Note that this operator is formally symmetric nonnegative, when defined on functions in C∞(M), since
we have

(Lu, u)L2(M) =

m∑
i=1

‖Xiu‖2L2(M) . (1.2)

Both from the geometric control and the operator theoretic points of view, it is in this context natural
to consider iterated Lie brackets of the vector fields Xi. We refer for instance to the following classical
article [Bel96] and textbooks [Mon02, Jea14, Rif14, ABB16b].

Definition 1.1. For any family F of smooth vector fields on M and ` ∈ N∗, we define the subspaces
Lie`(F) of X∞ by iteration as follows:

• Lie1(F) is the space spanned by F in X∞,

• Lie`+1(F) = span
(

Lie`(F) ∪
{

[X,Y ];X ∈ F , Y ∈ Lie`(F)
})

.

For any point x ∈M, ` ∈ N∗, we denote Lie`(F)(x) the set of all tangent vectors X(x) with X ∈ Lie`(F).

We shall always assume that the family (Xi) satisfies the Chow-Rashevski-Hörmander condition (or is
“bracket generating”).

1See e.g. [Lee13, Chapter 16 p427]: given a local chart (Uκ, κ) ofM, we have
∫
Uκ

u ds =
∫
κ(Uκ) u ◦κ

−1(y)ϕκ(y)dy for an
appropriate smooth positive function ϕκ, and for any u ∈ C0

c (Uκ).
2Note that in the local chart (Uκ, κ) we have Xκ =

∑
j a

κ
j (x)∂j , and thus (Xκ)∗ =

∑
j −aκj (x)∂j −∂jaκj −

∂jϕ
κ

ϕκ
aκj , which

is a vector field (namely −X) plus a multiplication operator (namely − divds(X), see Remark 1.28 below).
3The assumption 1 ≤ m ≤ d is sometimes made in the references we use, but can always be removed.
4See Remark 1.28 below for a discussion on general sub-Riemannian Laplacians.
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Assumption 1.1. There exists ` ≥ 1 so that for any x ∈M, Lie`(X1, · · · , Xm)(x) = TxM5. Denote then
by k ∈ N∗ the minimal ` for which this holds.

The integer k will sometimes be refered to as the hypoellipticity index of L. Assumption 1.1 is central
in control theory and operator theory, for it characterizes both the controllability of the controlled ODE
driven by the vector fields (Xi) and the Hypoellipticity of the operator L. Let us now recall these two
seminal results, namely the Chow-Rashevski theorem and the Hörmander theorem, which we both use in
the sequel.

Theorem 1.2 (Chow [Cho39], Rashevski [Ras38]). Under Assumption 1.1, the following statement holds:
for any x0, x1 ∈ M, any T > 0, there exist ui ∈ L1(0, T ) for i ∈ {1, · · · ,m} such that the unique solution
of

γ̇(t) =
m∑
i=1

ui(t)Xi(γ(t)), γ(0) = x0 (1.3)

satisfies γ(T ) = x1.

We refer e.g. to [Jea14, Chapter 1.4], [Rif14, Chapter 1.4] or [Mon02, Chapter 2] for statements and
proofs of the Chow-Rashevski theorem, and in particular for the definition of the solution of (1.3). See
also [Cor07, Chapter 3] for examples and applications in control theory. This theorem motivates the
following definition.

Definition 1.3 (Horizontal path). We say that an absolutely continuous function γ : [0, T ] → M is a
horizontal path if there exist ui ∈ L1(0, T ;R) for i = 1, · · ·m such that for almost every t ∈ [0, T ], we have
γ̇(t) =

∑m
i=1 ui(t)Xi(γ(t)).

Such a trajectory is in particular absolutely continuous and almost everywhere tangent to the so-called
horizontal distribution span(X1, · · · , Xm). The second key role played by Assumption 1.1 in analysis is
summarized in the following result.

Theorem 1.4 (Hörmander [Hör67], Rothschild-Stein [RS76]). Under Assumption 1.1, the operator L
in (1.1) is hypoelliptic, that is, for all u ∈ D′(M) and x0 ∈ M, if Lu ∈ C∞ near x0 then u ∈ C∞ near
x0.

Moreover, it is subelliptic of order 1
k , that is, the following estimates hold: there is C > 0 such that for

any u ∈ C∞(M), we have

‖u‖2
H

1
k (M)

≤ C
m∑
i=1

‖Xiu‖2L2(M) + C ‖u‖2L2(M) , (1.4)

‖u‖2
H

1
k (M)

≤ C(Lu, u)L2(M) + C ‖u‖2L2(M) , (1.5)

‖u‖2
H

2
k (M)

≤ C ‖Lu‖2L2(M) + C ‖u‖2L2(M) . (1.6)

The hypoellipticity was shown by Hörmander [Hör67], who also provides with a subelliptic estimate
with loss (see also [Koh78, Koh05] or [HN05, Chapter 2] for a simpler proof). The optimal subelliptic

5Note that it is sufficient to assume that for all x ∈ M, there is ` = `(x) ∈ N such that this holds. The upper semi-
continuity of x 7→ `(x) and the compactness ofM then imply the stronger form of Assumption 1.1 as stated.
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estimate (1.4) with gain of 1/k derivatives is proved by [RS76] (see also [FP81, p288] for a different proof,
or [BCN82] for a simpler one). More precisely, (even slightly hidden) it is written in [RS76] Theorem 17
and estimate (17.20) p311 in a local form. It is then easy to globalise on the compact manifold M to
obtain (1.4) (since commutators of Xi with a smooth cutoff function is a multiplication operator).

Both estimates (1.5) and (1.6) may then be deduced from (1.4). This is clear for (1.5) when recall-
ing (1.2). The proof of (1.6) requires a commutator argument (detailed e.g. in [FP83]) and is proved in
Appendix B.1, as well as Hs variants of (1.5) and (1.6). Note that these subelliptic estimates are also
obtained in Fefferman-Phong [FP83] for some wider class of symmetric operators, not neccessarily sums
of squares, and with a shorter proof.

Since the operator L is symmetric non-negative, the hypoellipticity of L + 1 and the compactness of
M directly imply that L is essentially selfadjoint (see e.g. Reed-Simon [RS80, Theorem X.26]). Hence, it
extends uniquely as a selfadjoint operator (its Friedrich extension)

L : D(L) ⊂ L2(M)→ L2(M),

with, according to (1.6), H2(M) ⊂ D(L) ⊂ H
2
k (M) (still under Assumption 1.1). The operator L is

hence selfadjoint on L2(M), with compact resolvent: it admits a Hilbert basis of eigenfunctions (ϕj)j∈N,
associated with the real eigenvalues (λj)j∈N, sorted increasingly, that is

Lϕi = λiϕi, (ϕi, ϕj)L2(M) = δij , 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λj → +∞. (1.7)

Note that a bootstrap argument in (1.6) shows that ϕj ∈ C∞(M). In particular, the spectral decomposi-
tion allows to define solutions of the hypoelliptic wave and heat equations (respectively (∂2

t +L)v = 0 and
(∂t + L)u = 0), which we shall consider in this paper.

In addition to Assumption 1.1, we will also assume in the main part of the article that everything
is real-analytic. This assumption in not made in Section 5 though, where we give some results in the
non-analytic context.

Assumption 1.2. The manifoldM, the density ds, and the vector fields Xi are real-analytic.

In particular, it implies that the operator L has analytic coefficients in any analytic coordinate set
compatible with the manifoldM. Note that under this assumption, the converse of Theorems 1.2 and 1.4
also hold, namely:

• Attainability, in the sense of Theorems 1.2, implies Assumption 1.1, see [Her63, Nag66] (see also [Lob70,
Sus73] for generalizations);

• The hypoellipticity of L, in the sense of Theorem 1.4, implies Assumption 1.1, see [Der71, Theo-
rem 2.2] if there is no point x0 where all Xi cancel.

The analyticity assumption is further discussed in Sections 1.2.4 and 1.3 below.

Before stating our main results, let us provide with classical examples of operators that are considered
in the present paper.

Example 1.5 (Elliptic operators, k = 1). In the case k = 1, then, span(X1, · · · , Xm)(x) = TxM for all
x ∈ M, and the operator L is elliptic. Most of the results stated in this paper (or stronger versions of
them) are already known in this situation (and in greater generality), see [LR95, Leb92, LL15]. That all
Laplace-Beltrami operators can be written under the form (1.1) is a consequence of Remark 1.1 below.
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Example 1.6 (The Grushin operator, k = 2). Consider the torusM = (R/2Z)×(R/Z) (which we identify
with [−1, 1[×[0, 1[ with periodicity conditions), endowed with the Lebesgue measure ds = dx1dx2 and

L = −
(
∂2
x1

+ x2
1∂

2
x2

)
= X∗1X1 +X∗2X2, with X1 =

∂

∂x1
, X2 = x1

∂

∂x2
.

We have span(X1, X2) = R2 if x1 6= 0, but on the singular set x1 = 0, we have span(X1, X2) = RX1.
However, we have [X1, X2] = ∂

∂x2
, so that span(X1, X2, [X1, X2]) = R2 on the whole M, and Assump-

tion 1.1 is satisfied for k = 2. Remark that x2
1 is not analytic (not even C1) on the torus M; here it

can be replaced e.g. by sin(πx1/2)2, being analytic and satisfying the same Hypoelliptic property. The
original Grushin example will also be discussed later with Dirichlet boundary conditions, in which case it
is smooth on [−1, 1]× (R/Z) or [−1, 1]× [0, 1].

Example 1.7 (Higher order Grushin operators, k ∈ N). Consider againM = (R/2Z)×(R/Z), ds = dx1dx2

and, for γ ∈ N, set

Lγ = −
(
∂2
x1

+ x2γ
1 ∂2

x2

)
= X∗1X1 +X∗2X2, with X1 =

∂

∂x1
, X2 = xγ1

∂

∂x2
. (1.8)

Again, x2γ
1 may be replaced by sin(πx1/2)2γ so that Lγ has analytic coefficients. We have span(X1, X2) =

R2 if x1 6= 0, but on the singular set x1 = 0, we have to use iterated Lie brackets: Since
[
∂
∂x1

, xβ1
∂
∂x2

]
=

βxβ−1
1

∂
∂x2

for all β ≥ 1, we have, with F = {X1, X2}, that

• Lie1(F) is the space spanned by F in X∞;

• Lie`(F) =
{
f = a ∂

∂x1
+
∑γ
i=γ−`−1 bix

i
1
∂
∂x2
|a, bi ∈ R

}
for 1 ≤ ` ≤ γ + 1;

• Lie`(F) = Lieγ+1(F) =
{
f = a ∂

∂x1
+B(x1) ∂

∂x2
|a ∈ R, B ∈ Rγ [X]

}
if ` ≥ γ + 1.

Hence, for x = (0, x2), we have Lie`(F)(x) = R ∂
∂x1

if ` < γ + 1 and Lieγ+1(F)(x) = R2. In particular,
Assumption 1.1 is fulfilled with k = γ+1. Note that we recover Example 1.5 in case γ = 0 and Example 1.6
in case γ = 1.

Example 1.8 (The Heisenberg operator on the Heisenberg group). On R3 with current point w = (x, y, s),
the following two vector fields X1 = ∂x + 2y∂s and X2 = ∂y − 2x∂s constitute the model case for contact
geometry. Indeed, we have, with F = {X1, X2}, that

• Lie1(F) = span(F) is of dimension 2 at any point in R3;

• Lie2(F) = R3 at any point in R3, since [X1, X2] = −4∂s.

Let us now define a compact context in which these are two analytic vector fields.
First equip R3 with the (non-commutative) group law

w • w′ = (x, y, s) • (x′, y′, s′) = (x+ x′, y + y′, s+ s′ − 2xy′ + 2yx′).

With this law, (R3, •) (with R3 endowed with its canonical differential structure) is a Lie group which
we denote by G. Given L > 0, the set Γ = LZ × LZ × L2Z is a subgroup of G, and both vector

6



fields X1 and X2 are left invariant vector fields on G, i.e. setting mg : G → G,w 7→ g • w, we have
dmg(Xj(w)) = Xj(mg(w)) = Xj(g • w) for j = 1, 2. The subgroup Γ being co-compact, the left quotient
M := Γ \ G is a compact three dimensional analytic manifold. Moreover, the vector fields X1, X2 go to
the quotient as analytic vector fields onM. From the computation on R3, we obtain dim Lie1(F)(w) = 2
and Lie2(F)(w) = TwM for some/any point w ∈ M. The Haar measure turns out to be the Euclidian
measure in the coordinates (x, y, s). We consider the operator L = X∗1X1 +X∗2X2 = −X2

1 −X2
2 = −∆H,

where ∆H is the Kohn Laplacian, for which k = 2. We refer for instance to [BFKG12, Section 1.2] for
more on this example.

This last example belongs to the following general class of constant rank sub-Riemannian structures.

Example 1.9 (Lie Groups). Assume that (M, •) is a compact d-dimensional Lie group. Let 1 be the
identity of (M, •), and write L := T1M its Lie algebra. Recall (see e.g. [God82, Tome II, p627]) that
there is a unique real-analytic differentiable structure onM compatible with the action of •, with which
we endow M. We write as in the above example mg : M → M, x 7→ g • x for the left multiplication.
Given m < d and m vectors (e1, · · · em) ∈ Lm, we denote by (X1, · · · , Xm) the associated m left-invariant
vector fields defined, for x ∈M, by Xj(x) := dmx(Xj(1)) = dmx(ej).

Now, we assume that the vectors (e1, · · · em) generate the whole Lie algebra, namely Lie(M) = L,
which implies that the vector fields (X1, · · · , Xm) satisfy Assumption 1.1, for some k.

Finally, we remark that, by construction, both the vector fields Xj and the Haar measure ds ofM are
real-analytic and left invariant. All our results shall hence apply to the associated operator L.

Finally, let us mention that hypoelliptic operators appear naturally in several physical and mathemat-
ical contexts such as stochastic processes and the theory of functions of several complex variables. We
refer to [Bra14, Chapter 2] for a presentation of some of these applications.

1.2 Main results
Our main results under Assumptions 1.1 and 1.2 are of three different types:

1. Tunneling estimates for eigenfunctions ϕj of L (Section 1.2.1);

2. Quantitative approximate observability (and associated controllability) of the hypoelliptic wave equa-
tion (∂2

t + L)v = 0 from a subset ω ⊂M (Section 1.2.2);

3. Quantitative approximate observability (and associated controllability) of the hypoelliptic heat equa-
tion (∂t + L)u = 0 from ω (Section 1.2.3);.

Also, we provide with a class of examples (which are generalizations of those considered in Example (1.7))
where all these results hold as well without the analyticity Assumption 1.2 (Section 1.2.4).

All results obtained depend explicitely on the hypoellipticity index k of the operator considered, i.e. the
minimal number of iterated brackets necessary to span the whole tangent space, given by Assumption 1.1.
We finally prove with an example that the results are optimal in general.

1.2.1 Eigenfunction tunneling

Our first result is the following.
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Theorem 1.10. Let ω be a nonempty open subset of M. Then, there is C, c > 0 such that every eigen-
function ϕi of L associated to the eigenvalue λi satisfies

‖ϕj‖L2(M) ≤ Cecλ
k/2
j ‖ϕj‖L2(ω). (1.9)

This estimate may be read as ‖ϕj‖L2(ω) ≥ 1
C e
−cλk/2j for all normalized eigenfunctions, and hence

quantizes the possible vanishing rate of eigenfunctions on any subdomain ω.
In the case k = 1, i.e. when L is an elliptic operator, the analyticity assumption 1.2 is not needed and

the result follows from the Donnelly-Fefferman paper [DF88]. In this situation, it also holds on a manifold
with boundary for Dirichlet eigenfunctions [LR95] (see also [LR97] for other boundary conditions).

We shall also deduce from estimates of [BCG14, Section 2.3] that the tunneling estimate (1.9) is optimal
in the following particular setting (close to Example (1.7)).

Example 1.11 (Higher order Grushin operators on the rectangle). Consider the manifold with boundary
M = [−1, 1] × [0, 1] or M = [−1, 1] × (R/Z), endowed with the Lebesgue measure dx, and for γ > 0,
define the operator Lγ = −

(
∂2
x1

+ x2γ
1 ∂2

x2

)
as in (1.8) with Dirichlet conditions on ∂M. If γ ∈ N, then the

operator Lγ is hypoelliptic of order k = γ + 1 (i.e. Assumption 1.1 is fulfilled with k = γ + 1).

Proposition 1.12. Consider, for γ > 0 the situation of Example 1.11. Assume that ω ∩ {x1 = 0} = ∅.
Then there exists C, c0 > 0 and a sequence (λj , ϕj) of eigenvalues and associated eigenfunctions of Lγ with
λj → +∞ such that

‖ϕj‖L2(ω) ≤ Ce−c0λ
γ+1
2

j ‖ϕj‖L2(M).

We recall that if γ ∈ N∗, then Lγ is hypoelliptic of order k = γ + 1, so that Proposition 1.12 shows
that, in general, one cannot expect a better estimate than that of Theorem 1.10. We shall also prove
(see Section 1.2.4) that Estimate (1.9) holds as well in a setting containing those of Example 1.7 and
Example 1.11, thus providing a genuine converse of Proposition 1.12 (for γ ∈ N∗).

Note that in the analytic context, the qualitative uniqueness:(
Lϕ = λϕ onM, ϕ = 0 on ω

)
=⇒ ϕ ≡ 0 onM,

was proved by Bony [Bon69], as a consequence of the Holmgren-John theorem. Removing the analyticity
assumption, even for such a qualitative unique continuation property, remains a very subtle issue, as
discussed in Section 1.3.1 below.

1.2.2 Quantitative approximate observability of the hypoelliptic wave equation

To state our main result here, we need to introduce the appropriate notions of Sobolev spaces and sub-
Riemannian distance, which are adapted to the analysis of the operator L.

All along the paper, we shall use the functional calculus given, for appropriate functions f and u, by

f(L)u =
∑
j∈N

f(λj)(u, ϕj)L2(M)ϕj . (1.10)

8



This allows for instance to define the operators (1 +L)
s
2 : C∞(M)→ C∞(M), which, by duality, may be

extended as operators (1 + L)
s
2 : D′(M)→ D′(M). We next define the Sobolev spaces

HsL = {u ∈ D′(M), (1 + L)
s
2u ∈ L2(M)}, s ∈ R,

and associated norms

‖u‖HsL =
∥∥(1 + L)

s
2u
∥∥
L2(M)

, s ∈ R.

Let us now also introduce basic notions of sub-Riemannian geometry needed to formulate our main
result. We refer to [Bel96, Mon02, Jea14, Rif14, ABB16a, ABB16b] for an introductions to sub-Riemannian
geometry, as well as for further developments. The so-called sub-Riemannian metric associated to the
vector fields (X1, · · · , Xm) is defined, for x ∈M and v ∈ TxM, by

g(x, v) :=

 inf

{
m∑
i=1

u2
i

∣∣∣∣∣(u1, · · · , um) ∈ Rm,
m∑
i=1

uiXi(x) = v

}
if v ∈ span(Xi(x), i ∈ {1, · · · ,m}),

+∞ if not.
(1.11)

This defines for any x ∈M a positive definite quadratic form g(x, ·) on the the horizontal space

span(X1(x), · · · , Xm(x)).

Remark that, if finite, the infimum is in fact a minimum, and is realized by a unique vector (u1, · · · , um) ∈
Rm. Given γ : [0, 1]→M an absolutely continuous path, we define its length accordingly by

length(γ) :=

∫ 1

0

√
g(γ(t), γ̇(t))dt.

The fact that this quantity is finite implies that γ̇(t) ∈ span
(
X1(γ(t)), · · · , Xm(γ(t))

)
for almost all

t ∈ [0, 1]. Also, it is always finite if γ is a horizontal path (in the sense of Definition 1.3).
Then, this allows to define a sub-Riemannian (also called Carnot-Carathéodory) distance onM by

dL(x0, x1) = inf {length(γ) |γ horizontal path, γ(0) = x0, γ(1) = x1 } .

The Chow-Rashevski Theorem 1.2 implies that, under Assumption 1.1, the distance defined by dL is always
finite.

With these definitions in hand, we may now state our main result, which concerns the quantitative
unique continuation (or quantitative approximate observability) for the Hypoelliptic wave equation{

∂2
t u+ Lu = 0

(u, ∂tu)|t=0 = (u0, u1).
(1.12)

Theorem 1.13. Let L as above satisfying Assumptions 1.1 and 1.2. Assume that ω is a non empty open
set ofM and let T > supx∈M dL(x, ω). Then, there exist κ,C, µ0 > 0 such that we have

‖(u0, u1)‖L2×H−1
L
≤ Ceκµ

k

‖u‖L2(]−T,T [×ω) +
1

µ
‖(u0, u1)‖H1

L×L2 (1.13)

for all µ ≥ µ0 and for any (u0, u1) ∈ H1
L × L2, and associated solution u solution of (1.12) on ]− T, T [.

9



Note first that this estimate could be stated equivalently for all µ > 0 (see e.g. [LL15, Lemma A.3]).
We chose to keep the above formulation to underline the interesting case (being µ large). Note also that
this theorem can be equivalently rewritten under one of the following two formulations (see e.g. [LL15,
Lemma A.3])

‖(u0, u1)‖H1
L×L2 ≤ CecΛ

k

‖u‖L2(]−T,T [×ω) , with Λ =
‖(u0, u1)‖H1

L×L2

‖(u0, u1)‖L2×H−1
L

, (1.14)

or

‖(u0, u1)‖L2×H−1
L
≤ C

‖(u0, u1)‖H1
L×L2

log

(
‖(u0,u1)‖H1

L×L
2

‖u‖L2(]−T,T [×ω)
+ 1

) 1
k

, (1.15)

where, in the last expression, the function x 7→
(
log(1 + 1

x )
)− 1

k has to be extended by zero at x = 0+.
Again, in the particular situation of Example 1.11, i.e. for the operators (1.8), the sequence of eigen-

functions of Proposition 1.12 shows that the exponent eκµ
k

in (1.13) (resp. ecΛ
k

in (1.14) and log−
1
k

in (1.15)) cannot be improved in general.

Remark 1.14. That dL is the relevant distance function in view of the study of the Hypoelliptic partial
differential operator L comes from the fact that the sub-Riemannian metric g(x, v) and the principal symbol
`(x, ξ) of the operator L are linked through the Legendre transform 1

2g(x, v) = maxξ∈T∗xM(〈ξ, v〉− 1
2`(x, ξ))

(see [Bel96, Section 1.2] or Appendix C): dL is thus the appropriate distance when analyzing properties of
L.

Moreover, the assumption on the time T > supx∈M dL(x, ω) is optimal because of the finite speed of
propagation satisfied by equation (1.12). Indeed, Hypoelliptic wave equations also satisfy a finite speed
of propagation similar to the classical wave equation but with the Riemannian distance replaced by the
sub-Riemannian distance dL. This (not obvious) fact was proved by Melrose [Mel86] (see also the remarks
in [JSC87, Section 4] for the link between the distance defined in [Mel86] and dL).

As a corollary of this result (see [Rob95] or [LL17, Appendix]), we obtain the approximate controllability
of the Hypoelliptic wave equation, as well as an estimate of the cost of approximate controls. Here, we
only state approximate controllability to zero, which is equivalent to approximate controllability to the
whole state space H1

L × L2 on account to the reversibility of the equation.

Corollary 1.15 (Cost of approximate control). For any T > 2 supx∈M dL(x, ω), there exist C, c > 0 such
that for any ε > 0 and any (u0, u1) ∈ H1

L × L2, there exists g ∈ L2((0, T )× ω) with

‖g‖L2((0,T )×ω) ≤ Ce
c

εk ‖(u0, u1)‖H1
L×L2 ,

such that the solution of {
(∂2
t + L)u = 1ωg in (0, T )×M,

(u, ∂tu)|t=0 = (u0, u1), inM,

satisfies ‖(u, ∂tu)|t=T ‖L2×H−1
L
≤ ε ‖(u0, u1)‖H1

L×L2 .
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To the authors’ knowledge, these results are the first ones concerning the approximate observabil-
ity/controllability of hypoelliptic waves. They furnish not only the approximate observability/controllability
but also an (optimal in general) estimate of the cost.

In the elliptic case k = 1, these can be obtained by the theory developed by Lebeau in [Leb92] (even on
a manifold with boundary). However, in this (elliptic) case, the analyticity assumption can be removed,
as proved by the authors in [LL15]. This followed a long series of papers concerning the qualitative
unique continuation [RT73, Ler88, Rob91, Hör92, Tat95] (see also [RZ98, Hör97, Tat99b] for more general
operators), i.e. the property:(

(∂2
t + L)u = 0 on (−T, T )×M, u = 0 on (−T, T )× ω

)
=⇒ u ≡ 0,

and another series of papers [Rob95, Phu10, Tat99a] concerning variants of Estimate (1.13) (still in the
elliptic case k = 1) which are not optimal with respect to the minimal time and the exponent of µ. We
refer to the introductions of [LL15, LL16] for a more detailed discussion on this issue. Here, in the analytic
context, we directly prove the quantitative result but, to our knowledge, even the qualitative result was
not known.

We shall see that we prove actually a more general statement in which the term ‖(u0, u1)‖H1
L×L2 in

the right-handside of Estimate (1.13) can be changed into ‖(u0, u1)‖HsL×Hs−1
L

for any s > 0, if changing
the power of µ accordingly, see Theorem 1.31 below.

1.2.3 Quantitative approximate observability of the hypoelliptic heat equation

We now turn to the study of observability properties for solutions of the hypoelliptic heat equation{
∂ty + Ly = 0, in (0, T )×M,

y(0) = y0 inM,
(1.16)

from a subdomain ω ⊂ M. By duality, we are equivalently concerned here with different controllability
properties of the following system{

(∂t + L)u = 1ωg, in (0, T )×M,
u(0) = u0, inM.

(1.17)

We provide with three main results, still under Assumptions 1.1 and 1.2:

1. For any k ∈ N∗, we prove an approximate observability result in any time T > 0 with a frequency-

depending constant of order CecΛ
k

, where Λ =
‖y0‖H1

L
‖y0‖L2

, or, equivalently, approximate controllability

with cost e
c

εk . These are the analogues of Theorem 1.13 and Corollary 1.15 for parabolic equations.

2. If we moreover assume the data to be sufficiently smooth (in some Gevrey-type norm with respect
to the spectral decomposition of L), then the cost of approximate observability can be improved to
a polynomial one, i.e. of the form C

εβ
for some β > 0; this yields approximate controllability in a

much weaker topology, but with a much lower cost.

3. Finally, in the very particular case k = 2 (including Grushin and Heisenberg operators), we prove
an approximate observability/controllability property to trajectories in large time with a polynomial
cost. This may be interpreted as a counterpart of the exact controllability to trajectories for the
heat equation [LR95, FI96] (case k = 1). There is no similar result if k > 2.
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The first result we obtain provides the cost of approximate observability of the whole state space
L2(M). There is no restriction for the hypoellipticity index k, but the (exponential) cost depends on this
parameter.

Theorem 1.16. For all T > 0, there exist C, c > 0 such that for any y0 ∈ H1
L and associated solution y

of (1.16), we have

‖y0‖2L2 ≤ CecΛ
k

∫ T

0

∫
ω

|y(t, x)|2 dx dt, Λ =
‖y0‖H1

L

‖y0‖L2

, (1.18)

and, for any µ > 0,

‖y0‖2L2 ≤ Cecµ
k

∫ T

0

∫
ω

|y(t, x)|2 dx dt+
1

µ2
‖y0‖2H1

L
. (1.19)

That (1.18) and (1.19) are equivalent comes for instance from [LL15, Lemma A.3]. Again, in the
particular situation of Example 1.11, i.e. for the operators (1.8), the sequence of eigenfunctions of Propo-
sition 1.12 shows that the exponent eκµ

k

in (1.19) (resp. ecΛ
k

in (1.18)) cannot be improved in general.
This theorem generalizes the results of Fernandez-Cara-Zuazua and Phung [FCZ00, Phu04] in the

elliptic case k = 1. Yet, in this framework, the analyticity was not necessary (as in all above stated results
in the case k = 1) and the setting can be relaxed (uniform dependence of the constants with respect to
lower order terms and to the time T , boundary value problems...).

As a corollary (see [LL17, Appendix]), we obtain, given an initial state and a target state both belonging
to the space L2(M), and given a precision ε, the existence of a control function bringing the initial state
in an ε-neighborhood of the target (in appropriate topology). We obtain as well an estimate of the cost of
the control.

Corollary 1.17 (Cost of approximate control to the state space). For any T > 0, there exist C, c > 0
such that for any ε > 0 and any u0 ∈ L2(M), u1 ∈ L2(M), there exists g ∈ L2((0, T )× ω) with

‖g‖L2((0,T )×ω) ≤ Ce
c

εk
∥∥e−TLu0 − u1

∥∥
L2(M)

,

such that the solution of (1.17) issued from u0 satisfies

‖u(T )− u1‖H−1
L
≤ ε

∥∥e−TLu0 − u1

∥∥
L2(M)

.

To state our second result concerning the hypoelliptic heat equation, we need to introduce the following
spectral Gevrey-type norms for functions defined onM: For α > 0, θ ∈ R, we set

‖u‖2α,θ =
∑
j∈N

e2θλαj |uj |2, with u =
∑
j∈N

ujϕj . (1.20)

For θ ≥ 0, we define Hα,θ to be the subspace of L2(M) consisting in functions u such that ‖u‖α,θ < ∞.
For θ < 0, we let Hα,θ be the completed of linear combinations of eigenfunctions for this norm. Remark
that taking as usual L2(M) as a pivot space, the space Hα,−θ is identified to

(
Hα,θ

)′ for θ ≥ 0. Also,
according to the hypoellipticity Assumption 1.1 (see Corollary B.2) we have Hα,θ ⊂ C∞(M) for θ > 0, so
that Hα,−θ is larger than spaces of distributions onM (and its topology weaker).

We obtain the following result, which assumes the data to be extremely regular and then yields ap-
proximate observability with a polynomial cost only. The regularity needed is linked to the hypoellipticity
index k.

12



Theorem 1.18. Fix any k ∈ N∗. There exists θ0 > 0 such that for any T > 0 and any θ > θ0, there exist
C > 0 so that for ε > 0, we have for any solution y to (1.16),

‖y0‖2L2 ≤
C

ε
θ0
θ−θ0

∫ T

T/2

∫
ω

|y(t, x)|2 dt dx+ ε ‖y(0)‖2k/2,θ . (1.21)

Again Proposition 1.12 shows that a polynomial cost is optimal for data in Hθ, k2 in the situation of
Example 1.11. Note that we provide with an explicit dependence of the polynomial cost (i.e. the power
θ0
θ−θ0 ) with respect to the regularity of the data; in particular, we see how it improves when θ becomes
larger. As a Corollary of Theorem 1.18, we obtain an approximate controllability result with polynomial
cost, but the target is well approximated in a very weak topology.

Corollary 1.19 (Cost of approximate control to the state space in very weak topology). With θ0 > 0
given as in Theorem 1.18 (depending only onM, ω,L), for any T > 0 and θ > θ0, there exist C > 0 such
that for any ε > 0 and any u0 ∈ L2(M), u1 ∈ L2(M), there exists g ∈ L2((0, T )× ω) with

‖g‖L2((0,T )×ω) ≤
C

ε
θ0
θ−θ0

∥∥e−TLu0 − u1

∥∥
L2(M)

,

such that the solution of (1.17) issued from u0 satisfies

‖u(T )− u1‖k/2,−θ ≤ ε
∥∥e−TLu0 − u1

∥∥
L2(M)

.

We are not aware of any such results, even for the usual heat equation (i.e. with k = 1). In this case,
our proof also works in the C∞ context, and in the presence of boundaries, starting from the estimates
obtained in [LL15] or the spectral estimates of [LR95].

Our last main result concerning the hypoelliptic heat equation is, as opposed to the first two ones,
concerned with final state approximate observability (or equivalently an approximate controllability to
trajectories) with a polynomial cost, and is restricted to the case k = 2.

Theorem 1.20. Assume that k = 2. There exist T0, C > 0 such that for all η > 0, all T > T0 + η and all
ε > 0, we have for any solution y to (1.16),

D ‖y(T )‖2L2 ≤
1

εβ

∫ T

T−η

∫
ω

|y(t, x)|2 dt dx+ ε ‖y(0)‖2L2 , (1.22)

with D = min{ e
−C/η

C , 1} and β = T0

T−(T0+η) .

In particular, we obtain an explicit estimate on how the cost improves as T increases. This result gives
directly the following corollary concerning approximate controllability to trajectories (or, equivalently, to
zero) at a polynomial cost (see again [LL17, Appendix]).

Corollary 1.21 (Cost of approximate control to trajectories if k = 2). Assume that k = 2, and let T0 > 0
as in Theorem 1.20. For all η > 0, all T > T0 + η and all ε > 0, we have the following statement: for any
u0, ũ0 ∈ L2, there exists g ∈ L2((0, T )× ω) with

‖g‖L2((0,T )×ω) ≤
C̃

εβ
‖u0 − ũ0‖L2 ,

13



such that the associated solution u of (1.17) satisfies∥∥u(T )− e−TLũ0

∥∥
L2(M)

≤ ε ‖u0 − ũ0‖L2 ,

where β = T0

T−(T0+η) and C̃ = C̃(η, T0, T ).

Remark that these two results only hold in the case k = 2. Once again, in the particular situation of
Example 1.11, i.e. for the operators (1.8), the sequence of eigenfunctions of Proposition 1.12 shows that
this result cannot hold if k ≥ 3 (or even, if γ > 1). Let us here be more precise: assume in the context of
Example 1.11 that an estimate of the form (1.22) is satisfied for a cost function Φ(ε), that is

‖y(T )‖2L2 ≤ Φ(ε)

∫ T

0

∫
ω

|y(t, x)|2 dt dx+ ε ‖y(0)‖2L2 , for all ε > 0,

and test it with y(t) = e−λjtϕj (solution of (1.16)), where ϕj is given by Proposition 1.12. Then we have
for all ε > 0,

e−2λjT ≤ Φ(ε)
e−2c0λ

k/2
j

λj
+ ε, for all ε > 0.

Fixing then ε = εj := e−2λjT

2 → 0+ and taking logarithm yields 2(c0λ
k/2
j −λjT ) ≤ log Φ(εj). That Φ(ε) ≤

C/εβ (i.e. having a polynomial cost) implies k ≤ 2. In the case k = 2, this implies Φ(εj) ≥ 1

(2εj)
c0
T
−1

, so

that for T < c0, the polynomial cost cannot be improved. Unfortunately, the constant T0 in the above
result is much larger than c0, so that this discussion does not imply neither that the polynomial cost is
the optimal one, nor that a minimal time is necessary. However, as we shall see in Section 1.3.2 below, it
may happen that exact controllabilty holds for no time T > 0, which may indicate that a polynomial cost
is not far from being sharp.

1.2.4 Relaxing the analyticity assumption

In this section, we provide with a simple family of examples for which the analyticity Assumption 1.2 can
be partially removed. Still this family contains those of Examples 1.7 and 1.11. In this context, most
above results hold as well. The motivation is both to relax the analyticity assumption (and replace it with
analyticity with respect to one set of variables), and to include the setting of the article [BCG14].

Example 1.22 (Partially analytic Grushin-type operators). Consider the manifold with boundaryM =
[−1, 1] × (R/Z), endowed with the Lebesgue measure dx, and define, for f ∈ C∞([−1, 1] × (R/Z)), the
Grushin type operator

L = X∗1X1 +X∗2X2, X1 = ∂x1
, X2 = f(x1, x2)∂x2

, (1.23)

that is
L = −∂2

x1
− f2∂2

x2
− (2f∂x2f)∂x1 ,

with Dirichlet conditions on ∂M. We further assume that

• f(x1, x2) is analytic in the variable x2 (that is, for any point x = (x1, x2) ∈]−1, 1[×(R/Z), f is equal
to its partial Taylor expansion at x2 with respect to the variable x2 uniformly in a neighborhood of
x in ]− 1, 1[×(R/Z));

14



• there exists ε > 0 such that f(x1, x2) = f(x1) does not depend on x2, and f(x1) > 0 for all
x1 ∈ [−1,−1 + ε] ∪ [1− ε, 1];

• X1 and X2 satisfy the Chow-Rashevski-Hörmander Assumption 1.1;

• f(x1, x2) does not depend on x2 in a neighborhood of ω.

Note that under these assumptions, the operator L is elliptic near the boundary ∂M.
For instance if f(x1, x2) = f(x1) ∈ C∞([−1, 1]) does not depend on the variable x2, and we have :

f(x1) 6= 0, for x1 6= 0 f (α)(0) = 0, for all α ≤ k − 2, and f (k−1)(0) 6= 0,

then, the operator L defined by (1.23), namely L = −∂2
x1
− f(x1)2∂2

x2
, satisfies all assumptions of Exam-

ple 1.22 (in particular, it is hypoelliptic of order k). This contains the situation of Examples 1.7 and 1.11
(for γ ∈ N of course).

We prove the following result.

Theorem 1.23. In the context of Example 1.22, all results of Theorems 1.10, 1.18 and 1.20 still hold, as
well as their corollaries.

Theorem 1.13 is true with the following estimate instead

‖(u0, u1)‖L2×H−1
L
≤ Ceκµ ‖u‖L2(]−T,T [×ω) +

1

µ
‖(u0, u1)‖HkL×Hk−1

L
. (1.24)

Theorem 1.16 is still true but with the estimates

‖y0‖2L2 ≤ CecΛk
∫ T

0

∫
ω

|y(t, x)|2 dx dt, Λk =
‖y0‖HkL
‖y0‖L2

, (1.25)

‖y0‖2L2 ≤ Cecµ
∫ T

0

∫
ω

|y(t, x)|2 dx dt+
1

µ2
‖y0‖2HkL . (1.26)

Note that since f does not vanish near ∂M, the metric g defined as in (1.11) is Riemannian near ∂M
and the notions of length and distance defined above can be extended up to the boundary.

We explain in Section 5 how the proofs in the completely analytic case need to be modified. The
version that are true in the partially analytic are actually some particular cases of general estimates with
all Sobolev scales for measuring the typical frequency. For instance, (1.24) is a particular case of Theorem
1.31 with s = k. We refer to the discussion in Section 1.5 below.

Remark 1.24. Under appropriate assumption on f , it is classical to extend Theorem 1.23 to the same
situation as in Example 1.22, but on the domain M = [−1, 1]x1 × [−1, 1]x2 with Dirichlet boundary
conditions by using symmetry arguments. Also, the case of the domainM = (R/Z)2 is simpler.

Remark 1.25. All observability results of Theorem 1.23 also hold if the internal observation term
‖u‖L2(]−T,T [×ω) is replaced by a boundary observation ‖∂nu‖L2(]−T,T [×Γ), where Γ is a nonempty open
subset of ∂M and ∂n denotes the normal derivative to ∂M. See [LL15, Section 5]. In turn, they imply
their boundary controllability counterparts. We did not state these results for the sake of brevity.
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1.3 Comparison to other works
1.3.1 Previous works on unique continuation for sum-of-squares operators

Observability inequalities (as those provided by Theorems 1.10, 1.13, 1.16, 1.18 and 1.20 above, or as (1.27)
below) are quantitative estimates of the unique continuation property for the operator involved (namely
L−λ, ∂2

t +L, and ∂t+L respectively). Hence, when studying such inequalities, it is natural to compare our
results with the known unique continuation properties for such operators. When the ellipticity condition
is dropped, i.e., when k > 1, this property seems to be a very intricate problem, even under the simplest
form (

Lu = 0 onM, u = 0 on ω
)

=⇒ u = 0 in a neighborhood of ω inM.

To our knowledge, the most general such result was proved by Bony [Bon69], and holds under both
the Chow-Rashevski-Hörmander condition and the assumption that the coefficients of the operator are
analytic. Therefore, our assumptions 1.1 and 1.2 (except in the partially analytic case of Theorem 1.23)
are essentially the same as in this paper. In particular, Theorem 1.10 could be read as quantification of
Bony’s result. Also, the proof of the result of Bony mainly relies on the Holmgren-John theorem and is
quite indirect. Here, we need to make a new proof of his result, that we are also able to quantify.

Some attempts have been done to relax this analyticity assumption. Watanabe [Wat82] proved the
unique continuation property for C∞ coefficients in dimension d = 2. Yet, later on, Bahouri [Bah86]
proved a surprising general non-uniqueness result: for a large class of sum-of-squares operators L with
C∞ coefficients, and satisfying Assumption 1.1, there is C∞ potentials V such that L + V does not
satisfy the local unique continuation property. These counterexamples to unique continuation contain for
instance in dimension d = 3 and d = 4 the case where the dimension spanned by the vector fields is
of dimension d − 1 (Heisenberg-like situations). Moreover, this result suggests that a classical Carleman
estimate approach cannot work for all hypoelliptic operators. Also, it strongly suggest that the (complete
or partial) analyticity assumptions that we make are not completely artificial.

This analyticity assumptions might be completely removed in some specific situations where the op-
erator is elliptic outside of a submanifold, see the comments of Bahouri [Bah86, p140]. This was proved
in the paper [Gar93] by Garofalo for specific examples. Colombini-Del Santo-Zuily [CDSZ93] also treated
some related classes of degenerate elliptic operators having a specific form with respect to a hypersurface.
Nevertheless, even in these situations, the quantitative estimates that we obtain are optimal as stated in
Proposition 1.12.

All these results are concerned with the unique continuation property for operators like L (“degenerate
elliptic operators”). We are not aware of works studying the unique continuation property for operators
like ∂2

t + L or ∂t + L (“hyperbolic, resp. parabolic operators with a degenerate elliptic part”), except in
the context of control theory, that we review in the next section.

1.3.2 Previous works on the controllability of the hypoelliptic heat equation

The investigation of the controllability of hypoelliptic operators is for the moment quite at an early
stage and has been mainly restricted to some specific operators or classes of operators. A striking result
concerning the parabolic observation problem (1.16), where L = Lγ is given by Example 1.11 (i.e. higher
order Grushin operators on the rectangle, with Dirichlet boundary conditions), was proved by Beauchard,
Cannarsa and Guglielmi [BCG14]. The authors are interested in the following observablity inequality,
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equivalent to the controllability to zero (and hence to trajectories)

‖y(T )‖2L2(M) ≤ C
∫ T

0

∫
ω

|y(t, x)|2 dtdx, for all y0 ∈ L2(M) and y solution of (1.16). (1.27)

Theorem 1.26 (Beauchard, Cannarsa and Guglielmi [BCG14]). Assume L = Lγ is given by Example 1.11.

1. If γ ∈ [0, 1[, then the observability inequality (1.27) holds true for any nonempty open set ω ⊂M in
any time T > 0.

2. If γ = 1 and if ω =]a, b[×]0, 1[ where 0 < a < b < 1, then there exists T ∗ ≥ a2/2 such that

• for every T > T ∗ the observability inequality (1.27) holds true,
• for every T < T ∗ the observability inequality (1.27) is false.

3. If γ > 1 and ω ⊂ (0, 1)× (0, 1), then the observability inequality (1.27) never holds true, in any time
T > 0.

In the case γ = 1 (i.e. k = 2) and with a symmetric observation region ω = (] − b,−a[ ∪]a, b[)×]0, 1[
with 0 < a < b ≤ 1, it has been recently proved by Beauchard, Miller and Morancey [BMM15] that
T ∗ = a2/2 is actually the critical time. This result is quite surprising since parabolic type equations often
display an infinite speed of propagation. The controllability of parabolic evolutions thus usually holds in
an arbitrary small time independent on the geometry; appearance of a minimum controllability time is
hence unusual. Yet, the proof uses a lot the specific geometry of ω as a vertical strip. Indeed, another
very striking result was recently proved by Koenig in the case γ = 1 (i.e. for the Grushin operator): if ω
is disjoint from an horizontal strip, null-controllability never holds (in any time).

Theorem 1.27 (Koenig [Koe17]). Let L = Lγ be given by Example 1.11 with γ = 1. Assume that there is
0 < c < d < 1 such that ω ∩

(
]− 1, 1[×]c, d[

)
= ∅. Then, for any T > 0 the observability inequality (1.27)

is false.

A remarkable consequence of this result, when compared with the two abovementioned ones is that a
geometric condition on the set ω is needed for the observability estimate 1.27 to hold.

Hence, the best result one can then expect in a general situation is a final state approximate observ-
ability result with a cost function Φ(ε) →ε→0+ +∞ (or equivalently an approximate controllability to
trajectories with cost Φ(ε)), which is precisely our Theorem 1.20 and Corollary 1.21 with Φ(ε) = ε−β .

Finally, let us also underline that all these result hold in the context of Example 1.11, that is for the
operator −(∂2

x1
+ x2γ

1 ∂2
x2

), which coefficients are analytic (indeed constant) with respect to the variable
x2. As such, they fit into the framework of Theorem 1.23 as long as γ ∈ N.

More recently, there has been some study of the control of the Heat equation on the Heisenberg group
by Beauchard and Cannarsa [BC17]. It still corresponds to the case k = 2 as described in Example 1.8.
Some phenomenon similar to the Grushin case seem to occur with the existence of a minimal time if the
observability is made on a cylinder. This strenghtens the fact suggested by our result that the important
parameter is the hypoelliptic index k.

Yet, in both cases of Grushin and Heisenberg (or more generally when k = 2), it remains to understand
what is the geometric property on the observation set ω that makes the difference between the polynomial
cost that is provided by our result without any assumption on ω (which is likely to be optimal in general
as suggested by Theorem 1.27) and the exact controlability that requires some geometrical assumptions
on ω.
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1.3.3 Controllability of other equations driven by degenerate elliptic operators

To conclude this section, let us mention different works related to the controllability of parabolic equations
driven by hypoelliptic or degenerate elliptic operators, that do not fit in the framework of the present
article.

First, the paper [Mor15] by Morancey treats the approximate controllability (or the unique contin-
uation property) for the heat equation associated with the Laplace Beltrami operator of the Grushin
sub-Riemannian metric defined in [BL13]. This operator is equal to the Grushin operator discussed in
Example 1.6 plus a singular potential on the singular set x1 = 0. Hence, the analysis of the cost associated
to approximate controls is much beyond the scope of the present paper.

Second, we only considered here type I (selfadjoint) Hörmander operators, that is L =
∑m
i=1X

∗
i Xi.

Another classical class of hypoelliptic operators consists in type II Hörmander operators, namely L =∑m
i=1X

∗
i Xi + X0, where the vector field (the drift) X0 is necessary to span the full tangent space with

iterated Lie brackets. These are no longer selfadjoint operators. The simplest example is the so-called
Kolmogorov (or Fokker-Planck) operator L = −∂2

v+v∂x. Our results do not apply in this setting, especially
because our main theorems only see the principal symbol of the operator. Yet, recent progress has been
made to analyse the observability/controllability of parabolic equations driven by such operators (mainly
for some variants of the Komogorov operator, though). We quote for instance the papers [BZ09, Bea14,
BHHR15]. The observability/controllability problem has also been considered on the whole space Rd. This
led to other geometrical problems about how the domain is "spread out" at infinity, see for instance Le
Rousseau-Moyano [LRM16] for the Kolmogorov equation and Beauchard-Pravda-Starov [BPS16a, BPS16b]
for some more general class of quadratic operators. In these last papers, the idea of the proof is to combine
some observability of low frequency (where the frequency are the usual Fourier ones or related to the
harmonic oscillator) with some decay and regularizing properties of the semigroup.

It would be very interesting to understand the common features and differences of our results and
methods with these ones. At first sight, it seems that in both cases, one important idea (which goes back
to Lebeau-Robbiano [LR95]) is to compare the decay rate of the heat equation with the cost of observability
(or control) of low frequency. But, in our paper, we define "frequency" with respect to the hypoelliptic
operator L and then, the decay is natural for high frequency. The hard part is then to understand the
cost of observability of low frequencies. In these papers, it seems that they have chosen to define the
frequency as the usual Euclidian one (or with respect to a fixed well known operator as the harmonic
oscillator in [BPS16b]). In this situation, the observation at low (Euclidian) frequency does not really see
the hypoelliptic operator and follows from more usual Carleman estimates. Yet, the decay rate of high
frequency (see for instance Proposition 2.2 of [BPS16a]) and the understanding of the commutation with
Fourier cutoff turns out to be much more complicated and to reflect deeply the hypoelliptic properties of
the operator.

Note also that there has been several studies of the unique continuation property for type II Hörmander
operators (see e.g. [LZ82] for related operators).

Finally, other types of degeneracies have also been studied, as for instance elliptic operators with coeffi-
cients vanishing near the boundary of a domainM ⊂ Rd. In this case, adaptations of the usual Carleman
estimates (combined with appropriate Hardy inequalities) are sometimes tractable. The literature is vast,
and we simply mention the recent memoir [CMV16] and refer the reader to the references therein.
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1.4 Sketch of the proofs and plan of the paper
Even though this is not explicit in the discussion above, the cornerstone result of this paper is Theorem 1.13,
concerning the hypoelliptic wave equation. All results concerning eigenfunctions (Theorem 1.10) or the
hypoelliptic heat equation (Theorems 1.16, 1.18 and 1.20) are then deduced from Theorem 1.13. The proof
in the partially analytic case (Theorem 1.23) shall be discussed afterwards. Let us hence first comment
the proof of Theorem 1.13.

The proof of Theorem 1.13 is based on the general strategy developed by the authors in [LL15] for
quantifying and propagating unique continuation properties. From [LL15], we only use here (except for
the partially analytic situation of Theorem 1.23) the “Holmgren-John” case, i.e. when the operator has
analytic coefficients. It states basically

• that an appropriate quantitative (low frequency) estimate holds across any non-characteristic hyper-
surface;

• that such local estimates can be propagated, leading towards global ones.

In Section 2, we review results and tools developed in [LL15]; for sake of readability, we specify the latter to
the very particular case of second order operators that are elliptic when restricted to ζa = 0 (the cotangent
variable to the analytic variable, called ξa in [LL15]), which includes all operators studied in the present
article.

Here, when compared to the case of the classical wave equation, two more difficulties arise: one of
geometric nature, and one related to the compatibility of energy space associated to L and those dealt
with in [LL15].

Let us first describe the geometric difficulty. The proof is inspired by the case of the classical wave
equation given in [LL15, Section 6.1]: the idea is, given a point x0 ∈ M, to take any path γ : [0, 1]→M
with γ(0) = x0 and γ(1) ∈ ω (observation set), of length sufficiently small, and then to construct a family
of appropriate noncharacteristic hypersurfaces in these coordinates near [−T, T ]× γ. There, we apply the
general theorem of [LL15], which allows to bound the solution u to (∂2

t −∆)u = 0 in a neighborhood of
(t, x) = (0, x0) by u in [−T, T ]× ω.

Here, due to the non definiteness/ellipticity of the operator L, we are not able to construct global
coordinates near any path γ together with appropriate noncharacteristic hypersurfaces, in which to apply
the results of [LL15]. To overcome this difficulty, we do not consider any path between x0 and ω, but
rather only so called normal geodesics, that is, projections on M of hamiltonian curves of the principal
symbol of the operator L. The existence of such paths γ (minimizing the sub-Riemannian distance) from
any point x0 to ω is a well-known result in sub-Riemannian geometry, proved by Rifford and Trélat [RT05].
Then, locally near a point of γ, the introduction of normal geodesic coordinates allows us to define local
coordinates in which to apply a local version of our results in [LL15].

A new difficulty, linked to the methods used in [Tat95, Tat99b, RZ98, Hör97, LL15], then arises: the
whole setting of these papers relies on a splitting of space into analytic and non-analytic coordinates.
Hence, most “patchable estimates” (linked to a relation C, see Section 2.2) produced in [LL15] require the
analytic variable to be global and straight, which is obviously not the case here. To solve this problem
we do not rely on the main (neither global, nor local) result of [LL15], but rather on the specific result
of [LL15, Theorem 4.11], which takes into account the possible changes of variables. Having these results
in hand allows to prove an estimate of the form

‖u‖L2(]−ε,ε[×M) ≤ Ce
κµ ‖u‖L2(]−T,T [×ω) +

C

µ
‖u‖H1(]−T,T [×M) , (1.28)
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for µ large and u solution to (∂2
t + L)u = 0. This estimate is the same as that obtained in [LL15] for the

wave equation.

This leads us to the second main difficulty we have to face in the proof of Theorem 1.13. Whereas
the left hand-side of (1.28) is bounded from below by the natural L2 × H−1

L norm of the data, the
right hand-side is not directly linked to their H1

L × L2 norm. More precisely, the hypoelliptic estimates
Rothschild and Stein [RS76] (see Theorem 1.4 above and Appendix B.1) imply that ‖u‖H1(]−T,T [×M) ≤
C ‖(u0, u1)‖HkL×Hk−1

L
. This provides a weaker version of Theorem 1.13 which has exactly the same form as

in the case of the wave equation (cost eκµ), but with the norm ‖(u0, u1)‖HkL×Hk−1
L

in the right hand-side.
This weaker version is however interesting for itself since the proof is much less involved, and we prove it
in Section 3.3.1.

To obtain the estimate of Theorem 1.13 (and in fact, a family of such estimates with any HsL ×
Hs−1
L , s > 0, in the right hand-side, see Theorem 1.31 below), we thus need to work with a version of

(1.28) still containing frequency cutoff localization and an e−cµ small remainder (instead of the 1/µ one).
These low-frequency-with-exponentially-small-remainder estimates are then combined with the spectral
representation of solutions to (∂2

t +L)u = 0 in order to gain back derivatives in the remainder term. Such
estimates are close to those we prove in [LL17] for the classical wave equation. These final energy estimates
are performed in Section 3.3.3, and conclude the proof of Theorem 1.13.

Starting from Theorem 1.13, let us now explain how to deduce the other results of the paper, namely
Theorems 1.10, 1.16, 1.18 and 1.20. First of all, Theorems 1.10 is simply deduced from Theorem 1.13 by
using a particular solution to the wave equation (1.12), namely u(t, x) = cos(

√
λjt)ϕj(x). See Section 3.3.2.

Section 4 is devoted to the proofs of Theorems 1.16, 1.18 and 1.20, which follow the general idea that
the controllability/observability properties for hyperbolic equations implies controllability/observability
properties for their parabolic counterpart, see [Rus73, Mil06a, EZ11a, EZ11b] (see also [LR95]). This
has been named as “transmutation methods” by Luc Miller [Mil06a]. Here, we use the method developed
in [EZ11a]. In that paper, Ervedoza and Zuazua deduced the (exact final time) observability of the heat
equation (known from [LR95, FI96]) from the approximate observability estimate for waves (namely the
analogue of Theorem 1.13) as proved in [Phu10] (with loss) or [LL15] (without loss). Their proof consists
in constructing an appropriate kernel kT (t, ) such that if y(t) is a solution to the usual heat equation,
u(t) =

∫ T
0
kT (t, s)y(s)ds is a solution to the usual wave equation, to which we can apply the analogue

of Theorem 1.13. Because of the exponential cost in term of the frequency (ecΛ), the resulting estimates
are only useful at low frequency: for data having (spectral) frequencies

√
λj ≤

√
λ, one then obtain

observability (or controllability if we think about the dual problem) at cost ec
√
λ as in [LR95]. The proof

of final state observability then follows from comparing this cost with the heat dissipation for frequencies√
λj ≥

√
λ, namely e−tλ as in the original proof [LR95] (see also [LRL12] or the simplified argument

of [Mil10]).
Here, we follow the approach of [EZ11a] (in particular, we use the same kernel k and its properties) in

the proofs of Theorems 1.16, 1.18 and 1.20, with the following modifications.
The proof of Theorems 1.18 and 1.20 are vey close to that of [EZ11a]. However, application of the

method of [EZ11a] yields that the observability of low frequencies
√
λj ≤

√
λ costs ecλ

k/2

, see Lemma 4.2
(remark that Proposition 1.12 implies that this is optimal in general). This cost has to be compared to
the dissipation for high frequencies

√
λj ≥

√
λ, namely e−tλ. Hence, we see that the case k = 1 (classical

heat equation, already discussed), k = 2, and k > 2 display very different features:
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1. In case k = 2, the cost of observation of low frequencies ecλ and the parabolic dissipation for high
frequencies e−tλ have the same strength: in this case, we need to wait a time long enough so that the
dissipation “beats” the cost of the observability (essentially t > c). Moreover, the iterative procedure
devised in [LR95] in order to control/observe all frequencies in finite time cannot converge here: each
step would need a time t > c. Therefore, we only obtain the approximate controllability result of
Theorem 1.20, with a cost improving as time increases. See Section 4.1 for the proof of Theorem 1.20.

2. In case k > 2, the dissipation for high frequencies e−tλ has no chance to compete with the cost of
observation of low frequencies ecλ

k/2

. Assuming that the initial data are in the Gevrey-type space
Hθ,α with α = k/2 allows to compensate for the cost of low frequencies ecλ

k/2

(the θ having to be
compared to c), leading to Theorem 1.18. Note that parabolic dissipation at high frequencies does
not play any role here: low frequencies are observed thanks to transmutation and high-frequencies
are absorbed by the Gevrey norm. The cases k = 1, 2 (in which the Gevrey norm is relatively
weaker) in Theorem 1.18 are a little different and require elements similar to those used in the proof
of Theorem 1.16. Note that this type of result seems to be new for the classical heat equation as
well (in which case our proof also holds in a much more general setting). Proof of Theorem 1.18 is
performed in Section 4.2.

Finally, the proof of Theorem 1.16 in Section 4.3 relies on the same transmutation technique. However,
we do not split the solution into low and high-frequencies, but rather apply the transmutation kernel
kT (t, s) to the full solution y to the heat equation: u(t) =

∫ T
0
kT (t, s)y(s)ds is a solution to the wave

equation. We then prove a fine asymptotics analysis of
∫ T

0
kT (0, s)e−λsds for high frequencies together

with convexity estimates to bound the frequency function of u(0) by the frequency function of y(0), namely

Λ =
‖y(0)‖H1

L
‖y(0)‖L2

. The proof of this result via a direct transmutation method seems to be new, even for the
classical heat equation. The usual proofs [FCZ00, Phu04] rather rely on the exact final time observability
estimate, which does not hold here in general. However, as opposed to [FCZ00, Phu04], we do not recover
uniform estimates in terms of the control time T as T → 0+.

Finally, in Section 5, we prove the partially analytic result of Theorem 1.23. Only the analogue of
Theorem 1.13 at regularity HkL needs to be proved (namely estimate (1.24)), since, as discussed above,
all results of Theorems 1.10, 1.16, 1.18 and 1.20 (under the appropriate form) are corollaries of that of
Theorem 1.13. The situations is almost the same as that of Theorem 1.13 except for four main differences.
First, the presence of the boundary makes it complicated to apply globally the geometric result of Rifford
and Trélat [RT05], and we only rely on a local version of it. Second, the partial analyticity assumption
does not allow to make changes of variables. This difficulty is overcome by the very simple geometry of
[−1, 1]x1

× Tx2
, in which we barely do not perform any change of variable. Third, the application of the

results in [LL15] yields an observation term in a mixed L2 −H1 norm; we have to refine this estimate to
recover the L2 observation term. Finally, the available hypoelliptic estimates do not apply directly in the
presence of boundary and we have to patch hypoelliptic estimates in the interior with elliptic estimates at
the boundary.

The paper ends with three appendices, the first of which, Appendix A is devoted to the proof of the
optimality result of Proposition 1.12 using some estimates of [BCG14, Section 2.3]. The second part,
Appendix B provides the proof of several subelliptic estimates that are used throughout the paper. They
are consequences of Theorem 1.4. Finally, Appendix C contains an technical computation.
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1.5 Some remarks and further comments
This section contains several remarks concerning the setting of the present paper and the results we obtain.

Remark 1.28 (Sub-Riemannian Laplacians). Here, we explain why the assumption that L writes as a
sum of X∗jXj , although seemingly restrictive, contains in fact a general family of intrinsically defined
sub-Riemannian Laplacians.

We first define here the sub-Riemannian Laplacian ∆(U,f),ds associated to a sub-Riemannian structure
(U, f) onM and a smooth density ds. We then explain why it can be rewritten under the form (1.1) for
some (sufficiently many) vector fields X1, · · · , Xm.

First, we assume that M is equipped with a general sub-Riemannian structure (U, f), see [Bel96,
Definition 1.3] or [ABB16a, Definition 3.2] with U a Euclidean bundle with baseM and f : U → TM a
smooth map being linear on fibers. This allows to define first a sub-Riemannian metric, that is, a metric
on the horizontal distribution D with Dx = f(Ux) ⊂ TxM by g(x, v) = inf{|u|, u ∈ Ux, v = f(x, u)}
(where | · | denotes the Euclidean norm in U). Second, this provides a sub-Riemannian gradient ∇(U,f)

onM: namely, for u ∈ C∞(M), ∇(U,f)u(x) is the unique vector in Dx such that for all v ∈ Dx, we have
dxu(v) = g̃(x,∇(U,f)u(x), v) (where g̃ is the bilinear form associated to g).

Next, the smooth density ds allows to define the divergence divds of a vector field X ∈ X∞ by

d

dt
(etX)∗(ds)

∣∣∣∣
t=0

= divds(X)ds,

where etX denotes the flow of X (or, equivalently, by the formula X∗ = −X−divds(X)). Hence, a natural
definition of the sub-Riemannian Laplacian ∆(U,f),ds is

∆(U,f),dsu = divds
(
∇(U,f)u

)
, u ∈ C∞(M).

Now, according to [ABB16a, Corollary 3.26], the sub-Riemannian structure (U, f) is equivalent to a free
one, that is, there exist m ∈ N and m vector fields X1, · · · , Xm onM such that the horizontal distribution
at x ∈ M is given by Dx = span(X1(x), · · · , Xm(x)), and the metric on this distribution is defined by
(1.11). A computation similar to that in Appendix C shows that the sub-Riemannian gradient ∇(U,f) of
a function u is then given by

∇(U,f)u =

m∑
i=1

(Xiu)Xi.

Hence, the formula divds(uX) = udivds(X) +Xu for u ∈ C∞(M) and X ∈ X∞ yields

∆(U,f),dsu = divds

(
m∑
i=1

(Xiu)Xi

)
=

m∑
i=1

divds(Xi)Xiu+X2
i u = −

m∑
i=1

X∗i Xiu.

As a consequence, all results presented in this article remain valid for general, intrinsically defined sub-
Riemannian Laplacians ∆(U,f),ds.

In the above discussion, we assume the density ds to be given: the sub-Riemannian Laplacian ∆(U,f),ds

then depends both on the sub-Riemannian structure (U, f) and the density. One may also wonder whether,
given the sub-Riemannian structure (U, f) only, there is an associated intrinsic choice of density ds, as in
the Riemannian case. This question is an object of current research. While it seems that in the equiregular
case, i.e., when the growth vector does not depends on the point, there is a natural intrisic measure (namely
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the Popp measure, see e.g. [Mon02]), there is no consensus for what should be the natural one in the general
case. For instance, in the Grushin case of Example 1.6 the metric g defined in (1.11) is Riemannian outside
of {x1 = 0}. Hence, a natural choice would be to take the Riemannian density outside of {x1 = 0}. The
associated Laplacian is equal to that of Example 1.6 plus a potential which is singular on {x1 = 0}. The
analysis in [BL13] shows that the zone {x1 = 0} creates a barrier which the information cannot cross.
This is in strong contrast with results of the present paper.

To conclude this remark, let us also notice that the whole class of operators studied by Fefferman and
Phong in [FP83] is not contained in the class of sub-Riemannian Laplacians ∆(U,f),ds defined above. It
would be interesting to investigate the questions of the present paper for such hypoelliptic operators.

Remark 1.29 (Norm of the observation term). Note that in the right hand-side of (1.13), the observation
term only comes with a L2 norm (which is not the case in most results in [LL15]). This is due to the fact
that we are in the context of operators with analytic coefficients with respect to all variables. In the case
of partially analytic operators as described in Subsection 1.2.4, we are able to get observability in L2 using
a refined argument (see Section 5.3). Similar arguments are also applied to the classical wave equation in
a forthcoming companion paper [LL17].

Remark 1.30 (Other levels of HsL regularity). As already mentionned, Theorem 1.13 is a particular case
of general estimates where all Sobolev scales are possible for measuring the typical frequency of the initial
datum. Indeed, we prove the following more general result.

Theorem 1.31. Let L as above satisfying Assumptions 1.1 and 1.2. Assume that ω is a non empty open
set of M and T > supx∈M dL(x, ω). Then, for any s > 0, there exist κ,C, µ0 so that for all µ ≥ µ0, and
all u solution of (1.12), we have

‖(u0, u1)‖L2×H−1
L
≤ Ceκµ

k

‖u‖L2(]−T,T [×ω) +
1

µs
‖(u0, u1)‖HsL×Hs−1

L
(1.29)

Theorem 1.13 is the case s = 1 of Theorem 1.31 and we believed that the frequency functions Λ used
in Theorem 1.13 is the more natural presentation. Yet, it turns out that Theorem 1.31 is actually easier to
prove for s = k. Below, we first prove this simpler case s = k (Section 3.3.1); then we need to prove refined
estimates for the general case (Section 3.3.3). The second part of the proof seems to require additional
arguments in the partially analytic case described in Section 1.2.4. That is the reason why the estimate
(1.24) of Theorem 1.23 is restricted to the case s = k. Nevertheless, as already explained, most of the
results about eigenfunction and the hypoelliptic heat equation only use the easier case s = k.

Remark also that, in inequalities such as (1.29), deducing the Hs′L case from the HsL case follows from
an interpolation argument if s′ > s. Indeed, for 0 ≤ s < s′, denoting H̃s = HsL ×H

s−1
L we have

‖U‖H̃s ≤ ‖U‖
1− s

s′

H̃0
‖U‖

s
s′

H̃s′
≤ (1− s

s′
)A ‖U‖H̃0 +

s

s′
A1− s′s ‖U‖H̃s′ , for all A > 0.

Taking then A = 1
2µ

s and putting this into (1.29) yields the same estimate with s replaced by s′. Hence,
the difficulty in Theorem 1.31 when compared to the case s = k (which proof is simpler) is only for small
s > 0.

Finally, let us mention that the result of Theorem 1.16 remains valid as well with the H1
L-norm replaced

by any HsL-norm, s > 0, when modifying the powers accordingly.

Remark 1.32 (Constants). Note that there are mostly two relevant constants in Theorem 1.13, namely the
minimal time 2 supx∈M dL(x, ω), and the constant κ in the exponent of 1.13. All constants appearing in the
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results of Section 1.2.3 can be explicitely formulated in terms of these two. For instance, in Theorem 1.20,
the constant T0 can be taken as T0 > κ, where κ is the exponent in (1.13) for some S > supx∈M dL(x, ω).
We refer to Remark 4.3 below for more on this subject.

Remark 1.33 (Interpolation spaces, see [Leb92, LL17]). Notice that Estimate (1.22) may be reformulated
(after an optimization in ε) as the following interpolation inequality, for y solution to (1.16)

‖y(T )‖L2 ≤ C ‖y‖
T−(T0+η)

T−η
L2((0,T )×ω) ‖y(0)‖

T0
T−η
L2 ,

while (1.21) can be written

‖y(0)‖2L2 ≤ C ‖y‖
θ−θ0
θ

L2((0,T )×ω) ‖y(0)‖
θ0
θ

k/2,θ .

More generally, in both cases, there exists α ∈]0, 1[ so that, we have the estimates

‖y0‖F1
≤ C ‖y0‖αFobs ‖y0‖1−αF0

, (1.30)

where F0, FT and Fobs which are defined as the spaces of data obtained as the completion of linear
combinations of eigenfunctions of L for the norms

‖y0‖F1
=

∥∥e−TLy0

∥∥
L2 , resp. ‖y0‖F1

= ‖y0‖L2 ,
‖y0‖F0

= ‖y0‖L2 , resp. ‖y0‖F0
= ‖y0‖k/2,θ ,

‖y0‖Fobs = ‖y‖L2((0,T )×ω) =
∥∥e−tLy0

∥∥
L2((0,T )×ω)

in both cases.
(1.31)

The latter are proper norms as a consequence of uniqueness, backward uniqueness (consequence e.g. of
Lemma 4.6 below) and unique continuation property for the hypoelliptic heat equation (1.16). Note that
we have F0 ⊂ Fobs, F1 in the first case, and F0 ⊂ F1 ⊂ Fobs in the second.

As a consequence of (1.30) (see for instance [Leb92, Appendix, Lemma 1]), there exists δ > 0 such that

[F0, Fobs]δ ⊂ F1,

where [F0, Fobs]δ is the space of interpolation between F0 and Fobs. As in Lebeau [Leb92, Section 3], this
yields

F ′1 ⊂ [F ′0, F
′
obs]1−δ. (1.32)

Now, the duality between (1.16) and (1.17) will allow to identify the spaces F ′0, F ′1, F ′obs, to deduce properties
of the controllable and the attainable sets.

First, the duality between (1.16) and (1.17) writes∫ T

0

(1ωy(T − t), g)L2(M)dt = (y0, u(T ))L2(M) − (y(T ), u0)L2(M). (1.33)

We define

Eatt =
{
u1 ∈ L2(M), there exists g ∈ L2((0, T )× ω),

s.t. the associated solution u to (1.17) with u(0) = 0 satisfies u(T ) = u1

}
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the space of attainable data from zero with L2 control, endowed with the norm

‖u1‖Eatt = inf
{
‖g‖L2((0,T )×ω) , g ∈ L

2((0, T )× ω)

s.t. the associated solution u to (1.17) with u(0) = 0 satisfies u(T ) = u1

}
.

From (1.33), we obtain for all u1 ∈ Eatt ⊂ L2 and all y0 ∈ L2

∣∣(y0, u1)L2(M)

∣∣ =

∣∣∣∣∣
∫ T

0

(1ωy(T − t), g)L2(M)dt

∣∣∣∣∣ ≤ ‖y0‖Fobs‖u1‖Eatt .

Hence, the L2(M) scalar product extends uniquely as a duality product 〈y0, u1〉Fobs,Eatt , allowing to
identify F ′obs with Eatt. With the identification, we have as well F1 = eTLL2(M) and F0 = L2(M) (resp.
F1 = L2(M) and F0 = Hk/2,θ) so that F ′1 ≈ e−TLL2(M) and F ′0 ≈ L2(M) (resp. F ′1 ≈ L2(M) and
F ′0 ≈ Hk/2,−θ). With (1.32), this yields

e−TLL2 ⊂ [Eatt, L
2]1−δ,

resp. L2 ⊂ [Eatt, H
k/2,−θ]1−δ.

We also define Econt the (abstract) space of data that can be controled towards zero as the completion of
the space

{u0 ∈ L2, there exists g ∈ L2((0, T )× ω), s.t. the associated solution u to (1.17) satisfies u(T ) = 0}

for the norm

‖u0‖Econt = inf
{
‖g‖L2((0,T )×ω) , g ∈ L

2((0, T )× ω)

s.t. the associated solution u to (1.17) satisfies u(T ) = 0
}
.

From (1.33), we obtain for all u1 ∈ Econt ⊂ L2 and all y0 ∈ L2

∣∣(y(T ), u1)L2(M)

∣∣ =

∣∣∣∣∣
∫ T

0

(1ωy(T − t), g)L2(M)dt

∣∣∣∣∣ ≤ ‖y0‖Fobs‖u1‖Econt .

Similarly, the scalar product 〈y0, u1〉 = (e−TLy0, u1)L2(M) extends uniquely as a duality product 〈y0, u1〉Fobs,Eatt ,
allowing to identify F ′obs with Econt. With this same identification, we have as well F ′1 ≈ L2(M) and
F ′0 ≈ e−TLL2(M) (resp. F ′1 ≈ e−TLL2(M) and F ′0 ≈ e−TLHk/2,−θ). Similarly, (1.32) also yields

L2 ⊂ [Econt, e
−TLL2]1−δ

e−TLL2 ⊂ [Econt, e
−TLHk/2,−θ]1−δ.

Note that when k > 2, e−TLHk/2,−θ ≈ Hk/2,−θ which is not a distributional set whatever the time T is.
Yet, if k = 2, e−TLHk/2,−θ ≈ H1,−θ+T , which is a space of very regular functions if T > θ.

The next remark concerns the results of Theorem 1.20 and Corollary 1.21.
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Remark 1.34 (Large time approximate controllability with polynomial cost of “critical anomalous dif-
fusion”). The proof of Theorem 1.20 and Corollary 1.21 also applies to any positive selfadjoint operator
satisfying spectral estimates (or similar estimates for the control of the heat equation for spectrally localized
initial data) like

‖w‖L2(M) ≤ Ce
cλ ‖w‖L2(ω) , for all w =

∑
λj≤λ

wjϕj . (1.34)

This is in particular the case for the square root of the Laplacian
√
−∆g where ∆g is the elliptic Laplace-

Beltrami operator on a compact Riemannian manifold (even without the analyticity assumption and
with Dirichlet boundary condition), see [LR95]. Therefore, for the associated evolution operator (so called
“critical anomalous diffusion”) ∂t+

√
−∆g (studied in [Mil06b]), the same approximate controllability result

with a polynomial cost holds. Note also that even for the one dimensional case (namely the operator ∂t+|∂x|
on the circle), it has been proved by Koenig [Koe17] that exact controllability in finite time T > 0 never
holds (as long as the control domain is not the whole circle). In particular, it suggests that approximate
controllability at polynomial cost might be the best to obtain under general spectral assumptions like
(1.34).

Acknowledgements. We wish to thank warmly Davide Barilari and Emmanuel Trélat for very helpful
discussions on sub-Riemannian geometry. In particular, Emmanuel Trélat brought our attention to the
references [RT05] and [Der71], and the properties of Example 1.9, Remark 1.28 and Appendix C were
explained to us by Davide Barilari. The first author is partially supported by the Agence Nationale de
la Recherche under grant SRGI ANR-15-CE40-0018 and IPROBLEMS ANR-13-JS01-0006. The second
author is partially supported by the Agence Nationale de la Recherche under grant GERASIC ANR-13-
BS01-0007-01.

2 The quantitative Holmgren-John theorem of [LL15]
In this section, we briefly review some results obtained in [LL15], that will be at the core of the proof of the
present paper. We shall only consider a very particular class of operators, namely second order operators
with real principal symbol. Also, we shall only consider non-characteristic surfaces. This assumption can
be also relaxed (see e.g. [LL15] Definition 1.7 and Remark 1.9), even though we are not aware of any
application of the refined result.

The interest of taking such operators and surfaces is that, in this context, several assumptions and
formulations of the results in [LL15] are simplified. In this section, we state results for an operator P in
Rn, where, in the application in Section 3 below, we shall mainly consider P as a local version of ∂2

t + L
on R × Rd (recall that dim(M) = d), that is n = d + 1. For this reason (and as opposed to the notation
of [LL15]), we shall denote by z ∈ Rn the running variable and ζ ∈ Rn its cotangent variable. In the
applications in the next section, we will have z = (t, x) and ζ = (τ, ξ).

2.1 A typical quantitative unique continuation result of [LL15]
A typical instance (in the situation describe above) of the main result of [LL15] may be stated as follows
(see [LL15, Theorem 1.11] together with [LL15, Remark 1.10]).

Geometric setting: (see Figure 1) We first fix two splittings of Rn:
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• Rn = Rna ×Rnb , where na + nb = n. We denote z = (za, zb) the global variable and ζ = (ζa, ζb) the
associated cotangent variable.

• and Rn = Rn−1
z′ × Rzn ,

possibly in two different bases. We let D be a bounded open subset of Rn−1 with smooth boundary and
G = G(z′, ε) a C2 function defined in a neighborhood of D × [0, 1], such that

1. For all ε ∈ (0, 1], we have {z′ ∈ Rn−1, G(z′, ε) ≥ 0} = D;

2. for all z′ ∈ D, the function ε 7→ G(z′, ε) is strictly increasing;

3. for all ε ∈ (0, 1], we have {z′ ∈ Rn−1, G(z′, ε) = 0} = ∂D.

We set G(z′, 0) = 0, S0 = D × {0} and, for ε ∈ (0, 1],

Sε = {(z′, zn) ∈ Rn, zn ≥ 0 and G(z′, ε) = zn} = (D × R) ∩ {(z′, zn) ∈ Rn, G(z′, ε) = zn};
K = {z ∈ Rn, 0 ≤ zn ≤ G(z′, 1)}.

z′

zb

za

S1

S0

Ω

ω̃

K

zn

Figure 1: Geometric setting of Theorem 2.1

We recall that the local surface S := {ϕ = 0} 3 z0, dϕ(z0) 6= 0 is called non-characteristic at z0 for
the differential operator P with principal symbol p if p(z0, dϕ(z0)) 6= 0, and that this is a property of the
sole surface S (together with the point z0 and the principal symbol of the operator p) and not its defining
function ϕ.

Note also that in the main part of the paper, the operators are analytic with respect to all variables, In
this case, Theorem 2.1 is a quantitative version of the Holmgren-John theorem (for second order operators,
see [LL15] in the general case), and may be seen as a generalization of [Leb92], which concern the (analytic)
wave operator.

Theorem 2.1. In the above geometric setting, we moreover let Ω ⊂ Rna × Rnb be a bounded open neigh-
borhood of K, and P be a differential operator of order 2 on Ω such that
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• all coefficients of P are smooth and depend analytically on the variable za,

• the principal symbol of P , namely p(z, ζ) = Qz(ζ), is a z-family of real quadratic forms such that
ζb 7→ Qz(0, ζb) is definite on Rnb for any z ∈ Ω.

Assume also that, for any ε ∈ [0, 1 + η), η > 0, the surface Sε is non-characteristic for P at each point
of Sε.

Then, for any open neighborhood ω̃ ⊂ Ω of S0, there exists a neighborhood U of K, and constants
κ,C, µ0 > 0 such that for all µ ≥ µ0 and u ∈ C∞0 (Rn), we have

‖u‖L2(U) ≤ Ce
κµ
(
‖u‖H1

b (ω̃) + ‖Pu‖L2(Ω)

)
+
C

µ
‖u‖H1(Ω) , (2.1)

where we have denoted ‖u‖H1
b (ω̃) =

∑
|β|≤1

∥∥∥Dβ
b u
∥∥∥
L2(ω̃)

.

Unfortunately, in the present paper, this global result does not apply under this form. In order to state
the refined (and more technical) version, used in the main part of the paper, we shall need some definitions
taken from [LL15, Section 2.3].

2.2 Definitions and tools for propagating the information
We first define the following regularization process for functions f defined on Rn, by f 7→ fλ with

fλ := e−
|Da|2
λ f = F−1

a

(
e−
|ζa|2
λ Fa(f)(ζa, zb)

)
(za),

where Fa denotes the Fourier transform in the variable za only, or, equivalently

fλ(za, zb) =

(
λ

4π

)na
2 (

e−
λ
4 |·|

2

∗Rna f(·, zb)
)

(za) =

(
λ

4π

)na
2
∫
Rna

f (ya, zb) e
−λ4 |za−ya|

2

dya.

Then, we also need to introduce frequency localization functions, i.e. appropriately smoothed Fourier
multipliers. Let m(ζa) be a smooth radial function (i.e. depending only on |ζa|), compactly supported in
|ζa| < 1 such that m(ζa) = 1 for |ζa| < 3/4. We denote by Mµ the Fourier multiplier Mµu = m

(
Da
µ

)
u,

that is
(Mµu)(za, zb) = F−1

a

(
m

(
ζa
µ

)
Fa(u)(ζa, zb)

)
(za).

Given λ, µ > 0, we shall denote by Mµ
λ the Fourier multiplier of symbol mµ

λ(ζa) = mλ

(
ζa
µ

)
, i.e. Mµ

λ =

mµ
λ(Da) = mλ

(
Da
µ

)
or

(Mµ
λu)(za, zb) = F−1

a

(
mλ

(
ζa
µ

)
Fa(u)(ζa, zb)

)
(za),

with, according to the above notation for the subscript λ,

mλ(ζa) =

(
λ

4π

)na
2
∫
Rna

m (ηa) e−
λ
4 |ζa−ηa|

2

dηa. (2.2)
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Note that in this definition, the symbol is first regularized and then dilated. We stress the fact that
these Fourier multipliers only act in the variable za.

The typical local estimate of [LL15, Theorem 3.1], which is the building block for semiglobal statements
like that of Theorem 2.1, reads as∥∥Mβµ

µ σµu
∥∥

1
≤ Ceκµ

(∥∥Mαµ
µ ϑµu

∥∥
1

+ ‖Pu‖L2(B(0,R))

)
+ Ce−κ

′µ ‖u‖1 ,

for all µ ≥ µ0 and u ∈ C∞0 (Rn), where σ is a cutoff function in a small ball B(0, r), r < R, whereas ϑ is a
cutoff in only one side (the one where the information is taken) of the hypersurface passing through zero
(and being non-characteristic).

Here, and below, the norm ‖·‖1 is the norm ‖·‖H1(Rn).
Such an estimate only provides information on the low frequency part of the function, through the

frequency cutoff Mβµ
µ , with an exponentially small Ce−κ

′µ remainder (as opposed to the 1/µ remainder
term in (2.1)). Iterating this result allows us to propagate the low frequency information. In this section,
we recall some tools, used in [LL15, Section 4], for this iterative procedure. They are aimed at describing
how information on the low frequency part of the solution can be deduced from one subregion to another
one.

The following is [LL15, Definition 4.4], given here in the context of second order operators.

Definition 2.2. Fix Ω be an open set of Rn = Rna ×Rnb and P a differential operator of order 2 defined
in Ω, and (Vj)j∈J and (Ui)i∈I two finite collections of bounded open sets of Rn. We say that (Vj)j∈J is
under the strong dependence of (Ui)i∈I , denoted by

(Vj)j∈J C (Ui)i∈I ,

if there existsWi b Ui such that for any ϑi ∈ C∞0 (Rn) such that ϑi(z) = 1 on a neighborhood ofWi, for any
ϑ̃j ∈ C∞0 (Vj) and for all κ, α > 0, there exist C, κ′, β, µ0 > 0 such that for all (µ, u) ∈ [µ0,+∞)×C∞0 (Rn),
we have

∑
j∈J

∥∥∥Mβµ
µ ϑ̃j,µu

∥∥∥
1
≤ Ceκµ

(∑
i∈I

∥∥Mαµ
µ ϑi,µu

∥∥
1

+ ‖Pu‖L2(Ω)

)
+ Ce−κ

′µ ‖u‖1 .

If the cardinal of I is one, writing U the single set of the family (Ui)i∈I , we simply denote (Vj)j∈J E U .
We use the same convention for V in case the cardinal of J is one. The norm ‖·‖1 is taken in Rn.

We summarize the properties of this relation in the following proposition [LL15, Proposition 4.5].

Proposition 2.3. We have the following properties

1. If (Vj)j∈J C (Ui)i∈I with Ui = U for all i ∈ I, then (Vj)j∈J C U .

2. If Vi b Ui for any i ∈ I, then, (Vi)i∈I C (Ui)i∈I .

3. If Vi b Ui for any i ∈ I, then
⋃
i∈I Vi C (Ui)i∈I .

4. If for any i ∈ I, Vi C Ui, then (Vi)i∈I C (Ui)i∈I . In particular, if for any i ∈ I, Ui C U , then
(Ui)i∈I C U .
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5. The relation C is transitive, that is

[(Vj)j∈J C (Ui)i∈I and (Ui)i∈I C (Wk)k∈K ] =⇒ (Vj)j∈J C (Wk)k∈K .

Note that we do not always have U C U .

Remark 2.4. We stress the fact that the definition of C actually depends on the set Ω, the splitting
Rn = Rna × Rnb and the operator P . The dependence of C upon these objects will be mentioned when
needed. For the applications, it is important that the function u is not necessarily supported in Ω.

In the following, we will only need to use this relation C in some appropriate coordinate charts.
However, it will not be a problem for what we want to prove, even on a compact manifold. Indeed, we
will fix some coordinate chart on an open set Ω ⊂ Rn close to a point or close to a trajectory. Then, we
will use the relation C related to Ω to finally obtain some estimates which will be invariant by changes of
coordinates.

We will also use the following proposition, [LL15, Proposition 4.9], which allows to iterate local prop-
agation results towards global ones.

Proposition 2.5. Assume that there exists some open sets U0, Ui,j, ωi,j, Vi,j, with j ∈ J1, NK and i ∈ Ij
(Ij finite) such that we have

Ui,j C Vi,j and ωi,j b Ui,j , for all j ∈ J1, NK and i ∈ Ij ;

Vm,l+1 b
[
U0 ∪

⋃
j∈J1,lK

⋃
i∈Ij ωi,j

]
, for all l ∈ J0, N − 1K, and m ∈ Il+1,

where we consider the union
⋃
j∈J1,lK empty if l = 0. Then, we have

[
U0 ∪

⋃
j∈J1,NK

⋃
i∈Ij ωi,j

]
C V0 for

any open set V0 such that U0 b V0.

In this proposition, the local propagation results is Ui,j C Vi,j but the iteration is made by packets.
Roughly speaking, we use all sets corresponding to indices i ∈ Ij , j ≤ l to deduce the information on the
sets with indices i ∈ Il+1.

2.3 Semiglobal estimates along foliation by hypersurfaces
Now, we formulate the results of [LL15] in the form they will be used in the next section, which is different
from Theorem 2.1 with two respects:

• First, we keep the formulation with C; this means that we keep a frequency cutoff in both handsides
of the estimate, as well as an exponentially small remainder (it is a low frequency estimate only).
This allows to patch estimates together (which is no longer the case when the high frequencies have
been taken into account, i.e. when estimates take the form of (2.1)). The high frequencies will then
be taken into account to close the estimates with two different methods in Section 3.3.

• Second, we allow the linear change of variables between the two splittings (namely (za, zb) for the
analytic dependence and (z′, zn) for the geometry) to be replaced by a diffeomorphism, which shall
be very useful in the following.

We give a first statement that is a low frequency formulation of Theorem 2.1, using the notation C
(see [LL15, Theorem 4.7]).
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Theorem 2.6. Under the assumptions of Theorem 2.1, there exists an open neighborhood U of K such
that

U C ω̃.

This essentially means that Estimate (2.1) may be replaced by the following: for all χ ∈ C∞0 (U) and
ϕ ∈ C∞0 (Ω) such that ϕ = 1 on a neighborhood of ω̃, we have∥∥Mβµ

µ χµu
∥∥

1
≤ Ceκµ

(∥∥Mµ
µϕµu

∥∥
1

+ ‖Pu‖L2(Ω)

)
+ Ce−κ

′µ ‖u‖1 , (2.3)

(for any κ > 0, there exist C, β, κ′, µ0 > 0 such that for µ ≥ µ0) i.e. keep the frequency cutoff and the
exponentially small remainder.

A remaining drawback of this statement, given by the geometric framework of Theorems 2.1, is that
the hypersurfaces are described by graphs in some coordinates (namely (z′, zn)). This choice of description
is mainly convenient to make the foliation more effective and order the hypersurfaces more easily, but is
too rigid for the application in the present paper. Now, we give a slight variant of Theorem 2.6, more
adapted to possible changes of variables.

Theorem 2.7. Let Ω ⊂ Rn = Rna × Rnb and P be a differential operator of order 2 on Ω such that

• all coefficients of P are smooth and depend analytically on the variable za,

• the principal symbol of P namely p(z, ζ) = Qz(ζ) is a z-family of real quadratic forms, such that
ζb 7→ Qz(0, ζb) is definite on Rnb for any z ∈ Ω.

Let Φ be a diffeomorphism of class C2 from Ω to Ω̃ = Φ(Ω). Assume that the Geometric Setting of
Theorem 2.1 is satisfied for some D, G, K, Sε on Ω̃ (and not on Ω). Assume further that for any
ε ∈ [0, 1 + η), η > 0, the surface Φ−1(Sε) (well defined on Ω) is non-characteristic for P (at every point of
Φ−1(Sε)).

Then, for all neighborhood ω of Φ−1(S0), there exists an open neighborhood U ⊂ Ω of Φ−1(K) such
that

U C ω,

where C = CΩ,P is related to the operator P defined on Ω (see Remark 2.4).

In this result, the operator P has the appropriate form in Ω ⊂ Rna ×Rnb whereas the geometry of the
surfaces is defined in Ω̃, both being linked by a diffeomorphism.

With this theorem in hand, we may now prove the results presented in Section 1.2.

3 The hypoelliptic wave equation, proof of Theorem 1.13
The main goal of this section is to prove Theorem 1.13. The proof is inspired by the case of the classical
wave equation (see [LL15, Section 6.1]) with mainly two differences:

• We are not able to construct global coordinates near any path γ, as in the case of the wave equation.
However, if γ is a normal geodesic (see definition 3.3 below), we are able to do this ocnstruction
locally. Then, this local result needs to be iterated.
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• The H1 norm is no longer equivalent to the energy norm for the hypoelliptic operator. We thus need
to use hypoelliptic estimates instead.

Therefore, the proof is divided in two parts, the first of which concerning the geometric iteration process,
and the second the energy estimates.

Let us start by introducing geometrical definitions and facts used all along the proofs. First, denote
by ` = `(x, ξ) ∈ C∞(T ∗M) the principal symbol of the operator L, that is

`(x, ξ) =

m∑
i=1

〈ξ,Xi(x)〉2 . (3.1)

where 〈ξ,X(x)〉 = 〈ξ,X(x)〉T∗xM,TxM is the duality bracket.

Remark 3.1. In view of unique continuation results, note that a local hypersurface {ϕ = 0} at x0 ∈ M
(where ϕ :M→ R with ϕ(x0) = 0 and dϕ(x0) 6= 0) is characteristic for the operator L if `(x0, dϕ(x0)) = 0,
that is, according to (3.1), if

〈dϕ(x0), Xi(x)〉 = 0 for all i ∈ {1, · · · ,m}.

Definition 3.2. The Hamiltonian curve of the symbol ` issued from ρ0 ∈ T ∗M is the unique maximal
solution ρ(s) = (γ(s), ξ(s)) of the ODE

ρ̇(s) = H`(ρ(s)), ρ(0) = ρ0, (3.2)

where H` is the Hamiltonian vector field associated to the Hamiltonian `. In local charts, this is{
γ̇(s) = ∂

∂ξ `(γ(s), ξ(s)),

ξ̇(s) = − ∂
∂x`(γ(s), ξ(s)).

Such a curve is smooth (even real analytic sinceM and ` are). Moreover, the first equation writes

γ̇(s) =

m∑
j=1

2 〈ξ(s), Xi(γ(s))〉Xi(γ(s)), (3.3)

so that the projection on M of a Hamiltonian curve is a smooth horizontal curve (see Definition 1.3).
Note also that a Hamiltonian curve, locally defined according to the Cauchy-Lipschitz theorem, is actually
globally defined (see e.g. [Rif14, Proposition 2.3.2]). Note finally that the Hamiltonian ` is preserved along
a Hamiltonian curve of `, i.e. `(ρ(s)) = `(ρ0) for every ρ0 ∈ T ∗M, s ∈ R, where ρ is the solution to (3.2).

Given a Hamiltonian curve ρ = (γ, ξ) : [0, S]→ T ∗M, one may compute the speed along the horizontal
geodesic γ : [0, S]→M. Namely, we have (see Lemma C.1 for a proof of the first identity)

g(γ(s), γ̇(s)) =

m∑
j=1

4 〈ξ(s), Xi(γ(s))〉2 = 4`(γ(s), ξ(s)) = 4`(ρ(0)), for all s ∈ [0, S].

We can hence compute the length of the horizontal path γ, namely,

length(γ) =

∫ S

0

√
g(γ(s), γ̇(s))ds = 2S

√
`(ρ(0)).

This motivates the following definition:
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Definition 3.3. We say that a horizontal curve γ : [0, L0] → M is a normal geodesic if there exists
ξ(s) ∈ T ∗γ(s)M such that s 7→ (γ(s), ξ(s)) is a Hamiltonian curve of the symbol ` with `(γ(s), ξ(s)) = 1

4 .

As a consequence of this definition, such a curve γ : [0, L0]→M has unit speed:√
g(γ(s), γ̇(s)) = 2

√
`(γ(s), ξ(s)) = 2

√
`(ρ(0)) = 1, for all s ∈ [0, L0],

(it is hence parametrized by arclength) and length L0.

Definition 3.4. We say that a curve γ : [0, L] → M is a minimizing geodesic path between x and y if
γ(0) = x, γ(L) = y, if γ is a horizontal curve and if we have dL(x, y) = length(γ) together with g(γ(s), γ̇(s))
constant.

See [Rif14, Chapter 2] or [ABB16a, Section 3.3]. Note that all above definitions are intrinsic. The
following key result in our proofs is [RT05, Theorem 1.1].

Theorem 3.5 (Rifford-Trélat [RT05]). For all x1 ∈ M, there exists a dense subset Nx1
⊂ M such that

for all x ∈ Nx1
, there is a (unique) minimizing geodesic path between x1 and x. Moreover, this path is a

normal geodesic path.

As a direct corollary, we obtain the following result, which is a key step in the proof of Theorem 1.13
(in particular for obtaining the minimal time).

Corollary 3.6. Let ω a nonempty open subset of M and T > supx∈M dL(x, ω). Then, for any x1 ∈ M,
there exists x0 ∈ ω and a normal geodesic path γ : [0, L] → M of length L ∈ (0, T ), so that γ(L) = x1,
γ(0) = x0, and γ is also a minimizing geodesic path.

Note that this path being minimizing, it is in particular non self-intersecting.

Proof. According to the definition of T , the set Ox1
:= ω∩{x ∈M, dL(x, x1) < T} is open (the continuity

of dL is a consequence of the Chow-Rashevski Theorem 1.2) and nonempty. Hence, it intersects the dense
set Nx1

given by Theorem 3.5. Taking any x0 ∈ Ox1
∩Nx1

, there is a normal geodesic curve γ : [0, L]→M
joining x0 and x1 of length L ∈ (0, T ) which is also a minimizing geodesic.

Now, one of the main purposes of the present Section 3 is to give a proof of the following proposition
(which essentially amounts to (1.28)). Indeed, Theorem 1.31 in the simple case s = k will follow. The
proof of the full range of s in Theorem 1.31 will require more work.

Proposition 3.7. Let T > 0, x0, x1 ∈ M, and assume that there is a normal geodesic path of length
L ∈ (0, T ) between x0 and x1. Then, for any ε > 0, there exists ε̃ > 0, there is C, κ, µ0 > 0 such that for
all u ∈ H1(]− T, T [×M) solution of (∂2

t + L)u = 0 on ]− T, T [×M, and for all µ ≥ µ0, we have

‖u‖L2(]−ε̃,ε̃[×B(x1,ε̃))
≤ Ceκµ ‖u‖L2(]−T,T [×B(x0,ε))

+
C

µ
‖u‖H1(]−T,T [×M) .

Note here that the H1(] − T, T [×M) norm is the usual one issued from the structure of compact
manifold. Also, since ε and ε̃ are arbitrary small, the balls could be defined according to any metric on
M defining an equivalent topology (balls could equivalently be replaced by neighborhoods). Yet, we will
use the distance induced by the sub-Riemannian geometry since it is the important one in other parts of
the proof (for defining the distance dL for instance) and to avoid any confusion.

Using Proposition 3.7, together with Corollary 3.6 and a compactness argument directly yields the
following global estimate, which is the main result of this step.
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Corollary 3.8. Let ω a nonempty open setM and T > supx∈M dL(x, ω). Then, there exist ε̃, C, κ, µ0 > 0
such that for all u ∈ H1(]− T, T [×M) solution of (∂2

t + L)u = 0 on ]− T, T [×M, and for all µ ≥ µ0, we
have,

‖u‖L2(]−ε̃,ε̃[×M) ≤ Ce
κµ ‖u‖L2(]−T,T [×ω) +

C

µ
‖u‖H1(]−T,T [×M) .

The last step towards the proof of Theorem 1.31 (in the case s = k; the general case requires a slightly
more precise version of this result), performed in Section 3.3, will be to transfer the time-space information
carried by this inequality into some Sobolev norm HsL related to the operator L. This will be the object
of the next paragraph.

Sections 3.1 and 3.2 are devoted to the proof of Proposition 3.7. For this, the main point is to apply the
quantitative unique continuation result adapted to changes of variable, namely Theorem 2.7. The main
drawback of this result is that it only works in a subset Ω of Rn, i.e. it is not invariant by diffeomorphism.
More precisely, all estimates obtained from the results of Section 2.3 can only be patched together in
straight coordinates.

As a consequence, in the present context, we need to introduce global coordinates near the trajectory
between the points x0 and x1. Then, locally, we shall define hypersurfaces to match the geometric setting
of Section 2.1. This will be done in another set of coordinates (not necessarily analytic), which is allowed
by the precise formulation of Theorem 2.7.

Finally, the energy estimates needed to conclude the proof of Theorem 1.31 are performed in Section 3.3.

3.1 Step 1: Geometric setting and non-characteristic hypersurfaces
We now consider x1, x0 ∈ M (recall that dim(M) = d), together with a normal geodesic γ as in Corol-
lary 3.6. The curve γ is non self-intersecting, so that there exists an open neighborhood Nγ of γ inM, an
open set Ωγ ⊂ Rd and an analytic diffeomorphism

φγ : Nγ → Ωγ ⊂ Rd (3.4)

such that φγ(γ([0, L])) ⊂ Ωγ . From now on, we shall only work in the chart (Ωγ , φγ). For the sake
of readability, we shall keep the same notation for all objects pulled back form Nγ ⊂M to Ωγ ⊂ Rd. For
instance, we shall still denote Xj instead of (φ−1

γ )∗Xj , L instead of (φ−1
γ )∗Lφ∗γ , γ ⊂ Ωγ instead of (φ−1

γ )∗γ
etc... Recall that all above definitions (in particular Definitions 3.2, 3.3 and 3.4) are intrinsic, so that,
in particular, the whole sub-Riemannian structure may be transported to Ωγ , and the curve γ is still a
normal geodesic in Ωγ .

Now, we define other local coordinates in which to construct the (local) noncharacteristic surfaces in
order to apply Theorem 2.7. We first need the following lemma.

Lemma 3.9 (local coordinates). Given γ : [0, L]→ Ωγ a normal geodesic path, for any point x0 = γ(s0)
on this curve, there exists an open neighborhood Vx0

of x0, and appropriate coordinates, denoted x =
(x̌, xd) ∈ Rd−1 × R (with associated cotangent variables ξ = (ξ̌, ξd) ∈ Rd−1 × R) in which

• the symbol ` can be written

`(x, ξ) = ξ2
d + r(x, ξ̌), (3.5)

where r(x, ξ̌) is a non negative quadratic form in ξ̌;
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• the point x0 is sent to (0, · · · , 0, s0) and γ(s) = (0, · · · , 0, s) for s close enough to s0.

Proof. This is e.g. a consequence of [Hör85, Appendix C.5]. More precisely, we denote by s 7→ (γ(s), ξ(s)) ∈
T ∗Ω \ 0 the Hamiltonian curve associated to the normal geodesic γ. We let ϕ be a real-valued func-
tion defined locally in a neighborhood of x0, such that ϕ(x0) = 0 and dϕ(x0) = ξ(s0). Then, ϕ is a
non-characteristic function for ` at x0 since `(x0, dϕ(x0)) = `(γ(s0), ξ(s0)) = 1

4 6= 0, according to the
definition of a normal geodesic path. According to [Hör85, Corollary C.5.3], there are local coordinates
(x̌, xd) ∈ Rd−1 × R, defined in a neighborhood of 0 in which

• x0 is sent to 0,

• the surface {ϕ = 0} is given by {xd = 0},

• the first item of the lemma holds.

We now just have to check that the second item of the lemma holds in these coordinates. First remark
that dϕ(x0) = ξ(s0) is sent to (0, ξd) for some ξd ∈ R∗, so that `(γ(s0), ξ(s0)) = 1

4 implies, with the form of
` in (3.5), that ξ2

d = 1
4 . Up to changing xd 7→ −xd (without changing any of the three properties described

in the above items), we may further assume that ξd > 0. Hence dϕ(x0) = ξ(s0) is sent to (ξ̌, ξd) = (0, 1
2 ).

Second, the form of ` in (3.5) yields that the Hamiltonian curves of ` satisfy in these coordinates:

˙̌x = ∂ξ̌r(x, ξ̌), ẋd = 2ξd,
˙̌ξ = −∂x̌r(x, ξ̌), ξ̇d = −∂xdr(x, ξ̌). (3.6)

The Hamiltonian curve associated to the normal geodesic γ in these coordinates is the unique curve of (3.6)
passing through x = 0 and (ξ̌, ξd) = (0, 1

2 ). But the function (x̌, xd, x̌, ξd)(s) = (0, s− s0, 0,
1
2 ) solves (3.6)

since ∂x̌r, ∂xdr are quadratic in ξ̌ and ∂ξ̌r is linear in ξ̌ (and, in particular, all vanish at ξ̌ = 0). It also
starts at time s0 at (0, 0, 0, 1

2 ), so that (0, s− s0, 0,
1
2 ) is the sought Hamiltonian curve. As a consequence,

the normal geodesic γ is given by (x̌, xd)(s) = (0, s − s0) in these coordinates. This concludes the proof
after the linear change of variable (x̌, xd) 7→ (x̌, xd + s0).

Lemma 3.10 (Construction of non characteristic hypersurfaces in normal coordinates). Assume that for
some r0, l0 > 0, the symbol ` is given by (3.5) in coordinates (x̌, xd) ∈ Ω̃ := B(0, r0)×]−l0, 2l0[⊂ Rd−1

x̌ ×Rxd .
Then, for any t0 > l0 and 0 < r1 < r0, there exists D, G, K, Sε satisfying items 1-2-3 of the Geometric
Setting of Section 2.1 in Rn = Rd+1 in the coordinates

(z′, zn) = (t, x̌, xd), with z′ = (t, x̌) and zn = xd, (3.7)

together with

4. D ⊂ [−t0, t0]×B(0, r1), that is S0 ⊂ [−t0, t0]t ×B(0, r1)x̌ × {0}xd ⊂ Rt× ⊂ Rd−1
x̌ × {0}xd ;

5. {0}t × {0}x̌ × [0, l0]xd ⊂ K;

6. for any ε ∈ [0, 1 + η), the surface Sε is non-characteristic for P = ∂2
t + L at each point of Sε.

Proof. The principal symbol of the operator P = ∂2
t + L in the coordinates of Lemma 3.9 is given by

p(x̌, xd, τ, ξ̌, ξd) = −τ2 + `(x̌, xd, τ, ξ̌, ξd) = −τ2 + ξ2
d + r(x, ξ̌), ξ = (ξ̌, ξd), (3.8)
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To match the geometric setting of Section 2.1, we define the coordinates (z′, zn) according to (3.7), as well
as

D =

{
(t, x̌)

∣∣∣∣( x̌r1

)2

+
( t
t0

)2

< 1

}
, G(t, x̌, ε) = εl0ψ

(√( x̌
r1

)2

+
( t
t0

)2
)
,

φε(t, x̌, xd) := G(t, x̌, ε)− xd, Sε = {φε = 0}, ε ∈ [0, 1 + η),

with r1, η > 0 small to be fixed, where ψ is such that, for some η0, η1 > 0,

ψ : [−1− η0, 1 + η0]→ [−η1, 1], smooth and even, ψ(±1) = 0, ψ(0) = 1,

ψ(s) ≥ 0, if and only if s ∈ [−1, 1], and |ψ′| ≤ α on [−1− η0, 1 + η0],

with 1 < α < t0
l0
. This is possible since t0

l0
> 1.

Note first that Item 4 is satisfied according to the definition of D. Note also that the point (t, x̌, xd) =
(0, 0, l0) belongs to S1 = {φ1 = 0}. Hence, Item 5 is satisfied since {0}t ×{0}x̌ ∈ D and G(0t,x̌, 1) = l0, so
that we have 0 ≤ xd ≤ G(0t,x̌, 1) = l0 if xd ∈ [0, l0].

Let us now check Item 6. We have

dφε(t, x̌, xd) = εl0

(( x̌
r1

)2

+
( t
t0

)2
)−1/2

ψ′

(√( x̌
r1

)2

+
( t
t0

)2
)(

tdt

t20
+
x̌dx̌

r2
1

)
− dxd.

Given the form of the principal symbol of the operator P in these coordinates (see (3.8)), we obtain

−p(x̌, xd, dφε(t, x̌, xd)) = ε2l20
t2

t40

(( x̌
r1

)2

+
( t
t0

)2
)−1

|ψ′|2 − l20
ε2

r4
1

r(x, x̌)

(( x̌
r1

)2

+
( t
t0

)2
)−1

|ψ′|2 − 1

where |ψ′|2 is taken at the point

(√(
x̌
r1

)2

+
(
t
t0

)2
)
. Since r is non negative, we get

−p(x̌, xd, dφε(t, x̌, xd)) ≤ ε2l20
t2

t40

(( x̌
r1

)2

+
( t
t0

)2
)−1

|ψ′|2 − 1

Since |ψ′| ≤ α and ε ∈ [0, 1 + η], we obtain for any (t, x̌, xd) ∈ D × [0, l0],

−p(x̌, xd, dφε(t, x̌, xd)) ≤ ε2

t20
l20

( t
t0

)2
(
t

t0

)−2

α2 − 1

≤ (1 + η)2 l
2
0

t20
α2 − 1 < 0,

the last constant being negative for η small enough because α < t0
l0
. Therefore, the surface Sε = {φε = 0}

is noncharacteristic for any ε ∈ [0, 1+η], which concludes the proof of Item 6, and hence of the lemma.

3.2 Step 2: Propagation of smallness
We recall that z = (t, x) and n = d+ 1, and introduce the notation

Vois(K, r) :=
⋃
z∈K

B(z, r) for K ⊂ Rn.
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Lemma 3.11 (local version near a piece of a normal geodesic). Given γ : [0, L]→ Ωγ a normal geodesic
path and fix s̃ ∈ [0, L]. Then, there exists L̃s, r̃s small such that for any s0 ∈ [0, L], L0 > 0 so that
[s0, s0 + L0] ⊂]s̃− L̃s, s̃+ L̃s[, for all T > L0 and 0 < r1 < r̃s, there exists r2 > 0 so that

]− r2, r2[×Vois(γ([s0, s0 + L0]), r2)C]− T, T [×Vois(γ(s0), r1), (3.9)

where C is related to the operator P = ∂2
t + L in the set ]− T − ε, T + ε[×Ωγ .

See Figure 2 for a picture of the sets involved in (3.9).

γ(s0) γ(s)γ(s0 + L0)

r2

T

t

−T
r1

Figure 2: Schematic representation of the sets involved in Lemma 3.11.
Recall that length(γ([s0, s0 + L0])) = L0 < T ; the dashed line represents the boundary of the wave cone.

The proof is almost the same as in Theorem 6.3 of [LL15]. The only difference is that the coordinates
where we have a nice diagonal form for the operator P are not global and are not those where we want to
apply the local result. Note that this would not have been a problem if we had proved that the relation C
is invariant by change of coordinates. Now, we perform the following steps:

• use Lemma 3.9 to obtain nice coordinates in a neighborhood of γ(s);

• construct the non characteristic hypersurfaces in these coordinates according to Lemma 3.10;

• apply Theorem 2.7 in these coordinates, w.r.t. those surfaces, keeping in mind that the fact to be
non characteristic is invariant by changes of coordinates.

Note also that the presence of s̃ and s0 in the statement may seem strange and it would look simpler
to consider only s0 and intervals [s0, s0 + L0]. Yet, this will be useful later in compactness and covering
arguments where we have to substract and cut some intervals.
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Proof. By Lemma 3.9, we can find a diffeomorphism from a neighborhood of γ(s̃) in Ωγ to BRd−1(0, r0)×]s̃−
4L̃s, s̃+4L̃s[3 (x̌, xd) in which the symbol ` is as in (3.5) and γ(s) is given by (x̌, xd) = (0, s̃). By translation
and using [s0, s0 + L0] ⊂]s̃− L̃s, s̃+ L̃s[, we have a diffeomorphism Φ from a neighborhood V of γ(s0) in
Ωγ onto BRd−1(0, r0)×]− L0, 2L0[3 (x̌, xd) where Φ(γ(s0)) = 0.

For later purposes, fix r3 so that

Φ−1(BRd(0, r3)) b BRd(γ(s0), r1). (3.10)

We will keep denoting Φ the same diffeomorphism acting on ]− T − ε, T + ε[×V leaving the t variable
unchanged, and set Ω̃ :=]− T − ε, T + ε[×BRd−1(0, r0)×]− L0, 2L0[.

Now, construct D, G, K, Sε according to Lemma 3.10. In particular, all surfaces Sε are non charac-
teristic for P (or, more precisely, for (Φ∗)−1PΦ∗) in Ω̃). By change of coordinates, the surface Φ−1(Sε) is
non characteristic for P at each point of Φ−1(Sε).

For 0 < L0 < t0 < T , take ω = Φ−1(]− t0, t0[×B(0, r3)) so that Item 4 of Lemma 3.10 implies that ω
is a neighborhood of Φ−1(S0).

The assumptions of Theorem 2.7 are fulfilled (with na = n = d+ 1, i.e. in the Holmgren-John case), so
there exists an open neighborhood U ⊂ Ω of Φ−1(K) such that UCω. Note here that the strict application
of Theorem 2.7 yields this result for the relation C]−T−ε,T+ε[×V,P , but the latter then implies the same
property for the relation C]−T−ε,T+ε[×Ωγ ,P . We will keep the notation C.

Moreover, Item 5 of Lemma 3.10 implies, after having applied Φ−1, that

Φ−1 ({0}t × {0}x̌ × [0, l0]xd) ⊂ Φ−1(K) ⊂ U.

Using the form of P on Ω̃ and that γ is a normal geodesic, we obtain that Φ−1 ({0}t × {0}x̌ × [0, L0]xd) =
{0}t × γ([s0, s0 + L0]). In particular since U is open and the previous set is compact, we can find r2 > 0
so that ]− r2, r2[×Vois(γ([s0 − r2, s0 + L0]), r2) b U . Items 2 and 5 of Proposition 2.3 imply

]− r2, r2[Rt×Vois(γ([s0 − r2, s0 + L0]), r2) C ω.

Finally, the definition of ω, T > t0 and (3.10) imply ω b] − T, T [×Vois(γ(s0), r1). This gives the final
result by applying again Item 2 and 5 of Proposition 2.3.

We can iterate the previous local result to get a more global one, which will be the main step for
Proposition 3.7.

Proposition 3.12 (global version near a normal geodesic). Given γ : [0, L]→ Ωγ a normal geodesic path,
and let 0 < L < T . Then, there exists r0 small, such that for any 0 < r1 < r0, there exists r2 > 0 such
that

]− r2, r2[×Vois(γ([0, L]), r2)C]− T, T [×Vois(γ(0), r1). (3.11)

Proof of Proposition 3.12. We prove the result for another T̃ > T . It gives the result since it is arbitrary.
For any s̃ ∈ [0, L], Lemma 3.11 provides L̃s and r̃s and an interval ]s̃ − L̃s, s̃ + L̃s[ with the appro-

priate conclusion. By compactness of γ([0, L]), we can extract a finite covering such that γ([0, L]) ⊂⋃
j∈J1,NK γ(]s̃j − L̃j , s̃j + L̃j [). Then, the issue is that

∑N
j=1 2L̃j may be very large with respect to 2T . To

overcome this difficulty, starting from this covering, we can always obtain (for this, suppress some intervals
and cut them when they overlap too much) a finite number of intervals [sj , sj + Lj ] and associate times
Tj that satisfy the following properties:
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• [0, L] ⊂ ∪Nj=1]sj , sj + Lj [,

• [sj , sj + Lj ] ⊂]s̃j − L̃j , s̃j + L̃j [, for all j ∈ J1, NK,

• s1 = 0,

• sj+1 ∈]sj , sj + Lj [, for all j ∈ J1, N − 1K,

• L <
∑N
j=1 Lj < T ,

• Lj < Tj and
∑N
j=1 Tj < T .

So, for any j ∈ J1, NK, since [sj , sj + Lj ] ⊂]s̃j − L̃j , s̃j + L̃j [, Lemma 3.11 can be applied to the path
γ([sj , sj +Lj ]) and gives the existence of r̃s associated to s̃j , which we here denote rj0. We also denote by
r0 the minimum of all rj0, j ∈ J1, NK, so that the conclusion of Lemma 3.11 remains true with any choice
of rj1 < r0. We next define rj1 and rj2 recursively in the following way:

• r1
1 = min(r0, r1)/2 and r1

2 is given by the Lemma 3.11 for the interval [s1, s1 + L1] = [0, L1].

• We choose rj+1
1 = min(r0, r

j
2)/4 and rj+1

2 is given by Lemma 3.11 applied to the path [sj , sj +Lj ] ⊂
]s̃j − L̃j , s̃j + L̃j [ and the time Tj > Lj .

The conclusion of Lemma 3.11 is then

]− rj2, r
j
2[Rt×Vois(γ([sj , sj + Lj ]), r

j
2)C]− Tj , Tj [Rt×Vois(γ(sj), r

j
1). (3.12)

Now, for any l ∈ J1, NK, consider a sequence of time (tli)i∈Il such that
(
]tli − rl2, tli + rl2[

)
i∈Il

is a finite

covering of ]− T +
∑l
j=1 Tj , T −

∑l
j=1 Tj [. One can also impose tli ∈]− T +

∑l
j=1 Tj , T −

∑l
j=1 Tj [.

We want to apply Proposition 2.5 with the following definitions for j ∈ J1, NK, i ∈ Ij

• Ui,j =]tji − r
j
2, t

j
i + rj2[×Vois(γ([sj , sj + Lj ]), r

j
2),

• ωi,j =]tji − r
j
2/2, t

j
i + rj2/2[×Vois(γ([sj , sj + Lj ]), r

j
2/2),

• Vi,j =]tji − Tj , t
j
i + Tj [×Vois(γ(sj), r

j
1),

• U0 =]− T, T [×Vois(γ(0), 2r1
1).

Since Lemma 3.11 is invariant by translation in time, (3.12) and the choices of rj1, r
j
2 give Ui,j C Vi,j .

We also have ωi,j b Ui,j . So, the main point to check is

Vm,l+1 b

U0 ∪
⋃

j∈J1,lK

⋃
i∈Ij

ωi,j

 , for all m ∈ Il+1, and l ∈ J1, N − 1K. (3.13)

We first check the degenerate case l = 0, which amounts to proving that Vm,1 b U0 for m ∈ I1. Since
t1m ∈]− T + T1, T − T1[ (by choice), we have ]t1m − T1, t

1
m + T1[b]− T, T [. Moreover, since s1 = 0, we have

Vois(γ(s1), rj1) b Vois(γ(0), 2r1
1), and Vm,1 b U0 by definition.
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Concerning the case l ∈ J1, N − 1K, we prove the stronger property

Vm,l+1 b
⋃
i∈Il

ωi,l, for all m ∈ Il+1. (3.14)

First, we have by definition

⋃
i∈Il

ωi,l =

[⋃
i∈Il

]tli − rl2/2, tli + rl2/2[

]
×Vois(γ([sl, sl + Ll]), r

l
2/2).

Since
(
]tli − rl2, tli + rl2[

)
i∈Il

is a finite covering of ]− T +
∑l
j=1 Tj , T −

∑l
j=1 Tj [, we have

]− T +

l∑
j=1

Tj , T −
l∑

j=1

Tj [×Vois(γ([sl, sl + Ll]), r
l
2/2) ⊂

⋃
i∈Il

ωi,l. (3.15)

We also have tl+1
i ∈]− T +

∑l+1
j=1 Tj , T −

∑l+1
j=1 Tj [, so that

]tl+1
i − Tl+1, t

l+1
i + Tl+1[b]− T − Tl+1 +

l+1∑
j=1

Tj , T + Tl+1 −
l+1∑
j=1

Tj [,

that is

]tl+1
i − Tl+1, t

l+1
i + Tl+1[b]− T +

l∑
j=1

Tj , T −
l∑

j=1

Tj [. (3.16)

Moreover, γ(sl+1) ∈ γ(]sl, sl + Ll[) and rl+1
1 < rl2/2 by construction, so

Vois(γ(sl+1), rl+1
1 ) b Vois(γ([sl, sl + Ll]), r

l
2/2). (3.17)

Combining the definition of Vi,l+1 =]tl+1
i −Tl+1, t

l+1
i +Tl+1[×Vois(γ(sl+1), rl+1

1 ), (3.16), (3.17) and (3.15),
we obtain Vi,l+1 b

⋃
i∈Il ωi,l. This finishes the proof of (3.14) and therefore (3.13), so that all assumptions

of Proposition 2.5 are satisfied.
The conclusion of this proposition can then be written asU0 ∪

⋃
j∈J1,NK

⋃
i∈Ij

ωi,j

C V0 for any V0 such that U0 b V0. (3.18)

Now, we pick r2 < min(T −
∑N
j=1 Tj , r

l
2/2). Using (3.15) and then the covering property [0, L] ⊂⋃

j∈J1,NK]sj , sj + Lj [, we obtain

]− r2, r2[×Vois(γ([sj , sj + Lj ]), r2/2) ⊂
⋃
i∈Ij

ωi,j ,

]− r2, r2[×Vois(γ([0, L]), r2/2) ⊂
⋃

j∈J1,NK

⋃
i∈Ij

ωi,j .
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In particular, we have

]− r2/4, r2/4[×Vois(γ([0, L]), r2/4) b
⋃

j∈J1,NK

⋃
i∈Ij

ωi,j .

Now, since T̃ > T and r1
1 ≤ r1/2, we have U0 b]− T̃ , T̃ [×Vois(γ(0), 2r1) := V0. Combining this together

with (3.18) and the use of Proposition 2.3 (several times), we finally obtain

]− r2/4, r2/4[×Vois(γ([0, L]), r2/4)C]− T̃ , T̃ [×Vois(γ(0), 2r1).

This concludes the proof of Proposition 3.12.

From Proposition 3.12, let us now briefly explain the proof of Proposition 3.7. We proceed exactly as
in [LL15, Section 4.2], in the proof that Theorem 4.7 implies Theorem 1.11 (which, in Section 2 of the
present paper, corresponds to the proof that Theorem 2.6 implies Theorem 2.1). Note that it only consists
in getting rid of the frequency cutoffs appearing in the definition of C, i.e. considering all frequencies,
at the cost of replacing the e−κµ exponentially small remainder by a 1

µ . This concludes the proof of
Proposition 3.7.

For an application in the context of Section 5 (partially analytic operators with a boundary), we need
to relax the condition that γ is globally a normal geodesic.

Remark 3.13. The proof of Step 2 took the following structure.

• Lemma 3.11 proves some relations of dependence (3.9) for some local region around some small part
of a normal geodesic.

• Proposition 3.12 uses the fact that the relations of dependence that we obtained in Lemma 3.11 can
be iterated to be around a global normal geodesic to get some relation of dependence that has the
same form but globally, namely (3.11).

Therefore, with exactly the same iteration process as Proposition 3.12, except that we invoke Proposition
3.12 itself instead of Lemma 3.11, we can obtain that the same result as Proposition 3.12 is true if γ is
only geodesic by piece. This is the following Proposition.

Proposition 3.14 (global version near a piecewise normal geodesic). The same result as Proposition 3.12
is true if γ is only normal geodesic by piece.

3.3 Step 3: Energy estimates
3.3.1 Simple energy estimates concluding the proof of Theorem 1.31 with s = k

As precised earlier in the introduction, Theorem 1.31 is easier to prove in the specific case s = k. To
conclude this proof from Corollary 3.8, it only remains to prove for solutions of (1.12) the two estimates:

‖(u0, u1)‖L2×H−1
L
≤ Cε̃ ‖u‖L2(]−ε̃,ε̃[×M) , (3.19)

‖u‖H1(]−T,T [×M) ≤ CT ‖(u0, u1)‖HkL×Hk−1
L

. (3.20)

On the one hand, (3.19) is a "straightforward observability estimate", the proof of which is exactly the
same as inequality (6.9) in the proof of Theorem 6.1 in [LL15] for the classical wave equation.
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On the other hand, the proof of (3.20) relies on the (optimal) subelliptic estimates stated in Theorem 1.4
and Corollary B.1. First define the energies

Es(u) =
1

2
‖∂tu‖2Hs−1

L
+

1

2
‖u‖2HsL =

1

2
‖(u, ∂tu)‖2HsL×Hs−1

L
, s ∈ R. (3.21)

Then, rewriting (1.12) as (∂2
t + L+ 1)u = u and taking the inner product with (L+ 1)s−1∂tu yields

d

dt
Es(u)(t) =

(
(L+ 1)

s−1
2 u, (L+ 1)

s−1
2 ∂tu

)
L2
, and hence − Es(u)(t) ≤ d

dt
Es(u)(t) ≤ Es(u)(t),

so that we have

Es(u)(t) ≤ CTEs(u)(0) for t ∈ [−T, T ]. (3.22)

Also, according to Corollary B.2, we have ‖u‖H1(M) ≤ C ‖u‖HkL . This estimate yields

‖u‖2H1(]−T,T [×M) =

∫ T

−T

(
‖∂tu‖2L2(M) + ‖u‖2H1(M)

)
dt ≤ C

∫ T

−T

(
E1(u) + ‖u‖2HkL

)
dt.

Since Es(u) ≤ Eσ(u) for s ≤ σ, we obtain

‖u‖2H1(]−T,T [×M) ≤ C
∫ T

−T
Ek(u)(t)dt ≤ CTEk(u)(0) = 2CT ‖(u0, u1)‖2HkL×Hk−1

L
.

This proves (3.20), which, combined with the estimate of Corollary 3.8 and (3.19) implies

‖(u0, u1)‖L2×H−1
L
≤ Cseκµ ‖u‖L2(]−T,T [×ω) +

C

µ
‖(u0, u1)‖HkL×Hk−1

L
.

This finally proves the estimate (1.29) with s = k, up to changing µ by µk/C, and µ0 and κ accordingly.
Estimate (1.14) is then a direct consequence of [LL15, Lemma A.3] and the inequality ‖u‖L2(]−T,T [×ω) ≤
C ‖(u0, u1)‖HkL×Hk−1

L
.

Remark 3.15. Note that the previous energy estimates do not use any analyticity property of the solution
and are equally true in the partially analytic case.

Remark 3.16. Until this point, all proofs work as well if L is replaced by L+V where V is a time-dependent
nonnegative complex-valued analytic potential. Beware that in Section 3.3.3 below, the spectral theory
used restricts the discussion to time-independent real-valued analytic potentials.

3.3.2 Interlude: eigenfunction tunneling, a proof of Theorem 1.10

Denoting v(t, x) = cos(
√
λjt)ϕj , we remark that v is solution to{

∂2
t v + Lv = 0

(v, ∂tv)t=0 = (ϕj , 0).

Therefore, thanks to Theorem 1.31 with s = k, we have the estimate

‖ϕj‖H1
L
≤ CecΛ ‖v‖L2(]−T,T [×ω) = CT e

cΛ ‖ϕj‖L2(ω) ,

with Λ =
‖ϕj‖HkL
‖ϕj‖L2

= (λj + 1)k/2. This proves Theorem 1.10 from Theorem 1.31 with s = k (or any given
s > 0).
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3.3.3 End of the proof of Theorem 1.31 in the general case

We now prove the appropriate energy estimates to conclude the proof of Theorem 1.31 for any s > 0. Recall
again that z = (t, x) and that all variables are analytic, that is z = za. Hence, we have ζ = ζa = (τ, ξ)
together with D = Da = Dt,x.

Remark 3.17. The main idea of this section is that since we are only dealing with low frequency estimates,
the remainder can be taken in any "arbitrary weak" norm; this gives then a lot of flexibility for the the
norms that we can finally take.

Yet, in our estimates, the remainder term is actually in H1. It would certainly be possible to obtain a
weaker norm in the general Theorem of Quantitative Unique Continuation of [LL15], but it would require
to revisit all proofs of [LL15], and even the Carleman estimate itself. Instead, we could try to only apply
our general estimate to a function with low frequency, for example u = mµ(Dt,x)v where v is solution of
Pv = 0. But in this case, to obtain good estimates of Pu, we need some nice exponential estimate for
the commutator [P,mµ(Dt,x)]. This would certainly be possible but quite lengthy and would require some
analytic regularity properties for P . Instead, for the specific case of the wave type equations, regularity
in time morally implies regularity in space. That is why it is more convenient to consider a regularizer
mµ(Dt) which commutes exactly with the wave operator. Remark that the method may extend to other
evolution equations.

Remark 3.18. In this section, we are in the case where all variables are analytic, that is za = z = (t, x).
Therefore, the proof below does not a priori apply to the partially analytic case described in Section 1.2.4.
This explains why the statement of Theorem 1.23 is slightly less general. The same results might be true
in the partially analytic case but would certainly require more work and additional arguments.

In the relation C, the remainder terms are always measured in the norm H1. In this section, we
describe how, in the case of solutions of the wave equation, the remainder term can be chosen in any weak
Sobolev norm.

The starting point of the proof is Proposition 3.12, which implies the following statement (without
the use of the notation C). Let γ : [0, L] → Ωγ a normal geodesic path such that γ(0) ∈ ω, and let
0 < L < T . Then, there exists ε > 0 such that for any ϑ ∈ C∞0 (Rd+1) equal to one in a neighborhood of
]−L,L[×{γ(0)} and ϑ̃ ∈ C∞0 (Rd+1), supported in ]− 2ε, 2ε[×B(γ(L), 2ε), we have: for all κ, α > 0, there
exist C, κ′, β, µ0 > 0 such that for all (µ, v) ∈ [µ0,+∞)× C∞0 (Rd+1), we have∥∥∥Mβµ

µ ϑ̃µv
∥∥∥

1
≤ Ceκµ

(∥∥Mαµ
µ ϑµv

∥∥
1

+ ‖Pv‖L2(Ω̃γ)

)
+ Ce−κ

′µ ‖v‖1 . (3.23)

where Ω̃γ =]− T, T [×Ωγ . In particular, we may (and we shall) take ϑ supported in ]− T, T [×ω and ϑ̃ = 1
in a neighborhood of ] − ε, ε[×B(x0, ε). Notice also that we can impose β < α < 1; indeed, the estimate
for a smaller β is actually worse (than that for a larger β) up to an error term of the form Ce−cµ ‖v‖1 (see
e.g. Lemma 3.24, Item 3 below).

Up to choosing the coordinate charts Ωγ smaller, we can still select some other open set Ω ⊂ Rd with
Ωγ b Ω so that there is an analytic diffeomorphism from an open neighborhood of γ to Ω and such that
this diffeomorphism coincides with the φγ defined in (3.4) on Ωγ .

From this starting point, the plan of the proof of Theorem 1.31 is to apply (3.23) to the function

v = χ0(t)χ1
µ(
Dt

µ
)χ2
µ(t)χ3(x)u, (3.24)
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where u is a solution of {
Pu = (∂2

t + L)u = 0
(u, ∂tu)t=0 = (u0, u1) = U0,

(3.25)

pulled back to the local coordinate chart Ω (we however keep the notation u to lighten the notation).
The time, frequency, and spatial cut off functions χi are chosen as follows:

• χ2 ∈ C∞0 (]− T − ε, T + ε[) so that χ2(t) = 1 on ]− T, T [; we also write χ2
µ = (χ2)µ,

• χ0 ∈ C∞0 (]− T − ε, T + ε[) so that χ0(t) = 1 in an neighborhood of supp(χ2),

• χ3 ∈ C∞0 (Ω) so that χ3(x) = 1 for x ∈ Ωγ ,

• χ1 ∈ C∞0 (R) is supported in ]−2, 2[ and such that χ1(τ) = 1 for τ ∈]−1, 1[; we also write χ1
µ = (χ1)µ.

Remark 3.19. Note that since χ3 ∈ C∞0 (Ω) and χ0 ∈ C∞0 (R), v is a well defined function in C∞0 (Rd+1)
if U0 and hence u is smooth. So, (3.23) is applicable. Moreover, v is not a local function in terms of u
in the time variable; indeed, it depends on all values of u(t) for t ∈ R. However, since u is a solution to
Equation (3.25), u may rather be seen as a function of the data U0 only.

Our task is now to estimate each term in (3.23) in terms of the observation ‖u‖L2(]−T,T [×ω) and
appropriate (weak) norms on U0 (this is done respectively in Lemmata 3.20, 3.21 and 3.22 below). Finally,
to conclude the proof, it will remain to estimate also the high frequency part of the solution (this is done
in Lemma 3.23). Several technical lemmata and estimates used in this proof are postponed to the next
section for the sake of readability.

All along this section, we shall use the following natural product norms for s ∈ R,

‖U0‖s,× = ‖U0‖HsL×Hs−1
L

=
√

2Es(U0).

Lemma 3.20. For all s ≥ 0, there is C,N, c, µ0 > 0 such that for all µ ≥ µ0 and for all u solution
to (3.25) and v defined accordingly in (3.24), we have∥∥Mαµ

µ ϑµv
∥∥

1
≤ CµN ‖u‖L2(]−T,T [×ω) + Ce−cµ ‖U0‖−s,× .

Proof of Lemma 3.20. First note that, according to (3.36) below, we have (for some N ∈ N, changing from
line to line),

mµ(η) ≤ CµN 〈η〉Ne−
µ
4 dist(η,supp(m))2 .

Hence, recalling the definition of m in Section 2.2, we obtain, for all s ≥ 0, for some C,N, c > 0,

|η|s+1mµ(η) = |η|s+1mµ(η)1|η|≤3/2 + |η|s+1mµ(η)1|η|≥3/2

≤ C1|η|≤3/2 + CµN 〈η〉Ne−
µ
2 (|η|−1)21|η|≥3/2

≤ C1|η|≤3/2 + CµN 〈η〉Ne−
µ
8 |η|

2

1|η|≥3/2

≤ C1|η|≤3/2 + Ce−cµ.
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As a consequence, since m = 1 on a neighborhood of [0, 3/4], we obtain, for all s ≥ 0, the existence of
C,N, c > 0 such that for µ ≥ µ0, we have

〈ζ〉mµ(
ζ

αµ
) ≤ CµN 〈ζ〉−s1 |ζ|

αµ≤3/2
+ C〈ζ〉−se−cµ

≤ CµN 〈ζ〉−smµ(
ζ

2αµ
) + C〈ζ〉−se−cµ.

This implies ∥∥Mαµ
µ ϑµv

∥∥
1
≤ CµN

∥∥M2αµ
µ ϑµv

∥∥
−s + Ce−cµ ‖ϑµv‖−s . (3.26)

Concerning the last term, we have

‖ϑµv‖−s ≤ C ‖v‖−s = C

∥∥∥∥χ0(t)χ1
µ(
Dt

µ
)χ2
µ(t)χ3(x)u

∥∥∥∥
−s
≤ C

∥∥χ2
µ(t)χ3(x)u

∥∥
−s ≤ C ‖U0‖−s,× ,

where, in the last inequality, we used (3.38).
Concerning the first term in the right hand-side of (3.26), we write

∥∥M2αµ
µ ϑµv

∥∥
−s =

∥∥∥∥M2αµ
µ ϑµχ

0(t)χ1
µ(
Dt

µ
)χ2
µ(t)χ3(x)u

∥∥∥∥
−s

≤
∥∥∥∥M2αµ

µ ϑµχ
0(t)(1− χ1

µ(
Dt

µ
))χ2

µ(t)χ3(x)u

∥∥∥∥
−s

+
∥∥M2αµ

µ ϑµχ
0(t)χ2

µ(t)χ3(x)u
∥∥
−s .(3.27)

Concerning the first term in (3.27), we have∥∥∥∥M2αµ
µ ϑµχ

0(t)(1− χ1
µ(
Dt

µ
))χ2

µ(t)χ3(x)u

∥∥∥∥
−s

≤
∥∥∥∥M2αµ

µ ϑµ(1− χ1
µ(
Dt

µ
))χ2

µ(t)χ3(x)u

∥∥∥∥
−s

+

∥∥∥∥M2αµ
µ ϑµ(1− χ0(t))(1− χ1

µ(
Dt

µ
))χ2

µ(t)χ3(x)u

∥∥∥∥
−s

≤ Ce−cµ
∥∥χ2

µ(t)χ3(x)u
∥∥
−s ,

where we have used Lemma 3.29 for the first term and then that χ0(t) = 1 on suppϑ and Lemma 3.26 for
the second. That this term is bounded by Ce−cµ ‖U0‖−s,× then follows from to (3.38).

The second term in (3.27) is simpler to handle. Consider θω a smooth cutoff function supported in
]− T, T [×ω and equal to one on a neighborhood of suppϑ. We have∥∥Mαµ

µ ϑµχ
0(t)χ2

µ(t)χ3(x)u
∥∥
−s ≤

∥∥ϑµθωχ0(t)χ2
µ(t)χ3(x)u

∥∥
−s +

∥∥ϑµ(1− θω)χ0(t)χ2
µ(t)χ3(x)u

∥∥
−s

≤ ‖u‖L2(]−T,T [×ω) + Ce−cµ
∥∥χ2

µ(t)χ3(x)u
∥∥
−s

≤ ‖u‖L2(]−T,T [×ω) + Ce−cµ ‖U0‖−s,× ,

where we have used Lemma 3.26 and then again Estimate (3.38) in the last step. The last two estimates
combined with (3.26) and (3.27) conclude the proof of the lemma.
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The proofs of the following two lemmata are based on the spectral representation (3.28) of the solution
u as

u(t, x) =
∑
j∈N

(
a+
j e

i
√
λjt + a−j e

−i
√
λjt
)
ϕj(x), (t, x) ∈ R×M. (3.28)

This explicit expression allows to prove that a time-frequency cutoff χ(Dtµ ) truncates also space-frequencies
(see in particular the use of Lemma 3.30 below).

Lemma 3.21. For all s ≥ 0, there is C, c > 0 such that for all µ ≥ 1 and for all u solution to (3.25) and
v defined accordingly in (3.24), we have

‖Pv‖L2(Ω̃γ) ≤ Ce
−cµ ‖U0‖−s,× .

Proof of Lemma 3.21. Since Pu = 0, χ3(x) = 1 on Ωγ and χ0(t) = 1 on ] − T, T [, we have on Ω̃γ =
]− T, T [×Ωγ

Pv = (∂2
t + L)χ0(t)χ1

µ(
Dt

µ
)χ2
µ(t)χ3(x)u = χ0(t)χ1

µ(
Dt

µ
)[∂2

t , χ
2
µ(t)]χ3(x)u, (3.29)

with [∂2
t , χ

2
µ(t)] = (∂2

t χ
2)µ(t) + 2(∂tχ

2)µ∂t (the terms [χ0, ∂2
t ] and [χ3,L] being supported outside of Ω̃γ).

We only treat the second term in this commutator, the first one being simpler to handle.
We split u given in (3.28) into high and low frequencies as u = u≤ + u> with

u≤ := 1√L≤8µu =
∑
√
λj≤8µ

· · · , u> := 1√L>8µu =
∑
√
λj>8µ

· · · . (3.30)

We also write f(t) = ∂tχ
2(t) and fµ(t) = (∂tχ

2)µ(t). We first estimate the low frequencies as∥∥∥∥χ0(t)χ1
µ(
Dt

µ
)fµχ

3(x)∂tu≤

∥∥∥∥
L2(Ω̃γ)

≤ C

∥∥∥∥1]−T,T [χ
1
µ(
Dt

µ
)fµχ

3(x)∂tu≤

∥∥∥∥
L2(Rt×Ωγ)

≤ C

∥∥∥∥1]−T,T [χ
1
µ(
Dt

µ
)fµχ

0
µ(t)χ3(x)∂tu≤

∥∥∥∥
0

+C

∥∥∥∥1]−T,T [χ
1
µ(
Dt

µ
)fµ(1− χ0

µ(t))χ3(x)∂tu≤

∥∥∥∥
0

.

Concerning the fist term in the right hand-side, we have∥∥∥∥1]−T,T [χ
1
µ(
Dt

µ
)fµχ

0
µ(t)χ3(x)∂tu≤

∥∥∥∥
L2(Rt×Ωγ)

≤
∥∥∥∥1]−T,T [χ

1
µ(
Dt

µ
)fµ

∥∥∥∥
L2(Rt) 7→L2(Rt)

∥∥χ0
µ(t)χ3(x)∂tu≤

∥∥
0

≤ Ce−cµ ‖(u≤, ∂tu≤)|t=0‖1,× ≤ Ce
−cµµs ‖U0‖−s,× ,

after having used Lemma 3.27 together with (3.39). Concerning the second term in the right hand-side,
we write∥∥∥∥1]−T,T [χ

1
µ(
Dt

µ
)fµ(1− χ0

µ(t))χ3(x)∂tu≤

∥∥∥∥
L2(Rt×Ωγ)

≤
∥∥∥∥1]−T,T [χ

1
µ(
Dt

µ
)(1− χ0

µ(t))

∥∥∥∥
L2(Rt)7→L2(Rt)

∥∥fµ(t)χ3(x)∂tu≤
∥∥

0
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and we conclude with the same arguments. Hence, we have the low frequency estimate∥∥∥∥χ0(t)χ1
µ(
Dt

µ
)fµχ

3(x)∂tu≤

∥∥∥∥
L2(Ω̃γ)

≤ Ce−cµ ‖U0‖−s,× . (3.31)

Concerning now the high-frequency part, still denoting f = ∂tχ
2, we have∥∥∥∥χ0(t)χ1

µ(
Dt

µ
)fµ(t)χ3(x)∂tu>

∥∥∥∥
L2(Ω̃γ)

≤
∥∥∥∥χ1

µ(
Dt

µ
)fµ(t)χ3(x)∂tu>

∥∥∥∥
L2(Rt×M)

,

where

χ1
µ(
Dt

µ
)fµ(t)χ3(x)∂tu> =

∑
√
λj>8µ

i
√
λj

[
χ1
µ(
Dt

µ
)fµ(t)

(
a+
j e

i
√
λjt − a−j e

−i
√
λjt
)] [

χ3ϕj
]

(x).

As a consequence of the triangular inequality, the Plancherel theorem and the fact that (ϕj) is an or-
thonormal family in L2(M), we obtain∥∥∥∥χ0(t)χ1

µ(
Dt

µ
)fµ(t)χ3(x)∂tu>

∥∥∥∥
L2(Ω̃γ)

≤
∑
√
λj≥8µ

√
λj

∥∥∥∥χ1
µ(
Dt

µ
)fµ(t)

(
a+
j e

i
√
λjt − a−j e

−i
√
λjt
)∥∥∥∥

L2(Rt)

∥∥χ3(x)ϕj
∥∥
L2(M)

≤
∑
√
λj≥8µ

√
λj

∥∥∥∥χ1
µ

(
τ

µ

)(
f̂µ(τ −

√
λj)a

+
j − f̂µ(τ +

√
λj)a

−
j

)∥∥∥∥
L2(Rτ )

≤
∑
√
λj≥8µ

√
λj |a+

j |
∥∥∥∥χ1

µ

(
τ

µ

)
f̂µ(τ −

√
λj)

∥∥∥∥
L2(Rτ )

+
√
λj |a−j |

∥∥∥∥χ1
µ

(
τ

µ

)
f̂µ(τ +

√
λj)

∥∥∥∥
L2(Rτ )

.

Using now Lemma 3.30, this yields∥∥∥∥χ0(t)χ1
µ(
Dt

µ
)fµ(t)χ3(x)∂tu>

∥∥∥∥
L2(Ω̃γ)

≤
∑
√
λj≥8µ

√
λjCe

−c
√
λj (|a+

j |+ |a
−
j |)

≤ C
( ∑
√
λj≥8µ

e−c
√
λj (|a+

j |
2 + |a−j |

2)
)1/2

≤ Ce−cµ ‖U0‖−s,× ,

after having used the Cauchy-Schwarz inequality in `2(N). This together with (3.31) and (3.29) concludes
the proof of the lemma.

The following Lemma will be used to estimate the last term in (3.23).

Lemma 3.22. For all s ≥ 0, there is C,N > 0 such that for all µ ≥ 1 and for all u solution to (3.25)
and v defined accordingly in (3.24), we have

‖v‖1 ≤ Cµ
N ‖U0‖−s,× .
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Proof. We first write

‖v‖1 ≤
∥∥∥∥χ1

µ(
Dt

µ
)χ2
µ(t)χ3(x)u

∥∥∥∥
H1(Rt×M)

,

and decompose u in (3.28) as u = u≤ + u> with u≤ = 1√L≤8µu and u> = 1√L>8µu being defined as
in (3.30). We have∥∥∥∥χ1

µ(
Dt

µ
)χ2
µ(t)χ3(x)u

∥∥∥∥
H1(Rt×M)

≤
∥∥∥∥χ1

µ(
Dt

µ
)χ2
µ(t)χ3(x)u≤

∥∥∥∥
H1(Rt×M)

+

∥∥∥∥χ1
µ(
Dt

µ
)χ2
µ(t)χ3(x)u>

∥∥∥∥
H1(Rt×M)

.

Concerning the first term (low-frequencies), we simply use (3.40) to write∥∥∥∥χ1
µ(
Dt

µ
)χ2
µ(t)χ3(x)u≤

∥∥∥∥
H1(Rt×M)

≤ C
∥∥χ2

µ(t)χ3(x)u≤
∥∥
H1(Rt×M)

≤ C ‖(u≤, ∂tu≤)|t=0‖k,×

≤ Cµk+s ‖U0‖−s,× .

Concerning the second term (high-frequencies), we use ‖f(t)g(x)‖H1(R×M) ≤ C‖f‖H1(R)‖g‖H1(M) and
proceed as in the above proof of Lemma 3.21. This yields∥∥∥∥χ1

µ(
Dt

µ
)χ2
µ(t)χ3(x)u>

∥∥∥∥
H1(Rt×M)

≤ C
∑
√
λj≥8µ

∥∥∥∥〈τ〉χ1
µ

(
τ

µ

)(
χ̂2
µ(τ −

√
λj)a

+
j + χ̂2

µ(τ +
√
λj)a

−
j

)∥∥∥∥
L2(Rτ )

∥∥χ3(x)ϕj
∥∥
H1(M)

≤ C
∑
√
λj≥8µ

λ
N(k,s)
j

∥∥∥∥χ1
µ

(
τ

µ

)(
χ̂2
µ(τ −

√
λj)a

+
j + χ̂2

µ(τ +
√
λj)a

−
j

)∥∥∥∥
L2(Rτ )

≤ C
∑
√
λj≥8µ

Ce−c
√
λj
(
|a+
j |+ |a

−
j |
)
≤ C ‖U0‖−s,× ,

where we have used ‖ϕj‖Hs(M) ≤ C(λj + 1)
ks
2 (which follows directly from Corollary B.2), Lemma 3.30

and the Cauchy-Schwarz inequality in `2(N).

Before concluding the proof of Theorem 1.31, we need to explain how to estimate the high-frequency
part of the solution (recall indeed that our starting point, Estimate (3.23), is a low-frequency estimate
only). This is the aim of the following lemma, which proof is close to the proof that Theorem 4.7 implies
Theorem 1.11 in [LL15].

Lemma 3.23. For all s ∈ [0, k], there is C, µ0 > 0 such that for all µ ≥ µ0 and for all u solution to (3.25),
we have ∥∥∥(1−Mβµ

µ )ϑ̃µχ
0(t)χ2

µ(t)χ3(x)u
∥∥∥
L2(Rt×Rdx)

≤ C

µs/k
‖U0‖s,× .

Note that this estimate is almost∥∥∥(1−Mβµ
µ )ϑ̃µv

∥∥∥
L2(Rt×Rdx)

≤ C

µs/k
‖U0‖s,× .
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(which is also true, but not used here), the difference being that v contains an additional time-frequency
cutoff χ1

µ(Dtµ ) (which does not play any role in the estimates below).
The proof below only gives the endpoint case s = k, the intermediate situations being deduced by

interpolation. A direct proof of intermediate estimates would follow the same lines, yet being slightly
longer.

Proof. We first notice that it is enough to treat the case s = k. Indeed, s = 0 is direct by standard energy
estimates for v (see for instance (3.22)) and uniform bound on χ2

µ and ϑ̃µ. Hence, since all operators
involved are linear, the result for s ∈ [0, k] follows by interpolation, see for instance [Tar07, Chapter 23].

Concerning the case s = k, we write w = χ0(t)χ2
µ(t)χ3(x)u, together with∥∥∥(1−Mβµ

µ )ϑ̃µw
∥∥∥

0
≤ C sup

η∈Rd+1

∣∣∣∣〈η〉−1
(1−mµ)(

η

βµ
)

∣∣∣∣ ∥∥∥ϑ̃µw∥∥∥
1
.

In the range |η| ≥ βµ/2 with µ ≥ µ0, we have the loose estimate
∣∣∣〈η〉−1

(1−mµ)( η
βµ )
∣∣∣ ≤ C

µ whereas in

the range |η| ≤ βµ/2, using dist
(

supp(1−m( ·β )), {|η| ≤ β/2}
)
> 0, we have

∣∣∣(1−mµ)( ζ
βµ )
∣∣∣ ≤ Ce−cµ

according to estimate (3.36) below. This implies, for µ ≥ µ0 that∥∥∥(1−Mβµ
µ )ϑ̃µw

∥∥∥
L2(Rt×Rdx)

≤ C

µ

∥∥∥ϑ̃µw∥∥∥
H1(Rt×Rdx)

. (3.32)

Next, we have that ∥∥∥ϑ̃µw∥∥∥
H1(Rt×Rdx)

≤ ‖w‖H1(Rt×Rdx) ≤
∥∥χ2

µ(t)χ3(x)u
∥∥
H1(Rt×Rdx)

. (3.33)

uniformly for µ ≥ 1, since all derivatives of ϑ̃µ are uniformly bounded for µ ≥ 1. We write for w̃ =
χ2
µ(t)χ3(x)u

‖w̃‖H1(Rt×Rdx) ≤ ‖w̃‖H1(Rt;L2(Rdx)) + ‖w̃‖L2(Rt;H1(Rdx)) ,

and estimate each term separately. Concerning the first term in this estimate, we have

‖w̃‖H1(Rt;L2(Rdx)) ≤ ‖w̃‖L2(Rt×Rdx) + ‖∂tw̃‖L2(Rt×Rdx)

≤
∥∥χ2

µ(t)χ3(x)u
∥∥
L2(Rt×Rdx)

+
∥∥(∂tχ

2)µ(t)χ3(x)u
∥∥
L2(Rt×Rdx)

+
∥∥χ2

µ(t)χ3(x)∂tu
∥∥
L2(Rt×Rdx)

≤ C ‖U0‖k,× .

after having used (3.38), (3.39) and k ≥ 1. Similarly, the second term is estimated as

‖w̃‖L2(Rt;H1(Rdx)) =
∥∥χ2

µ(t)χ3(x)u
∥∥
L2(Rt;H1(Rdx))

≤ C ‖U0‖k,× ,

as a direct consequence of (3.40). The above three estimates together with (3.32) and (3.33) conclude the
proof of the lemma.

With the above four lemmata in hand, we can now conclude the proof of Theorem 1.31.
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Proof of Theorem 1.31. We first prove the result for s ∈]0, k], the conclusion for all s > 0 being then a
consequence of Remark 1.30.

Starting form Estimate (3.23), combined with Lemmata 3.20, 3.21 and 3.22 to bound the terms in the
right hand side, we first obtain the intermediate estimate∥∥∥Mβµ

µ ϑ̃µv
∥∥∥

1
≤ Cecµ ‖u‖L2(]−T,T [×ω) + Ce−c

′µ ‖U0‖−s,× . (3.34)

Note that in order to obtain this inequality, we have chosen κ in (3.23) to be small enough compared to
the constant c appearing in Lemmata 3.20 and 3.21. Now, recalling that v = χ0(t)χ1

µ(Dtµ )χ2
µ(t)χ3(x)u, we

decompose

ϑ̃µχ
0(t)χ2

µ(t)χ3(x)u = Mβµ
µ ϑ̃µv +Mβµ

µ ϑ̃µχ
0(t)

(
1− χ1

µ(
Dt

µ
)

)
χ2
µ(t)χ3(x)u

+(1−Mβµ
µ )ϑ̃µχ

0(t)χ2
µ(t)χ3(x)u. (3.35)

The first term is estimated in (3.34), the last one is estimated in Lemma 3.23 so that it only remains to
estimate the second one. We have

Mβµ
µ ϑ̃µχ

0(t)

(
1− χ1

µ(
Dt

µ
)

)
χ2
µ(t)χ3(x)u = Mβµ

µ ϑ̃µ

(
1− χ1

µ(
Dt

µ
)

)
χ2
µ(t)χ3(x)u

+Mβµ
µ ϑ̃µ(1− χ0(t))

(
1− χ1

µ(
Dt

µ
)

)
χ2
µ(t)χ3(x)u.

According to Lemma 3.29 and (3.38) below, the first of these two terms satisfies∥∥∥∥Mβµ
µ ϑ̃µ

(
1− χ1

µ(
Dt

µ
)

)
χ2
µ(t)χ3(x)u

∥∥∥∥
0

≤ Ce−cµ
∥∥χ2

µ(t)χ3(x)u
∥∥

0
≤ Ce−cµ ‖U0‖0,× ,

whereas, according to Item 2 of Lemma 3.24, we have
∥∥∥ϑ̃µ(1− χ0(t))

∥∥∥
L2(Rn)→L2(Rn)

≤ Ce−cµ so that the

second one is bounded as well as∥∥∥∥Mβµ
µ ϑ̃µ(1− χ0(t))

(
1− χ1

µ(
Dt

µ
)

)
χ2
µ(t)χ3(x)u

∥∥∥∥
0

≤ Ce−cµ
∥∥χ2

µ(t)χ3(x)u
∥∥

0
≤ Ce−cµ ‖U0‖0,× .

Coming back to the decomposition (3.35), using the above two estimates together with (3.34) and Lemma
3.23, we now have (for s ∈]0, k])∥∥∥ϑ̃µχ0(t)χ2

µ(t)χ3(x)u
∥∥∥
L2(Rt×Rdx)

≤ Ceκµ ‖u‖L2(]−T,T [×ω) +
C

µs/k
‖U0‖s,× .

Now, since ϑ̃ = 1 in a neighborhood of ] − ε, ε[×B(x0, ε), for µ large enough, we have ϑ̃µ ≥ 1/2 on
]− ε, ε[×B(x0, ε), and the same also holds for χ2

µ(t). Hence, we obtain

‖u‖L2(]−ε,ε[×B(x0,ε))
≤ Ceκµ ‖u‖L2(]−T,T [×ω) +

C

µs/k
‖U0‖s,× .

Since x0 ∈ M is arbitrary, a compactness argument allows to obtain other constants still denoted
C, κ, µ0, ε > 0 such that for µ ≥ µ0,

‖u‖L2(]−ε,ε[×M) ≤ Ce
κµ ‖u‖L2(]−T,T [×ω) +

C

µs/k
‖U0‖s,× .
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We conclude the proof of Theorem 1.31, in the case s ∈]0, k], by using Estimate (3.19) and changing µ
into µk. In the case s > k, the proof follows from the estimate with s = k and an interpolation argument,
as explained in Remark 1.30.

3.3.4 Technical lemmata used in the previous section (only)

In this section, we collect some technical results used in the above Section 3.3.3 (and in that section only).
We first state results that are either directly taken from [LL15], or direct consequences of these. Second,
we prove three lemmata using these results.

Estimates taken from [LL15]. The following estimate is [LL15, Equation (2.9)] in a simple situation:
given a continuous function f on Rna , we have, for all ζ ∈ Rna

|fλ(ζ)| ≤ C 〈λ〉
na
2 ‖f‖L∞ 〈dist(ζ, supp(f))〉na−1

e−
λ
4 dist(ζ,supp(f))2 (3.36)

Lemma 3.24 (Lemma 2.3 of [LL15]). The following three statements holds true.

1. For any d > 0, there exist C, c > 0 such that for any f1, f2 ∈ L∞(Rn) such that

dist(supp(f1), supp(f2)) ≥ d,

and all λ ≥ 0, we have

‖f1,λf2‖L∞ ≤ Ce
−cλ ‖f1‖L∞ ‖f2‖L∞ , ‖f1,λf2,λ‖L∞ ≤ Ce

−cλ ‖f1‖L∞ ‖f2‖L∞ .

2. If moreover f1, f2 ∈ C∞(Rn) have bounded derivatives, then for all k ∈ N, there exist C, c > 0 such
that for all λ ≥ 1, we have

‖f1,λf2‖Hk(Rn)→Hk(Rn) ≤ Ce
−cλ.

3. Let f1, f2 ∈ L∞(Rna) such that dist(supp(f1), supp(f2)) > 0 . Then there exist C, c > 0 such that
for all λ ≥ 1, for all k ∈ N, for all µ ≥ 1, we have

‖f1,λ(Da/µ)f2(Da/µ)‖Hk(Rn)→Hk(Rn) ≤ Ce
−cλ,

‖f1,λ(Da/µ)f2,λ(Da/µ)‖Hk(Rn)→Hk(Rn) ≤ Ce
−cλ.

Lemma 3.25 (Lemma 2.9 of [LL15]). Let k ∈ N and f ∈ C∞0 (Rn). Then, there exist C, c such that, for
any λ, µ > 0, we have ∥∥∥Mµ

λ fλ(1−M2µ
λ )
∥∥∥
Hk(Rn)→Hk(Rn)

≤ Ce−c
µ2

λ + Ce−cλ;∥∥∥(1−M2µ
λ )fλM

µ
λ

∥∥∥
Hk(Rn)→Hk(Rn)

≤ Ce−c
µ2

λ + Ce−cλ.

Lemma 3.26. Let f1, f2 ∈ C∞(R) with all derivatives bounded and such that supp(f1) ∩ supp(f2) = ∅.
Then, for any s ∈ N, there is C, c > 0 such that for all w ∈ H−s(R), we have

‖f1f2,µw‖−s ≤ Ce
−cµ ‖w‖−s .
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Lemma 3.26 is obtained by duality from Item 2 of Lemma 3.24.

Lemma 3.27. Let f ∈ C∞(R) bounded such that supp(f)∩ [−T, T ] = ∅. Then, there is C, c > 0 such that∥∥1]−T,T [χ
1
µ(Dt/µ)fµ

∥∥
L2(Rt)7→L2(Rt)

≤ Ce−cµ.

Lemma 3.27 is a particular case of [LL15, Lemma 2.10].

A few estimates using the above lemmata. Recalling the definition of Es in (3.21) we now refine
the rough Estimate (3.22). Indeed, on account to the spectral theory of L, if we denote Π0 the spectral
projector on ker(L) = spanL2(1), we have, for all u ∈ HsL,

‖u‖HsL '
∥∥L s2u∥∥

L2(M)
+ |Π0u|.

Notice now that the energy
∥∥L s2u∥∥2

L2 +
∥∥∥L s−1

2 ∂tu
∥∥∥2

L2
is preserved by the equation (3.25), and that the

equation for the zero frequency is ∂2
t Π0u = 0 hence growing at most linearly. As a consequence, we finally

obtain that for all s ∈ R, there is C > 0 such that for all solution u of (3.25), we have

Es(u)(t)dt ≤ C(1 + |t|)Es(u)(0), for all t ∈ R. (3.37)

This estimate is now used to bound some integrals of Es(u).

Lemma 3.28. Let η ∈ C∞0 (R), denote χ3(x) as above and fix s ≥ 0. Then, there is C > 0 such that for
all µ ≥ 1 and for all solution u of (3.25), we have∥∥ηµ(t)χ3(x)u

∥∥
−s ≤ C ‖U0‖−s,× , (3.38)∥∥ηµ(t)χ3(x)∂tu
∥∥

0
≤ C ‖U0‖1,× , (3.39)∥∥ηµ(t)χ3(x)u

∥∥
1
≤ C ‖U0‖k,× , (3.40)∥∥ηµ(t)χ3(x)u

∥∥
L2(Rt;H

s
k (Rdx))

≤ C ‖U0‖s,× . (3.41)

Proof. We first remark (see e.g. (3.36)) that there is C, c > 0 such that for µ ≥ 1, we have 0 ≤ ηµ(t) ≤
Ce−c|t| for all t ∈ R. To prove (3.38), we now simply write∥∥ηµ(t)χ3(x)u

∥∥2

−s ≤
∫
R
Ce−c|t|

∥∥χ3(x)u
∥∥2

H−s(Ωγ)
dt =

∫
R
Ce−c|t|

∥∥χ3(x)u
∥∥2

H−s(M)
dt

≤
∫
R
Ce−c|t| ‖u‖2H−s(M) dt ≤

∫
R
Ce−c|t| ‖u‖2H−sL dt,

where we used (B.5) and s ≥ 0 in the last inequality. Recalling the definition of Es in (3.21) together with
estimate (3.37), we now have∥∥ηµ(t)χ3(x)u

∥∥2

−s ≤
∫
R
Ce−c|t|E−s(u)(t)dt ≤ C

(∫
R
e−c|t|(1 + |t|)dt

)
E−s(u)(0) = C ‖U0‖2H−sL ×H−s−1

L
,

which concludes the proof of (3.38). The proof of (3.39) is the same, except that we use ‖∂tu‖2L2(M) ≤
2E1(u) instead of (B.5). The proof of (3.40) is similar: after using the chain rule, each term is either of
the form ηµ(t)χ3(x)u (treated in (3.38)) or of the form ηµ(t)χ3(x)∂tu (treated in (3.39)) or of the form
ηµ(t)χ3(x)∂xu, for which the proof is the same using ‖u‖2

H
s
k (M)

≤ 2Es(u), consequence of Corollary (B.2),
instead of (B.5). The proof of (3.41) is the same, still using Corollary (B.2).
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Lemma 3.29. Fix α < 1. Let χ1 ∈ C∞0 (R) such that χ1(τ) = 1 for τ ∈]−1, 1[ and ϑ ∈ C∞0 (R1+d). Then,
for any s ∈ N, there is C, c > 0 such that for all w ∈ H−s(R1+d), we have∥∥∥∥Mαµ

µ ϑµ(1− χ1
µ(
Dt

µ
))w

∥∥∥∥
−s
≤ Ce−cµ ‖w‖−s .

Note that in the proofs above, the parameter α of Lemma 3.29 is both taken to be the parameters α
or β appearing estimate (3.23). This is the reason why we assumed α, β < 1 there.

Proof. This lemma is very close to (and a consequence of) Lemma 3.25 except that χ1
µ(Dt) is a Fourier

cutoff in Dt only whereas Mαµ
µ are Fourier cutoffs in the whole Dt,x (and that the Sobolev orders are

negative). Recall that Mαµ
µ = mµ

(
D
αµ

)
, D = Dt,x, where m is compactly supported in |ξ| < 1 and

m(ξ) = 1 for |ξ| < 3/4 (see the beginning of Section 2.2).
Let m̃ be a radial smooth function on R1+d such that m̃(ξ) = 1 in a neighborhood of |ξ| ≤ α and

m̃(ξ) = 0 in a neighborhood of |ξ| ≥ 1. Then we have 1−χ1 = 0 on the support of m̃. For s ∈ N, we write∥∥(1− χ1
µ(Dt))ϑµM

αµ
µ w

∥∥
s
≤

∥∥(1− χ1
µ(Dt/µ))(1− m̃µ(D/µ))ϑµM

αµ
µ w

∥∥
s

+
∥∥(1− χ1

µ(Dt))m̃µ(D/µ)ϑµM
αµ
µ w

∥∥
s

≤ C
∥∥(1− m̃µ(D/µ))ϑµM

αµ
µ w

∥∥
s

+ C
∥∥(1− χ1

µ(Dt))m̃µ(D/µ)ϑµM
αµ
µ w

∥∥
s
.

According to Lemma 3.25 and the respective supports of m̃ and m( ·α ), we have∥∥(1− m̃µ(D/µ))ϑµM
αµ
µ w

∥∥
s
≤ Ce−cµ ‖w‖s .

Also, according to Item 3 of 3.24, and the respective supports of m̃ and χ1, we have∥∥(1− χ1
µ(Dt/µ))m̃µ(D/µ)

∥∥
Hs→Hs ≤ Ce

−cµ,

and hence ∥∥(1− χ1
µ(Dt/µ))m̃µ(D/µ)ϑµM

αµ
µ w

∥∥
s
≤ Ce−cµ ‖w‖s

This finally yields for s ∈ N ∥∥(1− χ1
µ(Dt/µ))ϑµM

αµ
µ w

∥∥
s
≤ Ce−cµ ‖w‖s ,

and the sought estimate by a duality argument.

Lemma 3.30. Let χ ∈ C∞0 (R) and m ∈ C∞0 (]− 1, 1[), and define

fµ,λ(τ) = mµ

(
τ

µ

)
χ̂µ(τ − λ).

Then, for all σ ∈ R, there is C, c > 0 so that we have

‖〈τ〉σfµ,λ(τ)‖L2 ≤ Ce−c|λ|, for all λ ∈ R, µ ≥ 0 such that |λ| ≥ 4µ. (3.42)
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Proof. We decompose fµ,λ = f1
µ,λ+f2

µ,λ with f1
µ,λ(τ) = fµ,λ(τ)1|τ |≤2µ and f2

µ,λ(τ) = fµ,λ(τ)1|τ |>2µ. Using
that mµ is uniformly bounded, we have

∥∥〈τ〉σf1
µ,λ

∥∥2

L2 ≤ C〈2µ〉σ
∫ 2µ

−2µ

e−
|τ−λ|2
µ |χ̂(τ − λ)|2 dτ = C〈2µ〉σ

∫ 2µ−λ

−2µ−λ
e−
|τ|2
µ |χ̂(τ)|2 dτ

≤ C〈λ〉σ
∫
|τ |≥|λ|/2

e−
|τ|2
µ |χ̂(τ)|2 dτ ≤ C〈λ〉σe−

|λ|2
4µ

∫
|τ |≥|λ|/2

|χ̂(τ)|2 ≤ Ce−|λ|,

where we have used that |λ| ≥ 4µ implies |λ|/2 ≤ |λ| − 2µ (and in particular τ ∈ [−2µ− λ, 2µ− λ] implies
|τ | ≥ |λ|/2) and |λ|

2

4µ ≥ |λ|.
Concerning now f2

µ,λ, remark that |s| ≥ 2 implies dist(s, [−1, 1]) ≥ |s|/2. Hence, using (3.36) together
with the support of m, we have uniformly∣∣mµ(s)1|s|≥2

∣∣ ≤ C 〈µ〉1/2 e−µs216 1|s|≥2.

Using this with s = τ/µ, we obtain∥∥〈τ〉σf2
µ,λ

∥∥2

L2 ≤ C 〈µ〉
1/2
∫
|τ |≥2µ

〈τ〉σe−
τ2

16µ e−
|τ−λ|2
µ |χ̂(τ − λ)|2 dτ ≤ C 〈µ〉1/2 e−

λ2

5µ

∫
R
〈τ〉σ|χ̂(τ − λ)|2 dτ,

where we have used the estimate τ2

16 + |τ −λ|2 ≥ λ2 min
{
s2/16 + (s− 1)2

∣∣ s ∈ R
}
≥ cλ2 with c > 0. Using

now that |λ| ≥ 4µ, we have∥∥〈τ〉σf2
µ,λ

∥∥2

L2 ≤ C 〈µ〉
1/2

e−c
λ2

µ 〈λ〉σ
∫
R
〈τ〉σ|χ̂(τ)|2 dτ ≤ C〈λ〉σ+1/2e−4c|λ|,

which concludes the proof of the lemma.

4 The hypoelliptic heat equation
This section is devoted to the proofs of Theorems 1.16, 1.18 and 1.20, which all rely on the methods of
[EZ11a, Propositions 1 and 2] (proved in [EZ11b, Section 3]). We summarize these results in the next
proposition for readibility.

Proposition 4.1 ([EZ11a, EZ11b]). Let T, S > 0 and α > 2S2. Then, there exists some kernel function
kT (t, s) such that

• if y is solution of the heat equation (1.16), then w(s) =
∫ T

0
kT (t, s)y(t)dt is solution of{

∂2
sw + Lw = 0, for s ∈]− S, S[,

(w, ∂sw)|s=0 =
(

0,
∫ T

0
∂skT (t, 0)y(t)dt

)
=
(

0,
∫ T

0
e−α( 1

t+ 1
T−t )y(t)dt

)
;

(4.1)

• for all δ ∈]0, 1[, there is C > 0 such that for all (t, s) ∈]0, T [×]− S, S[, kT satisfies

|kT (t, s)| ≤ C|s| exp

(
1

min {t, T − t}

(
s2

δ
− α

(1 + δ)

))
. (4.2)
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Note that this last estimate is most useful for δ sufficiently close to one so that α ≥ S2(1 + 1
δ ).

The proof of Theorems 1.20 and 1.18 then follows the Lebeau-Robbiano transmutation method, as
implemented in [EZ11a], splitting high and low frequencies. The proof of Theorems 1.16 is slightly different
and does not rely on this splitting. For the purposes of Theorems 1.20 and 1.18, we define

Eλ = span {ϕj , λj ≤ λ} ,

where (λj , ϕj) are the spectral elements of L, defined in (1.7). The first step of the proofs of Theorems 1.20
and 1.18 is to show, using the above transmutation technique, that we can transfer estimates obtained
for solutions of the wave equation to solutions of the heat equation. More precisely, we first prove the
following low-frequency observability estimate, with a precise estimation of the observability constant with
respect to the cutoff frequency.

Lemma 4.2. There exist C, γ > 0 such that for any T > 0, λ ≥ 0, for every y0 ∈ Eλ and associated
solution y to (1.16), we have

‖y(T )‖2L2 ≤
C

T
e(2γλk/2+C

T )
∫ T

0

∫
ω

|y(t, x)|2 dt dx. (4.3)

Moreover, there exists c0 > 0 such that for any T > 0 there exists C = CT > 0 such that for any λ ≥ 0,
any y0 ∈ Eλ and associated solution y to (1.16), we have

‖y0‖2L2 ≤ Ce2c0λ
k/2

∫ T

0

∫
ω

|y(t, x)|2 dt dx. (4.4)

Remark 4.3. • The constant γ appearing in the exponent in (4.3) may exactly be taken as γ = κ+ ε
for any ε > 0 where κ appears in the exponent in Estimate (1.13), Theorem 1.13 for some S >
supx∈M dL(x, ω). In this case, the constant C > 0 in front of the exponential also depend on ε.

• The constant c0 appearing in the exponent in (4.4) may also be taken as c0 = κ + ε for any ε > 0
(where κ appears in the exponent in Estimate (1.13), Theorem 1.13 for some S > supx∈M dL(x, ω))
in the case where k ≥ 2, but only c0 = κ + 2

√
α + ε for any ε > 0 in the case k = 1, which is the

classical (elliptic) heat equation (where α is any constant >
√

2 supx∈M dL(x, ω)).

• This is exactly the cost of controlling low frequencies, following [LR95]. For instance, (4.3) implies
that for all y0 ∈ ΠλL

2(M) = Eλ (Πλ being the orthogonal projector associated to the spectral
space of L with eigenvalues lower that λ), there exists f ∈ L2((0, T );L2(ω)) with ‖f‖2L2((0,T );L2(ω)) ≤
C
T e

(2γλk/2+C
T ) ‖y0‖2L2 such that the solution to{

∂ty + Ly = Πλ1ωf
y(0) = y0

(4.5)

satisfies y(T ) = 0. Note that this finite dimensional observablity/controllabilty property is interesting
in itself. For the time being and to the authors’ knowledge, it is now understood in few situations,
i.e. essentially in case L is an elliptic selfadjoint second order operator [LR95], the bi-Laplace
operator [LR05], the Stoke operator [CSL16], and in case of some lower order perturbation of such
operators [Léa10].
Again, the situation of Example 1.11, the exponent λk/2 is optimal in general, as can be seen when
testing on eigenfunctions and using Proposition 1.12.
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In the proofs of Estimate (4.4) and Theorem 1.16, we shall moreover need the following definitions:

I(T, λ) =

∫ T

0

e−α( 1
t+ 1

T−t )e−λtdt, (4.6)

and

I(T,L)u =
∑
j∈N
I(T, λj)ajϕj =

∑
j∈N

(∫ T

0

e−α( 1
t+ 1

T−t )e−λjtdt

)
ajϕj , for u =

∑
j∈N

ajϕj . (4.7)

Proof of Lemma 4.2. The proofs of (4.3) and (4.4) are similar. Let us start with that of (4.3). We start
by using Theorem 1.31 in the simpler case s = k. Now, we fix any S > supx∈M dL(x, ω): Estimate (1.13)
yields the existence of C, κ, µ0 > 0 such that for allW0 = (w, ∂tw)|s=0 (note that all constants then depend
on these, and hence on the chosen S > 0), the associated solution to (4.1) satisfies

‖W0‖L2×H−1
L
≤ Ceκµ ‖w‖L2(]−S,S[×ω) +

1

µ
‖W0‖HkL×Hk−1

L
, µ ≥ µ0. (4.8)

Note that (4.8) implies the same estimate for all µ > 0, in which case κ has to be replaced by a bigger
constant.

Assume now that w(s) is associated to y as w(s) =
∫ T

0
kT (t, s)y(t)dt, where y is the solution to (1.16)

with initial datum y0 ∈ Eλ. Then, in (4.1), W0 is of the particular form W0 =
(

0,
∫ T

0
e−α( 1

t+ 1
T−t )y(t)dt

)
,

so that a calculation (see [EZ11a, Equation (3.3)]) yields

‖W0‖2L2×H−1
L
≥ (1 + λ)−1 ‖W0‖2H1

L×L2 = (1 + λ)−1

∥∥∥∥∥
∫ T

0

e−α( 1
t+ 1

T−t )y(t)dt

∥∥∥∥∥
2

L2

≥ (1 + λ)−1T 2

9
e−

9α
T ‖y(T )‖2L2 . (4.9)

Moreover, we have W0 ∈ Eλ × Eλ so that

‖W0‖HkL×Hk−1
L

‖W0‖L2×H−1
L

≤ (1 + λ)
k
2 . (4.10)

As a consequence, (4.8) implies(
1− (1 + λ)

k
2

µ

)
‖W0‖L2×H−1

L
≤ Ceκµ ‖w‖L2(]−S,S[×ω) , µ ≥ µ0,

and hence, choosing µ = (1 + λ)
k
2 (1 + ε) for ε ∈ (0, 1), this is

ε ‖W0‖L2×H−1
L
≤ C(1 + ε)eκ(1+λ)

k
2 (1+ε) ‖w‖L2(]−S,S[×ω) , λ ≥ λ0 = µ

2
k
0 ,

and ‖W0‖L2×H−1
L
≤ Cεe

(κ+ε)λ
k
2 ‖w‖L2(]−S,S[×ω) for all ε > 0 (different from that in the previous line).

Using Cauchy-Schwarz inequality together with (4.2) (with δ sufficiently close to one) we obtain that, for
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some C > 0 depending only on S, α, δ, but not on T , we have

‖w‖2L2(]−S,S[×ω) ≤

(∫
]0,T [×]−S,S[

kT (t, s)2dt ds

)∫ T

0

∫
ω

|y(t, x)|2 dx dt

≤ CTeCT
∫ T

0

∫
ω

|y(t, x)|2 dx dt, (4.11)

which then gives (4.3) for λ ≥ λ0. The estimate for λ ∈ [0, λ0] remains valid up to changing the constant
C.

To prove (4.4), we follow the same lines, except for the lower bound (4.9), which we replace by an
estimate of Corollary 4.5 below. Namely, with the notation (4.7), we have W0 = (0, I(T,L)y0), so that,
according to Corollary 4.5, we have for all T > 0 and s ∈ R, the existence of C = Cα,T,s > 0 such that

‖W0‖L2×H−1
L

= ‖I(T,L)y0‖H−1
L
≥ C ‖y0‖ 1

2 ,−2
√
α,−1− 3

2
= C

∥∥∥(L+ 1)−
5
4 e−2

√
αLy0

∥∥∥
L2
. (4.12)

Recalling that y0 ∈ Eλ, this implies

‖W0‖L2×H−1
L
≥ C

∥∥∥(L+ 1)−
5
4 e−2

√
αLy0

∥∥∥
L2
≥ C

∥∥∥e−(2+ε)
√
αLy0

∥∥∥
L2
≥ Ce−(2+ε)

√
αλ ‖y0‖L2 .

Applying then (4.8) (for any µ > 0) with this lower bound, together with (4.11) and (4.10) as above and

the fact that e(2+ε)
√
αλ ≤ Cεe

ελ
k
2 for any k ≥ 2 (in case k = 1, the constant (2 + ε)

√
α has to be taken

into account), concludes the proof of (4.4), and hence of the lemma.

Note that in the proof of (4.4), and in the case k > 2, we could simply replace (4.12) by the rough
estimate

‖yλ(0)‖2L2 ≤ e2λT ‖yλ(T )‖2L2 ,

which would be enough for the purpose of Estimate (4.4). This is not possible at all in case k = 1, and in
case k = 2, would require c0 to depend (linearly) on T .

4.1 Approximate controllability with polynomial cost in large time: Proof of
Theorem 1.20

From the low-frequency Lemma 4.2, Estimate (4.3), the proof of the theorem follows the spirit of [LR95,

Mil10, EZ11a] but is simpler. It combines the cost of controllability of low frequencies, of order eγλ
k
2 = eγλ

(k = 2 in this part) and the dissipation of the heat at high frequency, of order e−tλ. However, here, we do
not perform the usual iterative procedure since it does not seem to improve the estimates.

Proof of Theorem 1.20. For y ∈ L2(M), we decompose y = yλ + rλ with yλ ∈ Eλ and rλ ∈ E⊥λ .
On the one hand, using Lemma 4.2 Estimate (4.3) for yλ on the time interval (T − η, T ) (the problem

being time invariant), we obtain, uniformly with respect to T > 0, η ∈]0, T [, λ > 0,

‖yλ(T )‖2L2 ≤ Ce(2γλk/2+C
η )
∫ T

(T−η)

∫
ω

|yλ(t, x)|2 dt dx. (4.13)
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On the other hand, we have

‖rλ(t)‖L2 ≤ e−λt ‖rλ(0)‖L2 ≤ e−λt ‖y(0)‖L2 , (4.14)∫ T

T−η

∫
ω

|rλ(t, x)|2 dt dx ≤ 1

2λ
e−2λ(T−η) ‖y(0)‖2L2 .

The last estimate gives∫ T

(T−η)

∫
ω

|yλ(t, x)|2 dt dx ≤ 2

∫ T

(T−η)

∫
ω

|y(t, x)|2 dt dx+
1

λ
e−2λ(T−η) ‖y(0)‖2L2 .

So, using successively (4.14), (4.13) and the last estimate, we finally obtain for T > 0, η ∈]0, T [, λ > 0,

‖y(T )‖2L2 = ‖yλ(T )‖2L2 + ‖rλ(T )‖2L2

≤ ‖yλ(T )‖2L2 + e−2λT ‖y(0)‖2L2

≤ Ce(2γλk/2+C
η )
∫ T

T−η

∫
ω

|y(t, x)|2 dt dx+ C
(
e−2λT + e(2γλk/2+C

η −2λ(T−η))
)
‖y(0)‖2L2

≤ Ce(2γλk/2+C
η )
∫ T

T−η

∫
ω

|y(t, x)|2 dt dx+ 2Ce(2γλk/2+C
η −2λ(T−η)) ‖y(0)‖2L2 .

Now, we recall that we assume k = 2 (for k > 2, the diffusion cannot compete with the cost of controllability
of low frequencies). Consequently, we obtain, for all T > 0, η ∈]0, T [, λ > 0,

‖y(T )‖2L2 ≤ CeC/η
(
e2γλ

∫ T

T−η

∫
ω

|y(t, x)|2 dt dx+ e2λ(γ+η−T ) ‖y(0)‖2L2

)
. (4.15)

This now provides information if T is sufficiently large. Namely, setting ε = e−2λ, we obtain the existence
of C > 0 such that for all η > 0, T ≥ γ + η, all ε ∈]0, 1[, we have

‖y(T )‖2L2 ≤ CeC/η
(

1

εγ

∫ T

T−η

∫
ω

|y(t, x)|2 dt dx+ εT−(γ+η) ‖y(0)‖2L2

)
.

Changing εT−(γ+η) into ε, this implies the existence of C > 0 such that for all η > 0, all T > γ + η and
all ε ∈]0, 1[, we have

e−C/η

C
‖y(T )‖2L2 ≤

1

ε
γ

T−(γ+η)

∫ T

T−η

∫
ω

|y(t, x)|2 dt dx+ ε ‖y(0)‖2L2 .

This concludes the proof of Theorem 1.20 with T0 := γ after having remarked that the parabolic dissipation
yields ‖y(T )‖2L2 ≤ ‖y(0)‖2L2 , and hence the case ε ≥ 1.

4.2 Approximate controllability in Gevrey-type spaces: Proof of Theorem 1.18
The proof of Theorem 1.18 follows the same lines as Theorem 1.20, decomposing into low and high
frequencies, but uses Estimate (4.4) instead of (4.3).
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Proof of Theorem 1.18. For y ∈ L2(M) arbitrary, we again write the decomposition y = yλ + rλ with
yλ ∈ Eλ and rλ ∈ E⊥λ . Note that, using the fact that yλ is solution of the heat equation in Eλ, we obtain
from Lemma 4.2 that

‖yλ(0)‖2L2 ≤ CT e2c0λ
k/2

∫ T

0

∫
ω

|yλ(t, x)|2 dt dx.

Moreover, we have (recall that the norm ‖·‖α,θ is defined in (1.20); α will be eventually taken equal to
k/2)

‖rλ(t)‖L2 ≤ e−λt ‖rλ(0)‖L2 ≤ e−λte−θλ
α

‖rλ(0)‖α,θ ≤ e
−λt−θλα ‖y(0)‖α,θ∫ T

T−η

∫
ω

|rλ(t, x)|2 dt dx ≤ 1

2λ
e−2λ(T−η)e−2θλα ‖y(0)‖2α,θ .

From this last estimate, we obtain∫ T

0

∫
ω

|yλ(t, x)|2 dt dx ≤ 2

∫ T

0

∫
ω

|y(t, x)|2 dt dx+ 2

∫ T

0

∫
ω

|rλ(t, x)|2 dt dx

≤ 2

∫ T

0

∫
ω

|y(t, x)|2 dt dx+ λ−1e−2θλα ‖y(0)‖2α,θ .

So, combining all these estimates, we finally obtain for λ > 0

‖y(0)‖2L2 = ‖yλ(0)‖2L2 + ‖rλ(0)‖2L2

≤ ‖yλ(0)‖2L2 + e−2θλα ‖y(0)‖2α,θ

≤ CT e
2c0λ

k/2

(
2

∫ T

0

∫
ω

|y(t, x)|2 dt dx+ e−2θλα ‖y(0)‖2α,θ

)
+ e−2θλα ‖y(0)‖2α,θ . (4.16)

Now, for α = k/2, we find for all λ > 0 that

‖y(0)‖2L2 ≤ Ce2c0λ
k/2

∫ T

0

∫
ω

|y(t, x)|2 dt dx+ Ce−2(θ−c0)λk/2 ‖y(0)‖2k/2,θ .

Assuming θ > c0, and setting ε = Ce−2(θ−c0)λk/2 ∈]0, 1[, this is precisely (1.21) with θ0 = c0. The full
range of ε > 0 follows from the simple estimate ‖y(0)‖2L2 ≤ ‖y(0)‖2k/2,θ.

4.3 Approximate controllability in natural spaces with exponential cost: Proof
of Theorem 1.16

Let us now proceed to the proof of Theorem 1.16. It does not rely on frequency cutoff (we do not
distinguish between low and high frequencies), and hence on Lemma 4.2. Instead, we directly apply the
transmutation result of Proposition 4.1 to the full solution and use precise properties of the operator I(T,L)
defined in (4.7) (which we aready used in the proof of Estimate (4.4)), proved in the next section. Note
also that here, as opposed to the above two sections, we need to use the strong version of Theorem 1.13.
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Proof of Theorem 1.16. We apply directly the transmutation kernel to the solution. Using Theorem 1.13,
we obtain

‖W0‖L2×H−1
L
≤ Ceκµ

k

‖w‖L2(]−S,S[×ω) +
1

µ
‖W0‖H1

L×L2 , µ > 0, (4.17)

see e.g. [LL15, Lemma A.3] to obtain the range µ ∈ [0, µ0] (however deteriorating the constant κ). Then,
we recall that, with the notation (4.7), we have

W0 = (0, I(T,L)y0),

so that, according to Corollary 4.5, we have for all T > 0 and s ∈ R, the existence of C = Cα,T,s > 0 such
that

C−1 ‖y0‖ 1
2 ,−2

√
α,s− 3

2
≤ ‖W0‖Hs+1

L ×HsL
= ‖I(T,L)y0‖HsL ≤ C ‖y0‖ 1

2 ,−2
√
α,s− 3

2
,

where ‖y0‖ 1
2 ,−2

√
α,s =

∥∥∥(L+ 1)
s
2 e−2

√
αLy0

∥∥∥
L2

(see (4.19) for the definition of the norms). In particular,
this implies

‖W0‖H1
L×L2

‖W0‖L2×H−1
L

≤ C
‖y0‖ 1

2 ,−2
√
α,− 3

2

‖y0‖ 1
2 ,−2

√
α,−1− 3

2

= CΛ1(H(L)y0) ≤ 2CΛ1(y0), Λ1(y0) =
‖y0‖H1

L

‖y0‖L2

,

where H(λ) = (λ+1)−
5
4 e−2

√
αλ, which is positive, decreasing to zero, and we have thus used Corollary 4.9

in the last inequality.
When combined with (4.11) (still valid in this context), we now obtain, for all µ > 0,

‖W0‖2L2×H−1
L
≤ Ce2κµk

∫ T

0

∫
ω

|y(t, x)|2 dx dt+
C

µ2
Λ1(y0)2 ‖W0‖2L2×H−1

L
.

Writing Λ = Λ1(y0), taking µ =
√

2CΛ, and recalling that C−1 ‖y0‖ 1
2 ,−2

√
α,−1− 3

2
≤ ‖W0‖L2×H−1

L
, this

gives after absorption

‖y0‖21
2 ,−2

√
α,−1− 3

2
≤ CecΛ

k

∫ T

0

∫
ω

|y(t, x)|2 dx dt, Λ =
‖y0‖H1

L

‖y0‖L2

. (4.18)

To conclude, we recall that ‖y0‖ 1
2 ,−2

√
α,−1− 3

2
=
∥∥∥(L+ 1)−

5
4 e−2

√
αLy0

∥∥∥
L2
≥ C

∥∥∥e−3
√
α(L+1)y0

∥∥∥
L2

and we

use Lemma 4.6 with F (s) = s+ 1 and G(s) = e−3
√
αs which is convex, to finally obtain

‖y0‖L2 ≤ CecΛ1(y0)
∥∥∥e−3

√
α(L+1)y0

∥∥∥
L2
≤ CecΛ1(y0) ‖y0‖ 1

2 ,−2
√
α,−1− 3

2
.

Together with (4.18), this conludes the proof of (1.18). Now, to prove (1.19), take any µ > 0. Either

Λ1(y0) =
‖y0‖H1

L
‖y0‖L2

≥ µ, and (1.19) holds (without the observation term), or else Λ1(y0) ≤ µ, and (1.18) yields
(1.19) (without additional term on the right hand-side). This concludes the proof of the Theorem.
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4.4 Technical lemmata used for the heat equation
In this section, we collect three technical lemmata that we used in the proofs of Theorems 1.16, 1.18
and 1.20 above.

First, we need an asymptotic expansion of the integral I(T, λ) defined in (4.6) as λ→ +∞.

Lemma 4.4. For all α > 0 and T > 0, there exists CT , λ0 > 0 such that for all λ ≥ λ0, there is
R(T, λ) ∈ R such that we have

I(T, λ) =
√
π
α

1
4

λ
3
4

e−
α
T e−2

√
αλ

(
1 +

R(T, λ)

λ
1
4

)
, |R(T, λ)| ≤ CT .

Next, this lemma allows us to link the operator I(T,L) defined in 4.7 and the norms

‖u‖2δ,θ,σ =
∥∥∥(L+ 1)

σ
2 eθL

δ

u
∥∥∥2

L2
=
∑
j∈N

(λj + 1)σe2θλδj |aj |2, for u =
∑
j∈N

ajϕj . (4.19)

Corollary 4.5. For all s ∈ R, for all T, α > 0, there exists C > 1 such that we have

C−1 ‖u‖ 1
2 ,−2

√
α,s− 3

2
≤ ‖I(T,L)u‖HsL ≤ C ‖u‖ 1

2 ,−2
√
α,s− 3

2
,

The proof of the corollary only consists in remarking that, once α, T are fixed, we have, according to
Lemma 4.4, that

0 < I(T, λ)

(
e−2
√
αλ

(1 + λ)
3
4

)−1

→
√
πα

1
4 e−

α
T > 0 as λ→ +∞,

and this quantity does not vanish on R+ so that there is C > 1 such that for all λ ≥ 0, we have

C−1 ≤ I(T, λ)

(
e−2
√
αλ

(1 + λ)
3
4

)−1

≤ C,

which yields the result.

Proof of Lemma 4.4. Note first that, given ε ∈ (0, 1), we may assume that λ0 is chosen such that T ≥√
α
λ (1 + ε) for λ ≥ λ0. We first change variables in I(T, λ), denoting ω =

√
αλ (new large parameter) and

setting t =
√

α
λ s = α

ω s, we have

I(T, λ) =
α

ω

∫ ωT
α

0

fω(s)e−ω( 1
s+s)ds, fω(s) = exp

(
− α

T − αs
ω

)
.

The phase h(s) := 1
s + s admits a single global strict (nondegenerate) minimum at the point s = 1, with

h(1) = 2. Note also that 0 ≤ fω ≤ 1. Hence, using that ωT
α ≥ 1 + ε by assumption, we have for ε ∈ (0, 1),

the estimate

I(T, λ) =
α

ω

∫ 1+ε

1−ε
fω(s)e−ω( 1

s+s)ds+OT (e−(h(1)+cε)ω), cε > 0.
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Let φ : (1− ε, 1 + ε)→ (−ε1, ε2) be a (Morse) diffeomorphism for some ε1, ε2 > 0, such that φ(1) = 0, and
with u = φ(s), we have

h(s) = h(1) + h′′(1)
u2

2
= 2 + u2, sgn(u) = sgn(s− 1).

Note that it is actually explicit, namely φ(s) = (s − 1)/
√
s. We change variable, setting u = φ(s), and

obtain

I(T, λ) =
α

ω

∫ ε2

−ε1
e−ω(2+u2)fω ◦ φ−1(u)|(φ−1)′(u)|du+OT (e−(2+cε)ω), cε > 0,

where (φ−1)′(0) = 1.
Moreover, for s ∈ [1 − ε, 1 + ε] ⊂ [0, ωTα ], we write fω(s) = fω(1) + Rω(s) with fω(1) = exp

(
− α
T−αω

)
and

|Rω(s)| ≤ |s− 1| sup
[1−ε,1+ε]

|f ′ω| ≤
c

ω
|s− 1|, (4.20)

where we used f ′ω(s) = − 1
ωX
−2e−

1
X with X = (T − α

ω s)α
−1 ∈ [0, T/α].

As a consequence, we obtain

I(T, λ) =
α

ω
e−2ω exp

(
− α

T − α
ω

)∫ ε2

−ε1
e−ωu

2

|(φ−1)′(u)|du+R(ω) +OT (e−(2+cε)ω)

=
α

ω
e−2ω exp

(
− α

T − α
ω

){∫ ε2

−ε1
e−ωu

2

|(φ−1)′(0)|du+R′(ω)

}
+R(ω) +OT (e−(2+cε)ω)

=
α

ω
e−2ω exp

(
− α

T − α
ω

){∫
R
e−ωu

2

|(φ−1)′(0)|du+R′(ω)

}
+R(ω) +OT (e−(2+c̃ε)ω), c̃ε > 0

=
α

ω
e−2ω exp

(
− α

T − α
ω

){√
π

ω
+R′(ω)

}
+R(ω) +OT (e−(2+c̃ε)ω), c̃ε > 0

with, using (4.20),

|R(ω)| =
∣∣∣∣αω
∫ ε2

−ε1
e−ω(2+u2)Rω ◦ φ−1(u)|(φ−1)′(u)|du

∣∣∣∣ ≤ C α

ω2
e−2ω

∫ ε2

−ε1
|u|e−ωu

2

du ≤ α

ω2
e−2ωC

ω
,

and

|R′(ω)| =
∣∣∣∣∫ ε2

−ε1
e−ωu

2 (
(φ−1)′(u)− (φ−1)′(0)

)
du

∣∣∣∣ ≤ C ∫ ε2

−ε1
|u|e−ωu

2

du ≤ C

ω
.

Using finally that exp
(
− α
T−αω

)
= e−

α
T

(
1 +OT

(
α
ω

))
, we finally obtain

I(T, λ) =
α

ω
e−2ω exp

(
− α

T − α
ω

)√
π

ω

(
1 +OT

(
1√
ω

))
,

which, recalling that ω =
√
αλ, concludes the proof of the lemma.
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Lemma 4.6. Let F : R+ → R+ be any function and let G : F (R+) → R+ be a function such that G2 is
convex (it is for instance the case if G is). Then, for all u ∈ HFL ∩D(G ◦ F (L)), we have

G

(
‖u‖2HFL
‖u‖2L2

)
‖u‖L2 ≤ ‖G ◦ F (L)u‖L2 , (4.21)

where the seminorm HFL is defined by ‖u‖2HFL =
∑
j∈N F (λj)|aj |2 if u =

∑
j∈N ajϕj.

Remark 4.7. Using the previous lemma with F (s) = s + 1 and G(s) = 1√
s
, we obtain the interpolation

inequality

‖u‖L2

‖u‖H−1
L

≤
‖u‖H1

L

‖u‖L2

,

comparing two types of “frequency functions”, the first of which being used e.g. in [Phu04] for the classical
heat equation.

Proof. Dividing by ‖u‖L2 (if non zero, otherwise the inequality is clear), it is enough to prove (4.21)
assuming ‖u‖L2 = 1. If so, we write u =

∑
j∈N ajϕj with

∑
j∈N |aj |2 = 1. Using the Jensen inequality

with the convex function G2, we have

‖G ◦ F (L)u‖2L2 =
∑
j∈N

G
(
F (λj)

)2|aj |2 ≥ G2

∑
j∈N

F (λj)|aj |2
 = G2(‖u‖2HFL ),

which concludes the proof of the lemma.

Lemma 4.8. Let F,G : R+ → R+ be two nondecreasing continuous functions such that F (s)G(s)→ +∞
as s→ +∞. Then, for all u ∈ D(F (L)G(L)), we have

‖F (L)u‖L2 ‖G(L)u‖L2 ≤ 2 ‖F (L)G(L)u‖L2 ‖u‖L2 .

Note that, replacing F and G by 1/F and 1/G, the same statement is true as well if F,G are nonvan-
ishing, nonincreasing and such that F (s)G(s)→ 0 as s→ +∞.

Corollary 4.9. Denoting, for σ > 0 by Λσ(u) =
‖u‖HσL
‖u‖L2

the modified frequency functions, we have that for
any H : R+ → R+ nonvanishing, nonincreasing such that H(s)→ 0 as s→ +∞,

Λσ(H(L)u) ≤ 2Λσ(u). (4.22)

The corollary is obtained by taking F (s) = (s+ 1)
σ
2 in Lemma 4.8, G = 1/H and u = H(L)v. Remark

that the frequency function Λ used in the main part of the article is Λ = Λ1.

Remark 4.10. The interpretation of the corollary is clearer. Indeed, in this context, H(L) is a compact
operator of L2 and (4.22) only translates that the “average frequency” ofH(L)u is smaller than the “average
frequency” of u.
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Remark 4.11. It is very likely that the previous Lemma (or at least Corollary 4.9) is still true with
the constant 2 replaced by 1. Indeed, when taking H(s) = (s + 1)−β , or H(s) = e−ts

β

with β, t > 0,
Corollary 4.9 is true with a constant 1; in the first case, it is proved using Sobolev interpolation and in the
second one using the monotonicity of the frequency function for solutions of the heat equation, see Phung
[Phu04].

Proof of Lemma 4.8. First, since F and G are nondecreasing, by decomposing u =
∑
ajϕj with frequency

less than λ and greater than λ, we notice that for any λ > 0, we have

‖F (L)u‖2L2 =
∑
j

F (λj)
2|aj |2 =

∑
λj≤λ

F (λj)
2|aj |2 +

∑
λj>λ

F (λj)
2|aj |2

≤ F (λ)2
∑
λj≤λ

|aj |2 +
∑
λj>λ

F (λj)
2G(λj)

2

G(λ)2
|aj |2

≤ F (λ)2 ‖u‖2L2 +
1

G(λ)2
‖F (L)G(L)u‖2L2 .

Similarly, we have

‖G(L)u‖2L2 ≤ G(λ)2 ‖u‖2L2 +
1

F (λ)2
‖F (L)G(L)u‖2L2 .

Multiplying these two estimates, we obtain, for all λ > 0

‖F (L)u‖2L2 ‖G(L)u‖2L2 ≤ F (λ)2G(λ)2 ‖u‖4L2 + 2 ‖u‖2L2 ‖F (L)G(L)u‖2L2 +
1

F (λ)2G(λ)2
‖F (L)G(L)u‖4L2 ,

which is

‖F (L)u‖L2 ‖G(L)u‖L2 ≤ F (λ)G(λ) ‖u‖2L2 +
1

F (λ)G(λ)
‖F (L)G(L)u‖2L2 , for all λ ≥ 0.

Now, using that s 7→ F (s)G(s) tends to +∞ as s → +∞ and is nondecreasing, it is onto R+ →
[F (0)G(0),+∞[. Since F (0)G(0) = minFG ≤ ‖F (L)G(L)u‖L2

‖u‖L2
, there is λ ≥ 0 such that F (λ)G(λ) =

‖F (L)G(L)u‖L2

‖u‖L2
, which together with the last estimate yields the sought result.

5 A partially analytic example: Grushin type operators
In this section, we are concerned with the setting of Example 1.22 and give a proof of Theorem 1.23.
As explained in Section 1.4, it only suffices to prove the analogue of Theorem 1.13 (with estimate (1.24)
instead of (1.13)), that is for the hypoelliptic wave equation; all other results are then deduced as in
Section 4.

The setting of Example 1.22 differs from the general setting of the paper (compact manifolds, analytic
context) with two respects: (i) we do not suppose analyticity in all variables; (ii) the manifold M =
[−1, 1] × T has a boundary. Hence, there are four main differences in the proofs, the first of which being
of geometric nature, the next two being linked to the analysis of [LL15], and the last one to hypoelliptic
estimates:
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1. the presence of the boundary makes it complicated to apply directly Theorem 3.5 coming from [RT05].

2. the partial analyticity assumption does not allow to make changes of variables to define the relation
C. For any couple of points x0, x1, we thus have to find some global set Ω containing one (short)
path linking them.

3. the application of the results in [LL15] yields an observation term of the form ‖u‖H1
b (ω̃) and we would

expect it to be in L2.

4. The available hypoelliptic estimates, similar to those of Theorem 1.4, do not apply directly in the
presence of boundary.

The problem imposed by Item 1 is that because of the boundary, the shortest path between two points
in Int(M) does not necessarily exists inside of Int(M). To understand this issue, it may help to think
about the flat metric in Rn \O where O a convex obstacle. The boundary ∂M = {x1 = ±1} can look like
a convex obstacle for the Grushin case for instance (see Figure 3.1 of [BL13] for some drawing of geodesics
in Grushin). The solution we propose is to apply the result of Rifford and Trélat [RT05] only locally away
from the boundary. The drawback is then that our path is only piecewise normal geodesic. But this will
be sufficient thanks to the variant Proposition 3.14 of Proposition 3.12.

The solution to the issue of Item 2 is the very simple geometry of [−1, 1]x1
×Tx2

, so we almost do not
perform any change of variable.

The solution to the issue of Item 3 is to use the fact that the operator P is elliptic in {ζa = 0} where
ζa is the dual to the anaytic variable za = (t, x2), see Section 5.3.

Concerning the issue of Item 4, we prove the necessary estimates in Section B.2. Recall that the
operator is elliptic close to the boundary. So, we are left to patch the usual elliptic estimates close to the
boundary with internal hypoelliptic estimates.

All in all, the proof of Estimate (1.24) is as above in two steps: first, proving (1.28) (hard part),
and then performing energy estimates (soft part). The latter are done the same way as in Section 3.3.1,
except that the hypoelliptic estimates of Corollary B.1 have to be replaced by those of Theorem B.3 (with
boundary).

We now focus on the first part of the proof, that is, proving (1.28) in the context of Example 1.22.
This corresponds to the above Step 1 (Section 3.1) and Step 2 (Section 3.2).

5.1 The geometric context
Denote π : [−1, 1]x1

× Rx2
→ [−1, 1]x1

× Tx2
the natural covering map, π(x1, x2) = (x1, x2 + Z). The

vector fields X1 and X2 can be lifted to [−1, 1]x1
×Rx2

, which allows to define the natural sub-Riemannian
distance on ]−1, 1[x1

×Rx2
. As for the case of [−1, 1]x1

×Tx2
, the latter can be extended up to the boundary

as well as all the other notions naturally inherited. We keep the same notations without leading to any
confusion.

We will need the following Geometric Lemma, the proof of which relies on an iterative use of a slight
variant of the result of Rifford-Trélat [RT05], see Theorem 3.5.

Lemma 5.1. Let x0 = (x0
1, x

0
2) and x1 = (x1

1, x
1
2) in [−1, 1]x1 × Tx2 . Then, for any ε > 0, there exists a

continuous path γ : [0, 1] 7→ [−1, 1]x1
× Rx2

so that with γ(s) = (x1(s), x2(s)) we have

1. π(γ(0)) = x0 and dist(π(γ(1)), x1) < ε;
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2. x1(s) /∈ {−1, 1} for s ∈]0, 1[;

3. γ is piecewise normal geodesic in ]− 1, 1[x1
×Rx2

;

4. if x1
1 = −1 (resp. 1) then there is δ > 0 so that γ(s) = (−s, x1

2) (resp. γ(s) = (s, x1
2)) for s ∈ [1−δ, 1].

Similarly, if x0
1 = −1 (resp. 1) then there is δ > 0 so that γ(s) = (−1+s, x0

2) (resp. γ(s) = (1−s, x0
2))

for s ∈ [0, δ];

5. length(γ) ≤ dist(x0, x1) + ε.

Proof. Note first that the paths defined in Item 4 are normal geodesic paths (i.e. geodesics, since the
metric is Riemannian near the boundary) corresponding to (ξ1, ξ2) = (±1/2, 0) since f does not depend on
x2 near the boundary. Therefore, by defining γ like this for s ∈ [1− δ, 1], we have γ(1− δ) ∈]−1, 1[x1×Tx2

and length(γ(s), s ∈ [1− δ, 1]) = δ; hence up to changing the length of γ by δ, we are left to the case where
x1 does not belong to the boundary. The argument shows that we may assume as well that x0 does not
belong to the boundary.

Let now γ̃ be a smooth path on [−1, 1]x1
× Tx2

so that γ̃(0) = x0, γ̃(1) = x1 and length(γ̃) ≤
dist(x0, x1) + ε. We select one continuous lifting of γ̃ on [−1, 1]x1 ×Rx2 , denoted by γ1, so that π(γ1(s)) =
γ̃(s) for s ∈ [0, 1]. Moreover, we have length(γ1) = length(γ̃) that we denote by L. Since x0, x1 /∈ {±1}×T,
then up to deforming a bit γ1 without changing γ1(0) (and still denoting it with the same name), we can
assume that dist(γ1(s), {±1} × R) > η > 0 for all s ∈ [0, 1], up to having only the estimate length(γ1) ≤
dist(x0, x1) + 2ε. Now, we choose N ∈ N large enough so that (L + ε)/N < η. Up to reparametrization,
we can also assume that γ1 : [0, L]→]− 1, 1[×R has unit speed.

Denote ti = γ1(iL/N) for i = 0, · · · , N . In particular, we have dist(ti, ti+1) ≤ L/N since γ1 has unit
speed.

We now define mi for i = 0, · · · , N by induction, so that the following properties are satisfied:

(P1) dist(mi, ti) < ε/2N ;

(P2) there is a minimizing normal geodesic between mi and mi+1.

Note that these properties imply in particular

dist(mi, {±1} × R) ≥ dist(ti, {±1} × R)− dist(mi, ti) > η − ε/2N > (L+ ε/2)/N. (5.1)

Let us now construct the points mi by induction as follows:

• m0 = γ̃(0);

• mi → mi+1: by iteration hypothesis, dist(mi, ti) ≤ ε/N . Note that the ball B(mi, (L+ε/2)/N) does
not intersect the boundary thanks to (5.1) and that dist(mi, ti+1) ≤ dist(mi, ti) + dist(ti, ti+1) <
(L+ ε/2)/N . In particular, ti+1 ∈ B(mi, (L+ ε/2)/N), and there exists one ball of radius r < ε/2N
so that B(ti+1, r) ⊂ B(mi, (L+ ε/2)/N).

A slight variant of Theorem 3.5 of Rifford-Trélat [RT05] implies that the image of the exponential
map (given by T ∗(R2) → R2, (m0, ξ0) 7→ m(1) where (m(t), ξ(t)) is the Hamiltonian curve issued
from (m0, ξ0), see Definition 3.2) from the point mi is dense in B(mi, (L + ε/2)/N). In particular,
there exists one point, which we choose as mi+1 ∈ B(ti+1, r) ⊂ B(mi, (L + ε/2)/N) so that there
exists a minimizing normal geodesic between mi and mi+1, and (P2) is satisfied. Then, we have by
construction dist(mi+1, ti+1) < r < ε/2N , so the first induction assumption (P1) is also fulfilled.
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Once the process is finished, we have by construction, dist(mi,mi+1) ≤ dist(mi, ti) + dist(ti, ti+1) +
dist(mi+1, ti+1) ≤ (L + ε)/N . Now, denote by γ, the path defined by concatenation of the above defined
normal geodesic path linking mi and mi+1. We have γ(0) = m0 = γ̃(0) = γ1(0) by construction. Also,
we have dist(γ(L), γ1(L)) = dist(mN−1, tN−1) < ε/2N < ε. Moreover, since the geodesic linking mi and
mi+1 are minimizing, we have length(γ) =

∑N−1
i=0 dist(mi,mi+1) ≤ L+ ε. This concludes the proof of the

lemma.

5.2 A proof of Estimate (1.24)
Let us now sketch the proof of Estimate (1.24). It is very similar to that of Theorem 1.13, so that we only
stress the main differences.

For this, we define Ω = I × U with I a bounded neighborhood of (−T, T ) (where T is that of the
statement of Theorem 1.23) and U a bounded neighborhood of γ in [−1, 1]x1

× Rx2
. We consider the

operator P = ∂2
t + L in this set, and use the splitting of variables in Rn = Rna × Rnb = Rd+1 with

n = 3, na = 2, nb = 1, d = 2, as

z = (za, zb), za = (t, x2), zb = x1,

with t being the time variable, and x = (x1, x2) the space variable.
Now, we follow the general proof. The geometrical context being made precise in Lemma 5.1, it only

remains to check that we can apply the equivalent of Proposition 3.14, with the scheme of proof described
in Remark 3.13. Since the appropriate piecewise geodesic path is constructed in Lemma 5.1, we only need
to check that the local results (the equivalent of Lemma 3.11) can be applied in this setting.

There are two differences:

• We are in a situation where the only analytic variables are za = (t, x2). So, all Fourier multipliers
defined in Section 2.2 (and therefore the associated relation C) are taken with respect to these
variables, see Remark 2.4. The symbol of the wave operator P is

p(t, x1, x2, τ, ξ1, ξ2) = −τ2 + ξ2
1 + f(x1, x2)2ξ2

2 .

But we check that we are still in the situation of Remark 1.10 of [LL15] with za = (t, x2) and zb = x1.
Indeed, p(t, x1, x2, 0, ξ1, 0) = ξ2

1 that is positive definite on Rξ1 .

• The equivalent of Lemma 3.11 should be obtained in the presence of boundary. We have to check
that we can apply [LL15, Theorem 5.12], namely “propagation up to the boundary” {x1 = ±1}.
Let us only explain the construction near the boundary {x1 = 1}, the other case being similar. One
important thing is that we are in the geometric situation described in Lemma 5.1: P is already under
the form of (3.5) and the choice of the geodesic close to the boundary of Item 4 of Lemma 5.1 is
already the same straight line. Indeed, we almost do not need to perform any change of coordinates,
but only a translation. We can directly construct the noncharacteristic hypersurfaces of Lemma 3.10
with l0 = ε0, (t, x̌) = (t, x2) (tangential) and xd = x1 + 1 − ε0 (normal). Everything works then as
in the interior case precised before, except for the last hypersurface S1 = {φ1 = 0}, which touches
the the boundary {x1 = 1} tangentially. For this last step, we apply the local propagation result up
to the boundary [LL15, Theorem 5.12]. We only need to check that the additional assumptions of
this result are fulfilled:

– The analytic variable za = (t, x2) are tangential with respect to the boundary {x1 = 1};
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– Assumption 5.1 in [LL15] is fulfilled for P because close to the boundary, p = qx((τ, ξ2))+ q̃x(ξ1)
where qx((τ, ξ2)) = −τ2 + f(x)2ξ2

2 and q̃x(ξ1) = ξ2
1 are both quadratic forms independent on t

and x2;

– The boundary {x1 = 1} is non characteristic for P ;

– To apply Theorem 5.12 of [LL15] in this context, calling (x′, xn) the variables in that reference
(the domain is locally {xn > 0} in [LL15], it is {x1 < 1} here), one needs to set xn = 1−x1 and
x′ = (t, x2) so that {x1 ≤ 1} is transformed into Rn+. The defining function of the last hyper-
surface φ1(t, x̌, xd) = G((t, x̌), 1) − xd is changed, for the application of [LL15, Theorem 5.12]
into φ̃1(x′, xn) = G(x′, 1) − (1 − xn). The assumption ∂xn φ̃1 = −∂xdφ1 = 1 > 0 of [LL15,
Theorem 5.12] is hence satisfied.

This variant of Proposition 3.14, with an application of the boundary Theorem 5.12 of [LL15] as a last
step, leads to the relation∥∥Mβµ

µ σr,µu
∥∥

1
≤ Ceκµ

(∥∥Mαµ
µ ϑµu

∥∥
1

+ ‖Pu‖L2(Ω)

)
+ Ce−κ

′µ ‖u‖1

where Mβµ
µ is defined with the analytic variables za = (t, x2) and naturally extended to the boundary

case since za is tangential. The function ϑ ∈ C∞0 (M) is chosen supported close to x0 = (x0
1, x

0
2) and can

therefore be taken in C∞0 (] − T, T [×ω). The function σr ∈ C∞0 (M) is equal to 1 in a small ball centered
at x1 = (x1

1, x
1
2) of size r > 0.

Lemma 5.2 below allows to obtain with different constants∥∥Mβµ
µ σr,µu

∥∥
1
≤ Ceκµ

(
‖u‖L2(]−T,T [×ω) + ‖Pu‖L2(Ω)

)
+ Ce−κ

′µ ‖u‖1 .

Again, as in [LL15, Section 4.2], this leads, after a rough estimate of the high frequency, to

‖u‖L2(]−ε,ε[×B(x1,r)) ≤ Ce
κµ
(
‖u‖L2(]−T,T [×ω) + ‖Pu‖L2(Ω)

)
+

1

µ
‖u‖H1(]−T,T [×M) .

This is the equivalent to Proposition 3.7 which leads to a result similar to Corollary 3.8 by a compactness
argument.

As explained above, the last step to get estimates (1.24) corresponds to the energy estimates of Step
3 Section 3.3.1. There, they relied on the hypoelliptic estimates of Corollary B.2. The equivalent in the
present situation with boundary is provided by Theorem B.3.

5.3 An observation term in L2 in quantitative unique continuation estimates

In this section, we explain how the observation term ‖u‖H1
b (ω̃) =

∑
|β|≤1

∥∥∥Dβ
b u
∥∥∥
L2(ω̃)

in unique continuation

estimates as (2.1) can actually be replaced by the weaker norm ‖u‖L2(ω̃) under suitable assumptions.

Lemma 5.2. Let Ω be a bounded open set of Rn with n = na+nb. Let P be a differential operator of order
2, defined in a neighborhood of Ω, with real principal symbol and coefficients independent on the variable
za, and being elliptic in {ζa = 0}. Let ω b Ω and ϑ ∈ C∞0 (ω). Then, for all α > 0, there exists C > 0
such that for every u ∈ C∞0 (Rn) and µ ≥ 1, we have∥∥Mµ

αµϑµu
∥∥
H1 ≤ C 〈µ〉 ‖u‖L2(ω) + C ‖Pu‖L2(Ω) + Ce−cµ ‖u‖H1 .
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Recall that the regularization process ϑ → ϑµ and the Fourier multiplier Mµ
αµ are defined at the

beginning of Section 2.2.

Proof. Since P is elliptic (say positive to fix the ideas) in ζa = 0 and Ω is compact, we can find A > 0 (fixed
for the rest of the proof) so that A|ζa|2 + p(zb, ζa, ζb) is elliptic on Ω × Rna+nb (where p is the principal
symbol of P ), see for instance [LL15, Lemma A.1]. Using then the Gårding inequality, there exists C > 0
so that

‖v‖2H1 ≤ C Re
(
(A|Da|2 + P )v, v

)
L2 + C ‖v‖2L2

≤ C ‖|Da|v‖2L2 + C Re (Pv, v)L2 + C ‖v‖2L2

for every v ∈ C∞0 (Ω). Let ϕ, χ ∈ C∞0 (Ω) being real valued and such that ϕ = 1 on a neighborhood of
supp(ϑ) and χ = 1 on a neighborhood of suppϕ. Applying this estimate to v = ϕw for w ∈ C∞0 (Rn), we
obtain that

‖ϕw‖2H1 ≤ C ‖∇a(ϕw)‖2L2 + C Re (P (ϕw), ϕw)L2 + C ‖ϕw‖2L2

≤ C ‖∇aw‖2L2 + C Re (P (ϕw), (ϕw))L2 + C ‖w‖2L2

≤ C ‖∇aw‖2L2 + C ‖P (ϕw)‖H−1 ‖ϕw‖H1 + C ‖w‖2L2 .

Writing P (ϕw) = ϕPw + [P,ϕ]w, where [P,ϕ] is of order 1, we have

‖P (ϕw)‖H−1 ≤ ‖ϕPw‖H−1 + C ‖w‖L2 ,

so that, after absorption, we have proved the existence of C > 0 such that for every w ∈ C∞0 (Rn) (and so
for w ∈ S(Rn)) , we have

‖ϕw‖2H1 ≤ C ‖∇aw‖2L2 + C ‖ϕPw‖2H−1 + C ‖w‖2L2 . (5.2)

We apply the previous estimate to w = Mµ
αµϑµu. For the first term in the right handside of (5.2), we have

‖ζamµ(ζa/µ)‖L∞(Rna ) ≤ µ ‖ζamµ(ζa)‖L∞(Rna ) ≤ Cµ, so that∥∥∇a(Mµ
αµϑµu)

∥∥
L2 ≤ C 〈µ〉 ‖ϑµu‖L2 .

For this term, we further use that ϑ ∈ C∞0 (ω), which according to Lemma 3.24 Item 2, gives

‖ϑµu‖L2 ≤ ‖u‖L2(ω) + Ce−cµ ‖u‖L2 .

Note that this previous inequality also rules the term ‖w‖L2 in the right handside of (5.2).
It only remains to estimate the term ‖ϕPw‖H−1 in the right handside of (5.2). Using that P is invariant

on za (and hence commutes with Mµ
αµ), it is∥∥ϕPMµ

αµϑµu
∥∥
H−1 ≤ ‖[P, ϑµ]u‖H−1 +

∥∥ϕMµ
αµϑµPu

∥∥
H−1

≤ ‖[P, ϑµ]u‖H−1 +
∥∥ϕMµ

αµϑµχPu
∥∥
H−1 +

∥∥ϕMµ
αµ(1− χ)ϑµPu

∥∥
H−1 .

Note that, a priori, since P is not defined on the whole Rn but only in a neighborhood of Ω, the term Pu
does not have any meaning. Yet, since P is invariant in za, the differential operator ϑµP is a well defined
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operator on Rn, so as χP and [P, ϑµ]. In the end, all terms involved are well defined for all u ∈ C∞0 (Rn),
even if not supported inside of Ω.

Now, using ϑ ∈ C∞0 (ω), we have by (a dual version of) Lemma 3.24 that

‖[P, ϑµ]u‖H−1 ≤ ‖u‖L2(ω) + Ce−cµ ‖u‖L2 .

Finally, since supp(ϕ) ∩ supp(1− χ) = ∅, [LL15, Lemma 2.10] also yields∥∥ϕMµ
αµ(1− χ)

∥∥
H−1→H−1 ≤ Ce−cµ.

Combining the last five inequalities together with (5.2), we are led, after absorption, to the estimate∥∥ϕMµ
αµϑµu

∥∥
H1 ≤ C ‖Pu‖L2(Ω) + C 〈µ〉 ‖u‖L2(ω) + Ce−cµ ‖u‖H1 .

The property supp(1− ϕ) ∩ supp(ϑ) = ∅ with [LL15, Lemma 2.10] gives the similar estimate∥∥(1− ϕ)Mµ
αµϑµu

∥∥
H1 ≤ Ce−cµ ‖u‖H1 ,

which allows to conclude the proof of the lemma.

A On the optimality: Proof of Proposition 1.12
In this appendix, we discuss the optimality of the results presented in the main part of the paper, in the
situation of Example 1.11, i.e. we give a proof of Proposition 1.12. The estimates we use are mainly
extracted from the article [BCG14] by Beauchard, Cannarsa and Guglielmi. They are slightly spread out
in this reference so that the proof below mainly explains where in [BCG14] to pick the results. This is
mainly the proof of Theorem 5, Section 3.2 and 3.3 in this reference.

Proof of Proposition 1.12. First, Fourier transforming the operator Lγ = −(∂2
x1
− x2γ

1 ∂2
x2

) in the x2 vari-
able, we obtain a family An,γ of 1-dimensional operators defined for n ∈ Z by (An,γf)(x1) = −f ′′(x1) +

(nπ)2x2γ
1 f(x1) on ]− 1, 1[, with Dirichlet boundary conditions.

The sequence of eigenfunctions ϕn is then taken of the form ϕn(x1, x2) =
√

2vn(x1) sin(nπx2) where
vn is the first normalized eigenvector of An,γ (see Lemma 2 of [BCG14]). We have An,γvn = λn,γvn, with
λn,γ the lowest eigenfunction of An,γ , and hence Lγϕn = λn,γϕn. Moreover, vn is even.

The following estimates hold:

1. 1
Cn

2
1+γ ≤ λn,γ ≤ Cn

2
1+γ , see Proposition 4 of [BCG14].

2. for 0 < a < b < 1, we have
∫ b
a
vn(x)2dx ≤ Ce−C1(γ)naγ+1

cn with cn ≤ nβ for some appropriate
β: this is inequality (35) of [BCG14] once we have checked that for n large enough µn = C(γ)n
(written in (33)) and the definition of xn in (26). For γ = 1, a more precise result is stated [BCG14,
Lemma 4], where the constant is computed, namely λn,γ ≈ nπ and

∫ b
a
vn(x)2dx ≈ e−a

2nπ

2aπ
√
n

for a > 0.

So, in any cases, if a > 0, there are C, c > 0, so that
∫ b
a
vn(x)2dx ≤ Ce−cn ≤ Ce−cλ

1+γ
2

n,γ where we have
used Item 1. Then, since ω ∩ {x1 = 0} = ∅ and vn is even, there exists a, b, C > 0 so that ‖ϕn‖2L2(ω) ≤
C
∫ b
a
vn(x)2dx. To finish the proof, it is enough to notice that vn was chosen normalized in L2(]− 1, 1[) so

that ϕn is normalized in L2(M).
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Remark A.1. It is very interesting to compare the estimates obtained by [BCG14] with respect to those
obtained in the present paper, even if the techniques are quite different. The scheme of proof we followed
may be summarized in two steps:

1. We prove an observability estimate where the cost is, more or less, exponential of the usual Sobolev
frequency. This step is performed in [BCG14] by using only the analyticity of the coefficients in the
x2 variable. In their Proposition 5, they prove a 1D Carleman estimate and the cost is of the order
of ecn where n is the frequency in the x2 (the analytic frequency).

2. Then, we use the decay of the heat flow using hypoelliptic estimates. For this, 1
Cn

2
1+γ ≤ λn,γ ≤

Cn
2

1+γ may be seen as a counterpart of the hypoelliptic estimates of Theorem 1.4. Indeed, these
estimates roughly say that in the worst case, the operator L counts (when we want estimates from
below) as 2

1+γ = 2
k when compared to the usual derivatives (that is to the usual Sobolev norms).

B Subelliptic estimates

B.1 Hs subelliptic estimates on compact manifolds
In this appendix, we draw classical consequences of the subelliptic estimate (1.4) of Rothschild-Stein [RS76]
and Fefferman-Phong [FP83], that are used in the main part of the paper. The following corollary of the
subelliptic estimate (1.4) might be written elsewhere, but we did not find any reference. The short proof
below stresses that the sole subelliptic estimate we rely on in the paper is (1.4).

Corollary B.1. Under Assumption 1.1, for any s ≥ 0 there is C > 0 such that we have

‖u‖2
Hs+

1
k (M)

≤ C
m∑
i=1

‖Xiu‖2Hs(M) + C ‖u‖2L2(M) , (B.1)

‖u‖2
Hs+

2
k (M)

≤ C ‖Lu‖2Hs(M) + C ‖u‖2L2(M) , (B.2)

for any u ∈ C∞(M).

The proof we give is inspired by [FP83] (see the beginning of the proof of Theorem 1). For this, we
let Λ be an elliptic inversible pseudodifferential operator of order one in M, being selfadjoint in L2(M)
(see e.g. [LL16, Remark 2.11] after having endowedM with a Riemannian metric). Recall that the power
operator Λs is an elliptic inversible pseudodifferential operator of order s in M, being also selfadjoint in
L2(M). All Hs norms are equivalent to ‖·‖Hs(M) = ‖Λs·‖L2(M).

Proof. We start proving Estimate (B.1), which is simpler due to the fact that Xi is only of order 1 and
therefore [Xi,Λ

s] is of order s and hence an admissible remainder term (compared to the estimated norm
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Hs+ 1
k ). Using the L2 estimate (1.4), we have

‖u‖2
Hs+

1
k (M)

≤ C ‖Λsu‖2
H

1
k (M)

≤ C
m∑
i=1

‖XiΛ
su‖2L2(M) + C ‖Λsu‖2L2(M)

≤ C

m∑
i=1

‖ΛsXiu‖2L2(M) + C

m∑
i=1

‖[Λs, Xi]u‖2L2(M) + C ‖Λsu‖2L2(M)

≤ C

m∑
i=1

‖Xiu‖2Hs(M) + C ‖u‖2Hs(M) .

An interpolation estimate gives ‖u‖Hs(M) ≤ ε ‖u‖Hs+ 1
k (M)

+Cε ‖u‖L2(M) for any ε > 0, which yields (B.1)
after having taken ε sufficiently small.

Concerning Estimate (B.2), we have to be more careful since the commutator [L,Λs] is of order s+ 1

and hence not an admissible remainder term (compared to the estimated norm Hs+ 2
k ). Following [FP83],

we apply the L2-based estimate (1.5) to Λs+
1
k u, yielding

‖u‖2
Hs+

2
k (M)

≤ C Re(LΛs+
1
k u,Λs+

1
k u)L2(M) + C

∥∥∥Λs+
1
k u
∥∥∥2

L2(M)

≤ C Re(Λs+
1
kLu,Λs+ 1

k u)L2(M) + C Re([L,Λs+ 1
k ]u,Λs+

1
k u)L2(M) + C ‖u‖2

Hs+
1
k (M)

≤ C Re(ΛsLu,Λs+ 2
k u)L2(M) + C Re([L,Λs+ 1

k ]u,Λs+
1
k u)L2(M) + C ‖u‖2

Hs+
1
k (M)

≤ 1

2
‖u‖2

Hs+
2
k (M)

+ C ‖Lu‖2Hs(M) + C Re(Λs+
1
k [L,Λs+ 1

k ]u, u)L2(M) + C ‖u‖2
Hs+

1
k (M)

,(B.3)

where we have used Cauchy-Schwarz inequality in the last step. The term with the commutator has to be
taken carefully since it is a priori of order 2s + 2

k + 1. But the following simple remark is in order: this
pseudodifferential operator has purely imaginary principal symbol. Hence, according to pseudodifferential
calculus, it can be written as Λs+

1
k [L,Λs+ 1

k ] = T1 + T2 where T1 is a skew-adjoint pseudodifferential
operator of order 2s+ 2

k + 1, and T2 is a pseudodifferential operator of order 2s+ 2
k . In particular, we

have ∣∣∣Re(Λs+
1
k [L,Λs+ 1

k ]u, u)L2(M)

∣∣∣ =
∣∣Re(T2u, u)L2(M)

∣∣ ≤ ‖u‖2
Hs+

1
k (M)

.

So, at this stage, we have proved

‖u‖2
Hs+

2
k (M)

≤ C ‖Lu‖2Hs(M) + C ‖u‖2
Hs+

1
k (M)

.

This concludes the proof of (B.2), after an interpolation argument as above.

To conclude this section, we prove the continuous injection HsL ⊂ Hs/k(M) for all s ≥ 0. We shall
use the following classical operator theoretic (interpolation) result for which we refer e.g. to [SSV12,
Corollary 12.15]. Given two selfadjoint nonnegative operators (A,D(A)) and (B,D(B)) on a Hilbert
space, we have

‖Au‖ ≤ ‖Bu‖ for all u ∈ D(B) =⇒ ‖Aαu‖ ≤ ‖Bαu‖ for all α ∈ [0, 1] and u ∈ D(Bα). (B.4)
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Note that this result already yields the simple inequality: for s ≥ 0, there is C > 0 such that for all
u ∈ Hs(M),

‖u‖HsL ≤ C ‖u‖Hs(M) ,

consequence of that obtained for s ∈ 2N. It also yields by duality for all s ≥ 0 the existence of C > 0 such
that for all u ∈ H−sL ,

‖u‖H−s(M) ≤ C ‖u‖H−sL . (B.5)

Corollary B.2. For all s ≥ 0, there exists C > 0 such that for all u ∈ HsL, we have

‖u‖
H
s
k (M)

≤ C ‖u‖HsL .

Note that it also yields by duality for all s ≥ 0 the existence of C > 0 such that for all u ∈ H− sk (M),

‖u‖H−sL ≤ C ‖u‖H− sk (M)
.

Proof. We first prove the result for s = 2p, p ∈ N, and then conclude by interpolation. We prove by
induction that for all p ∈ N, we have

‖u‖
H

2p
k (M)

≤ C ‖u‖H2p
L

= C ‖(L+ 1)pu‖L2(M) , for all u ∈ C∞(M). (B.6)

The case p = 0 is clear. Assume now that this is satisfied for p, and estimate ‖u‖
H

2(p+1)
k (M)

= ‖u‖
H

2p
k

+ 2
k (M)

.

After having used (B.2), we have

‖u‖2
H

2(p+1)
k (M)

≤ C ‖Lu‖2
H

2p
k (M)

+ C ‖u‖2L2(M) ,

which, using the induction assumption (B.6) to Lu, yields

‖u‖2
H

2(p+1)
k (M)

≤ C ‖(L+ 1)pLu‖2L2(M) + C ‖u‖2L2(M) .

Using the functional calculus (1.10), this implies

‖u‖2
H

2(p+1)
k (M)

≤ C
∥∥(L+ 1)p+1u

∥∥2

L2(M)
= C ‖u‖2H2(p+1)

L
, for all u ∈ C∞(M),

which is the sought estimate.
Now for s ≥ 0, s /∈ N, pick p ∈ N such that s ∈ [0, p], write (B.6) as ‖Λ

2p
k u‖L2(M) ≤ C ‖(L+ 1)pu‖L2(M)

and apply (B.4) to A = Λ
2p
k , B = (L+ 1)p, and α = s

p ∈ [0, 1] to obtain the result.

B.2 Subelliptic estimates for manifolds with boundaries
In this section, we assume that M is a compact manifold with a nonempty boundary ∂M, and write
M = Int(M) ∪ ∂M, with a disjoint union. We assume that the coefficients of Xj ’s are smooth up to the
boundary, and that span(X1, · · · , Xm)(x) = TxM for x ∈M\K, where K is a compact subset of Int(M)
(i.e. the operator L is elliptic in the neighborhood of the boundary) and that Assumption 1.1 is satisfied
on K.
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Theorem B.3. Denote by ∆D the Laplace-Dirichlet operator associated to some/any Riemannian metric
equal to that issued from the vector fields (X1, · · · , Xm) in M\K. Then, for all s ≥ 0, we have HsL :=
D(L s2 ) ⊂ D

(
(−∆D)

s
2k

)
. Moreover, there exists C > 0 such that for all u ∈ HsL, we have∥∥∥(−∆D)

s
2k u

∥∥∥
L2(M)

≤ C ‖u‖HsL .

Note that the space D ((−∆D)s) does not depend on the metric chosen to define ∆ inside Int(M) but
only on its values in a neighborhood of ∂M. Remark that we also have the converse simple inclusion
D ((−∆D)s) ⊂ D(Ls).

We now explain how the estimates in the previous section have to be modified to yield the statement
of Theorem B.3.

We first let Λ
1
k (with a slight abuse of notation: Λ

1
k is not the 1

k power of an operator) be

• a pseudodifferential operator of order 1
k onM, with kernel compactly supported inM×M,

• formally selfadjoint on L2(M),

• locally elliptic on a neighborhood N of K (i.e. K b Int(N ) b Int(M)),

• with kernel compactly supported in an ε-neighborhood of diag(M×M), with ε � dist(K,N c).
This implies that for n ∈ N,

(
Λ

1
k

)n
has a kernel compactly supported in an nε-neighborhood of

diag(M×M). Here, we will use the abuse of notation Λ
n
k instead of (Λ

1
k )n. This will not lead to

any confusion since we will only use Λs for s of the form n
k with n ∈ N.

When a maximal Sobolev exponent s0 is fixed, we will need to use such operators for n ≤ n0 with
n0 = s0k and make proofs by induction using several cutoff functions. At each step, we shall need to make
some estimates on some Cε neighborhood of the zone where we get the information, with C depending
on s0 and some geometric properties of the cutoff functions. At the end, once the number of steps is
fixed, we can select ε small enough (and the associated Λ

1
k ) so that all the reasoning is valid. To make

the presentation more readable, we have chosen not to keep track of all the constants and the geometrical
conditions involved. Yet, the proof will make it clear that there is ε0 > 0 depending on s0, N , K andM
so that all the support conditions of the following proof are fulfilled if 0 < ε < ε0.

That Assumption 1.1 is satisfied on K (and hence on N , since L is elliptic on M\K) yields, for all
χ ∈ C∞0 (M) such that χ = 1 in a neighborhood of K, the existence of C > 0 such that for all u ∈ C∞0 (M),
we have (see again [RS76] Theorem 17 and estimate (17.20) p311)∥∥∥Λ

1
kχu

∥∥∥2

L2(M)
≤ C

m∑
i=1

‖Xiu‖2L2(M) + C ‖u‖2L2(M) ,

and hence, still for u ∈ C∞0 (M),∥∥∥Λ
1
kχu

∥∥∥2

L2(M)
≤ C(Lu, u)L2(M) + C ‖u‖2L2(M) . (B.7)

We now decompose the proof in several lemmata.
Several times in the proof, we shall use the following fact of pseudodifferential calculus. Given n ≤ n0

and a function ϕ ∈ C∞0 (N ), we remark that Λ
n
k is elliptic of order n

k in a neighborhood of supp(ϕ). As
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a consequence, the classical parametrix construction (see for instance [Hör85, Proof of Theorem 18.1.9])
allows, for any N ∈ N, to construct a pseudodifferential operator Λ̃

−nk
N of order −nk , elliptic on a neigh-

borhood of supp(ϕ), such that Λ̃
−nk
N Λ

n
k = ϕ(x) + R1

N and Λ
n
k Λ̃
−nk
N = ϕ(x) + R2

N with RiN , i = 1, 2,
pseudodifferential operators of order −N with kernel compactly supported inM×M. In the applications,
N will always be fixed, sufficiently large.

Lemma B.4. For all χ0 ∈ C∞0 (N ) such that χ0 = 1 in a neighborhood of K, and all χ1 ∈ C∞0 (N ) such
that χ1 = 1 in a neighborhood of supp(χ0), for all s ∈ N/k with s+ 2/k ≤ s0, for ε small enough, there is
C > 0 such that for all u ∈ C∞0 (M), we have∥∥∥Λs+

2
kχ0u

∥∥∥2

L2(M)
≤ C‖Λsχ0Lu‖2L2(M) + C

∥∥∥Λs+
1
kχ1u

∥∥∥2

L2(M)
+ ‖χ1u‖2L2(M)

Proof. The proof is almost the same as that of Estimate (B.2) in Corollary B.1, and only relies on the
application of (B.7) (instead of (1.5)). First, estimate (B.7) applies for χu replaced by Λs+

1
kχ0u since

Λs+
1
kχ0u = χ̃0Λs+

1
kχ0u for χ̃0 = 1 in an nε-neighborhood of supp(χ0), with n = sk + 1. This yields∥∥∥Λs+

2
kχ0u

∥∥∥2

L2(M)
≤ C

(
LΛs+

1
kχ0u,Λ

s+ 1
kχ0u

)
L2(M)

+ C
∥∥∥Λs+

1
kχ0u

∥∥∥2

L2(M)
.

Then, a computation similar to (B.3), and the only difference comes from the estimate of the remainder
term

Re(χ0Λs+
1
k [L,Λs+ 1

kχ0]u, u)L2(M) = Re((T1 + T2)u, u)L2(M) = Re(T2u, u)L2(M),

where T2 is a pseudodifferential operator of order 2s+ 2
k , with kernel supported in supp(χ0)× supp(χ0).

Given ϕ ∈ C∞0 (N ) such that ϕ = 1 on supp(χ1), we may define the associated parametrix Λ̃−(s+ 1
k ) of

Λs+
1
k as above. Writing T2 = χ1ϕT2ϕχ1, we now have T2 = χ1Λs+

1
k Λ̃−(s+ 1

k )∗T2Λ̃−(s+ 1
k )Λs+

1
kχ1 + R,

where R is a smoothing operator with kernel compactly supported in M ×M. The boundedness of
Λ̃−(s+ 1

k )∗T2Λ̃−(s+ 1
k ) (as a pseudodifferential operator of order zero) and R on L2(M) then implies

|Re(T2u, u)L2(M)| = |Re(T2χ1u, χ1u)L2(M)| ≤ C
∥∥∥Λs+

1
kχ1u

∥∥∥2

L2(M)
+ C ‖χ1u‖2L2(M) ,

which concludes the proof. Note also that the term
∥∥∥Λs+

1
kχ0u

∥∥∥2

L2(M)
has been bounded by

∥∥∥Λs+
1
kχ1u

∥∥∥2

L2(M)

the same way using that Λs+
1
kχ0 = Λs+

1
kχ0ϕχ1 = Λs+

1
kχ0Λ̃

−(s+ 1
k )

1 Λs+
1
kχ1 +Rχ1 with R smoothing.

Before going further, recall that we can localize (B.7) under the following form.

Lemma B.5. For all χ0 ∈ C∞0 (N ) such that χ0 = 1 in a neighborhood of K, and all χ1 ∈ C∞0 (N ) such
that χ1 = 1 in a neighborhood of supp(χ0), there is C > 0 such that for all u ∈ C∞0 (M), we have∥∥∥Λ

1
kχ0u

∥∥∥2

L2(M)
≤ C (χ0Lu, χ0u)L2(M) + C ‖χ1u‖2L2(M)

Proof. We apply Estimate (B.7) with χ such that χ = 1 on a neighborhood of supp(χ0):∥∥∥Λ
1
kχ0u

∥∥∥2

L2(M)
=

∥∥∥Λ
1
kχχ0u

∥∥∥2

L2(M)
≤ C(Lχ0u, χ0u)L2(M) + C ‖χ0u‖2L2(M)

≤ C(χ0Lu, χ0u)L2(M) + Re([L, χ0]u, χ0u)L2(M) + C ‖χ0u‖2L2(M) ,
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where [L, χ0] is a skew-adjoint first order differential operator: the principal part of χ0[L, χ0] is thus
skew-adjoint, and hence

Re([L, χ0]u, χ0u)L2(M) = Re(χ0[L, χ0]χ1u, χ1u)L2(M) ≤ C ‖χ1u‖2L2(M) ,

which, together with the preceding estimate, proves the lemma.

Lemma B.6. For all χ0, χ1, χ2 ∈ C∞0 (N ) such that χ0 = 1 in a neighborhood of K, χ1 = 1 in a
neighborhood of supp(χ0), and χ2 = 1 in a neighborhood of supp(χ1), for all p ∈ N with p

k + 2
k ≤ s0 and ε

small enough, there is C > 0 such that for all u ∈ C∞0 (M), we have∥∥∥Λ
p
k+ 2

kχ0u
∥∥∥2

L2(M)
≤ C

∥∥∥Λ
p
kχ1Lu

∥∥∥2

L2(M)
+ C ‖χ2u‖2L2(M) .

Proof. We prove the statement by induction. The case p = 0 follows directly from the estimate of
Lemma B.4 with s = 0, combined with Lemma B.5 (using an additional cutoff function as done be-
low). Assume now this is true for p, then, the estimate of Lemma B.4 with s = p+1

k yields, for some χ̃1

such that χ̃1 = 1 on a neighborhood of supp(χ0) and χ1 = 1 in a neighborhood of supp(χ̃1),∥∥∥Λ
p+1
k + 2

kχ0u
∥∥∥2

L2(M)
≤ C‖Λ

p+1
k χ0Lu‖2L2(M) + C

∥∥∥Λ
p+1
k + 1

k χ̃1u
∥∥∥2

L2(M)
+ C ‖χ̃1u‖2L2(M) .

Using then the induction assumption for p for the term Λ
p
k+ 2

k χ̃1u gives, since χ1 = 1 in a neighborhood
of supp(χ̃1),∥∥∥Λ

p+1
k + 2

kχ0u
∥∥∥2

L2(M)
≤ C‖Λ

p+1
k χ0Lu‖2L2(M) + C‖Λ

p
kχ1Lu‖2L2(M) + C ‖χ1u‖2L2(M) . (B.8)

We now use pseudodifferential calculus and the parametrices of Λ
p+1
k and Λ

p
k to write, for ϕ = 1 on

supp(χ1),

Λ
p+1
k χ0 = Λ

p+1
k χ0ϕχ1 = Λ

p+1
k χ0Λ̃−

p+1
k Λ

p+1
k χ1 +Rχ1,

Λ
p
kχ1 = Λ

p
kϕχ1 = Λ

p
k Λ̃−

p+1
k Λ

p+1
k χ1 +Rχ1,

and hence

‖Λ
p+1
k χ0Lu‖L2(M) ≤ C‖Λ

p+1
k χ1Lu‖L2(M) + C‖Rχ1Lu‖L2(M) ≤ C‖Λ

p+1
k χ1Lu‖L2(M) + C‖χ2u‖L2(M),

‖Λ
p
kχ1Lu‖L2(M) ≤ C‖Λ

p+1
k χ1Lu‖L2(M) + C‖χ2u‖L2(M),

which, combined with (B.8) concludes the proof of the statement for p+ 1, and hence of the lemma.

Lemma B.7. For all χ0 ∈ C∞0 (N ) such that χ0 = 1 in a neighborhood of K, and all χ1 ∈ C∞0 (M) such
that χ1 = 1 in a neighborhood of supp(χ0), for all p ∈ N and ε small enough, there is C > 0 such that for
all u ∈ C∞0 (M), we have

∥∥∥Λ
2p
k χ0u

∥∥∥2

L2(M)
≤ C

p∑
j=0

∥∥χ1Lju
∥∥2

L2(M)
.

76



Proof. Again, we prove this by an induction argument. For p = 1, this is the estimate of Lemma B.6 with
p = 0.

Assume the result for p. Using Lemma B.6, we obtain, for some χ̃1, χ̃2 such that χ̃1 = 1 on a
neighborhood of supp(χ0), χ̃2 = 1 on a neighborhood of supp(χ̃1) and χ1 = 1 in a neighborhood of
supp(χ̃2), ∥∥∥Λ

2p+2
k χ0u

∥∥∥2

L2(M)
≤ C

∥∥∥Λ
2p
k χ̃1Lu

∥∥∥2

L2(M)
+ C ‖χ̃2u‖2L2(M) .

Applying the induction assumption with u replaced by Lu (and χ0 replaced by χ̃1) yields (since χ1 = 1
in a neighborhood of supp(χ̃1)),∥∥∥Λ

2p+2
k χ0u

∥∥∥2

L2(M)
≤ C

p∑
j=0

∥∥χ1Lj(Lu)
∥∥2

L2(M)
+ C ‖χ̃2u‖2L2(M) ,

which concludes the proof of the lemma since χ1 = 1 in a neighborhood of supp(χ̃2).

Combining Lemma B.7 together with classical ellipticity at the boundary, we are now ready for proving
the following results.

Proposition B.8. For all m ∈ N, there is C > 0 such that for all u ∈ D(Lmk), we have

‖u‖2H2m(M) ≤ C
mk∑
j=0

‖Lju‖2L2(M) ≤ C‖(L+ 1)mku‖L2(M).

From this proposition, we directly obtain by interpolation the statement of Theorem B.3 (see e.g. the
proof of Corollary B.2) using that Lju|∂M = ∆u|∂M for all u ∈ C∞(M).

Proof of Proposition B.8. First write Lemma B.7 with p = mk, χ0 ∈ C∞0 (N ) with χ0 = 1 in a neighbor-
hood Ñ ⊂ N of K, yielding

‖u‖2H2m(Ñ ) ≤
∥∥Λ2mχ0u

∥∥2

L2(M)
≤ C

mk∑
j=0

∥∥χ1Lju
∥∥2

L2(M)
. (B.9)

Then, concerning estimates near the boundary, we first have the following statement. For all θ0 ∈ C∞(M)
such that θ0 = 1 in a neighborhood of ∂M, supp(θ0) ∩K = ∅, and all θ1 ∈ C∞(M) such that θ1 = 1 in a
neighborhood of supp(θ0), since L elliptic in supp(θ1), there is C > 0 such that for all u ∈ C∞(M) with
u|∂M = 0, we have

‖θ0u‖2Hm+2(M) ≤ C‖θ1Lu‖2Hm(M) + C ‖θ1u‖2L2(M) . (B.10)

This is actually a corollary of the usual proof of elliptic regularity up to the boundary. Yet, to check it
directly, we can apply the global elliptic regularity result (see [Eva98, Theorem 5 p323]) to θ0u with a
global elliptic operator L̃ equal to L on supp(θ1). Let V be an open subset with supp(∇θ1) b V b U bM,
where U in an open set so that θ1 = 1 on U . This yields

‖θ0u‖Hm+2(M) ≤ C‖θ0L̃u‖Hm(M) + C‖u‖Hm+1(V ) + C ‖θ0u‖L2(M)

≤ C‖θ1Lu‖Hm(M) + C ‖θ1u‖L2(M) .
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where we have used interior regularity (see [Eva98, Theorem 2 p314]) that gives ‖u‖Hm+1(V ) ≤ C‖L̃u‖Hm(U)+
C ‖u‖L2(U) ≤ C‖θ1Lu‖Hm(M) + C ‖θ1u‖L2(M). This proves (B.10).

Then, from (B.10), another induction argument as in the proof of Lemma B.7 gives, for all m ∈ N
and θ0, θ1 as above, the existence of C > 0 such that for all u ∈ C∞(M) with u|∂M = Lu|∂M = · · · =
Lm−1u|∂M = 0,

‖θ0u‖2H2m(M) ≤ C
m∑
j=0

∥∥θ1Lju
∥∥2

L2(M)
.

Combining this for a function θ0 equal to 1 on a neighborhood ofM\ Ñ together with (B.9) now implies
for all u ∈ C∞(M) such that Lju|∂M = 0, for 0 ≤ j ≤ m− 1,

‖u‖2H2m(M) ≤ C
mk∑
j=0

∥∥χ1Lju
∥∥2

L2(M)
+ C

m∑
j=0

∥∥θ1Lju
∥∥2

L2(M)
.

Since the set of such functions u is dense in D(Lmk), this yields the sought result.

C Sub-Riemannian norm of normal vectors
Lemma C.1. Let Xi ∈ Rd for i = 1, · · · ,m and, for v ∈ span(Xi, i = 1, · · · ,m), set

g(v) = inf

{
m∑
i=1

u2
i , (u1, · · · , um) ∈ Rm,

m∑
i=1

uiXi = v

}
.

Then, for any ξ ∈ (Rd)∗, and for v0 =
∑m
i=1 2〈ξ,Xi〉Xi, we have g(v0) = 4`(ξ) where `(ξ) =

∑m
i=1〈ξ,Xi〉2.

Note that this is clear if the family (Xi)i=1,··· ,m is linearly independant.

Proof. We want to compute the minimum

g(v0) = inf

{
m∑
i=1

u2
i , (u1, · · · , um) ∈ Rm,

m∑
i=1

uiXi =

m∑
i=1

2〈ξ,Xi〉Xi

}
.

First that taking ui = 2〈ξ,Xi〉 in this definition direcly yields that

g(v0) ≤
m∑
i=1

(2〈ξ,Xi〉)2 = 4`(ξ). (C.1)

Then it only remains to prove the converse inequality. To this aim, remark that

`(ξ) = max

{
m∑
i=1

ui〈ξ,Xi〉 −
1

4

m∑
i=1

u2
i , (u1, · · · , um) ∈ Rm

}
.

As a consequence, we have

`(ξ) ≥
〈
ξ,

m∑
i=1

uiXi

〉
− 1

4

m∑
i=1

u2
i , for all (u1, · · · , um) ∈ Rm.
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Hence, for all (u1, · · · , um) ∈ Rm such that
∑m
i=1 uiXi =

∑m
i=1 2〈ξ,Xi〉Xi, we obtain

`(ξ) ≥
〈
ξ,

m∑
i=1

2〈ξ,Xi〉Xi

〉
− 1

4

m∑
i=1

u2
i =

m∑
i=1

2〈ξ,Xi〉2 −
1

4

m∑
i=1

u2
i = 2`(ξ)− 1

4

m∑
i=1

u2
i ,

that is 4`(ξ) ≤
∑m
i=1 u

2
i , and hence 4`(ξ) ≤ g(v0). This, together with (C.1) concludes the proof of the

lemma.
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