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Introduction

Cancer is one of the most frightening diseases that threatens human beings. It is estimated that the number of cancer cases will quite triple between the years 2000 and 2030, and cancer is the second mortality cause in Morocco [1, p. 5]. Moreover, the most frequent type of cancer in Casablanca city is breast cancer for women, and lung cancer for men [1, p.8]. In this article, we focus on these two cancers. Chemotherapy is one of the standard cancer's treatments. It is used, in particular, when the tumor is no more localized, spread and invade other tissues. This is called metastasis. In general, chemotherapy drugs are administered during one to five days, every three to four weeks. It is the chemotherapy cycle. And a treatment contains four to six cycles or more depending on the circumstances [6, p.14]. For breast cancer, the cycle duration is one week to four weeks [4, p.2] . For colorectal cancer, the chemotherapy drug is administered every two weeks, and patients have twelve treatments [2, p.6] . But, how do we know that a chemotherapy protocol is efficient? Actually, the efficacy of the chemotherapy is generally confirmed many years after the treatment [5, p.69]. We present here some calculations, based on the generalized logistic models for breast and lung cancers, that can allow to predict, in advance, the growth dynamic of the tumor for a certain duration of the cure's cycle and a certain drug's destruction factor. It says, in particular, if the dynamic is crescent or decrescent for the considered protocol, which permit to get rid of the crescent cases when it is possible to achieve a decrescent dynamic. This process gives, in addition, the number of necessary chemotherapy cycles and an estimation of the final tumor size obtained at the end of the treatment's protocol. It is a sort of numerical clinical test.

2 Generalized logistic model

The model

Malthus's model or the exponential model is not a good model for tumor growth since the number of cells of the tumor stabilizes as a consequence of the metastasis phenomena (some cells invade other tissues). We describe here cancer tumor's growth using a generalized logistic model with an intrinsic growth factor r > 0 and a carrying capacity K > 0. It is the following differential equation :

N (t) = rN (t) 1 - N (t) K a = rN (t) - r K a N (t) a+1 (E)
where a > 0 is a real number, and N (t) > 0 is the tumor volume at the time t in mm 3 . It is an equation of Bernoulli type with m = a + 1.

Let us set u = N -a , so u = (-a) N -a-1 N , then the equation (E)

writes :

N (t) N a+1 (t) = rN -a (t) - r K a so -1 a u (t) = ru(t) - r K a i.e. u (t) + ra u(t) = ra K a (F )
which is a linear differential equation of first order [START_REF] Trench | Elementary Differential Equations[END_REF]. The solutions of the associated homogeneous equation are u(t) = λe -rat with λ ∈ R, and u 0 (t) = 1 K a is a particular solution of (F ), so the solutions of (F ) writes :

u(t) = 1 K a + λe -rat = 1 + λ K a e -rat K a = N (t) -a
Let us denote by t 0 the initial time.

1 + λ K a e -rat > 0 ∀t ∈ [t 0 , +∞[ ⇔ λ > -e rat K a ∀t ∈ [t 0 , +∞[ ⇔ λ > -e rat0 K a
So,

N (t) = K 1 + λ K a e -rat 1 a with λ > -e rat0 K a (1) 
2.2 The solution with initial value v in the case t 0 = 0

The initial time is t 0 = 0 here. Let v > 0.

N (0) = v ⇔ K a 1 + λ K a = v a ⇔ v a + λ K a v a = K a ⇔ λ = K a -v a K a v a = K a v -a -1 K a
This λ satisfies the condition λ > -1 K a . Then,

N (t) = K 1 + (K a v -a -1) e -rat 1 a
Consequently,

N (t) = Kv v a + (K a -v a ) e -rat 1 a (2) 
Let us remark that N is crescent for an initial data v < K and decrescent for v > K. In addition, when t goes to +∞, N (t) tends to K.

2.3

The solution with initial value v for general t 0

Let v > 0.

N (t 0 ) = v ⇔ K a 1 + λ K a e -rat0 = v a ⇔ v a + λ K a v a e -rat0 = K a ⇔ λ = K a -v a K a v a e -rat0 = (K a v -a -1) e rat0 K a
This λ satisfies the condition λ > -e rat 0 K a . Then,

N (t) = K 1 + (K a v -a -1) e ra(t0-t) 1 a
Thus,

N (t) = Kv v a + (K a -v a ) e ra(t0-t) 1 a (3) 
The function N is crescent for an initial data v < K and decrescent for v > K. In addition, when t goes to +∞, N (t) tends to K.

Experimental data

The authors of [START_REF] Benzekry | Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth[END_REF] Here are some figures that compare the two dynamics. Lung cancer is far aggressive than breast cancer from a growth point of view. Let us notice that human breast carcimona cells were used in the experiments on mice, and that the generalized logistic model's saturation was sharp for some mice in comparison with the experimental results. We suppose in this article that the coefficients of the generalized logistic model found in [START_REF] Benzekry | Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth[END_REF] are valid for the description of a human tumor growth, for an initial tumor's size v ∈ [0, K] not necessarily equal to 1mm 3 .

Chemotherapy Cycles

Chemotherapy destroys not only cancer cells, but also healthy cells. Consequently, the patients need a period of rest after each drug administration. Let us denote by c the duration of the rest period and call it the treatment cycle, and denote by 1 -s the destruction factor of the drug, so that sN are the tumor's remains after the drug administration (s ∈]0, 1[). We consider that at t = 0, the tumor's volume is M 1 (not necessarily detectable). The drug is administered and destroys some tumor cells, we consider that this process is instantaneous. So at t 0 = 0, the tumor's size becomes n 1 := s M 1 = v. The value of v here, is not necessarily equal to 1mm 3 . We perform the following principal hypothesis : the model's coefficients r, K and a remain the same even for an initial volume different from the value 1mm 3 considered in the experiments.

During the first chemotherapy cycle [0, c], the solid tumor grows following a generalized logistic (GL) curve 

N 1 such that N 1 (0) = n 1 . Let us denote M 2 := N 1 (c). At t 1 = c,
N p (t) = Kn p (n p ) a + (K a -(n p ) a ) e ra((p-1)c-t) 1 a (4) 
And :

M p+1 = N p (pc) = Kn p (n p ) a + (K a -(n p ) a ) e -rac 1 a
Consequently :

n p+1 = s M p+1 = sKn p (n p ) a + (K a -(n p ) a ) e -rac 1 a (5) 
So (n p ) p≥1 is a recurrence sequence of first order associated to the

function f (x) = sKx x a + e -rac (K a -x a ) 1 a
and to the initial data

n 1 = s M 1 = v (not necessarily equal to 1mm 3 ).
5 Graphs of some cure's dynamics for different initial tumor's sizes M 1

Using the software MAPLE [START_REF] Maplesoft | Maple User Manual[END_REF], we made a procedure that plots the curves N i , i = 1...8 on the same graph and prints the values of M i , i = 1...9 and of n i , i = 1...9. The arguments of the procedure are r, K, a, M 1, c and s. For breast cancer, and an initial tumor's size M 1 = 1mm 3 , we obtained the following results : The cure's dynamic seems crescent for all these cases. For an initial tumor's size (breast) M 1 = 200mm 3 , the tumor's size seems crescent also for c = 14, s = 0.6 : But, for an initial tumor's size (breast) M 1 = 6500mm 3 , the sequence (n p ) seems decrescent for c = 7, s = 0.2 : For lung cancer, and an initial tumor's size M 1 = 1mm 3 , we obtained the following results : The cure's dynamic seems highly crescent for all these cases. Let us recall that lung cancer is very aggressive from a growth point of view.

For an initial tumor's size (lung) M 1 = 100mm 3 , the cure's dynamic seems also highly crescent for c = 14, s = 0.3 : 6 Convergence of the sequence n p

We have for all p ≥ 1 :

n p+1 = sKn p (n p ) a + (K a -(n p ) a ) e -rac -1 a (6) 
So (n p ) is a recurrence sequence of first order associated to the function

f (x) = sKx x a + e -rac (K a -x a ) -1 a on [0, K] with initial value n 1 = v. f is derivable on ]0, K] with : f (x) = sK x a + e -rac (K a -x a ) -1 a + sKx -1 a x a + e -rac (K a -x a ) -1 a -1 (1 -e -rac ) ax a-1 = sK x a + e -rac (K a -x a ) -1 a -sK(1 -e -rac ) x a x a + e -rac (K a -x a ) -1 a -1 = sK x a + e -rac (K a -x a ) -1 a -1 x a + e -rac (K a -x a ) -(1 -e -rac ) x a = sK x a + e -rac (K a -x a ) -1 a -1
x a (1 -e -rac -1 + e -rac ) + e -rac K a = sK a+1 e -rac x a + e -rac (K a -x a )

-1

a -1

The function f is then crescent on ]0, K], then on [0, K] since f ≥ 0 and f (0) = 0. Let us check, using a recurrence, that n p takes its values in [0, K] for an initial value v ∈]0, K[. We have

n 1 = v ∈ [0, K]. For p ≥ 1, let us suppose that n p ∈ [0, K]. Then, 0 = f (0) ≤ n p+1 = f (n p ) ≤ f (K) = sK ≤ K.
For an initial value v ∈]0, K[, let us compare the two initial terms :

n 2 ≤ n 1 ⇔ f (v) ≤ v ⇔ sKv v a + e -rac (K a -v a ) -1 a ≤ v ⇔ v a + e -rac (K a -v a ) 1 a ≥ sK ⇔ v a + e -rac (K a -v a ) ≥ (sK) a ⇔ (1 -e -rac )v a + e -rac K a ≥ s a K a ⇔ (1 -e -rac )v a ≥ (s a -e -rac ) K a ⇔ v a ≥ (s a -e -rac ) K a (1 -e -rac ) := G
So the sequence (n p ) p≥1 is decrescent if and only if v a ≥ G, this is satisfied in particular when s ≤ e -rc . Now, let us suppose that v a ≥ G, thus (n p ) p≥1 is decrescent bounded from below so the sequence converges. Let us denote by L its limit. The function f is continuous on [0, K], consequently the limit L satisfies the equation

f (L) = L. f (L) = L ⇔ sKL L a + e -rac (K a -L a ) -1 a = L ⇔ s a K a L a L a + e -rac (K a -L a ) -1 = L a ⇔ L = 0 or (1 -e -rac )L a + e -rac K a = s a K a ⇔ L = 0 or L a = (s a -e -rac ) K a (1 -e -rac ) = G If s > e -rc then G > 0 and the sequence (n p ) takes its values in [G 1 a , v] when v a ≥ G and in [v, G 1 
a ] when v a ≤ G (same recurrence as before, using the fact that Generally, s > e -rc , so we cannot eliminate the tumor totally. Our goal is then to achieve a decrescent dynamic and to obtain the smallest possible final tumor's size, and an undetectable volume when it is possible.

G 1 a is a fixed point of f ), consequently L = G 1 a = K s a -e -rac 1 -e -rac
7 Optimization of the treatment Actually, s > e -rc in general, so when (sM 1 ) a ≥ G, the sequence (n p ) decreases to G 1 a . Let us minimize the function : 

g(c, s) = G 1 a = K s a -e -rac 1 -e -rac

Conclusion

This method could help the cancer care teams in the decision-making process, especially the choice of an adequate chemotherapy protocol, as a sort of numerical clinical test.
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 177571 Fig 1: Breast tumor growth with N B (0) = 1mm 3 . Time unit is days, and tumor's size unit is mm 3 .

Fig 2 :

 2 Fig 2: Lung tumor growth with N L (0) = 1mm 3 . Time unit is days, and tumor's size unit is mm 3 .

Fig 3 :

 3 Fig 3: Comparison between breast (in red) and lung (in green) tumor growth. Time unit is days, and tumor's size unit is mm 3 .

  the second chemotherapy cycle begins, so the drug is administered again and the tumor's size becomes s N 1 (c) which is the initial data for a new GL curve N 2 on [c, 2c], and one setn 2 := N 2 (c) = s N 1 (c). Let us denote M 3 := N 2 (2c). At the third chemotherapy cycle, we have a new GL curve N 3 on [t 2 = 2c, t 3 = 3c] satisfying n 3 := N 3 (2c) = s N 2 (2c)...etc.Let p ≥ 1. The (GL) curve N p begins with the initial value n p at the time t p-1 = (p -1)c and ends with the value M p+1 at the time t p = pc, so N p ((p -1)c) = n p , then :

Fig 4 :

 4 Fig 4: Breast tumor growth with M 1 = 1mm 3 , c = 7days and respectively s = 0.6, s = 0.5, s = 0.4, s = 0.3 and s = 0.2 (from the left to the right). Time unit is days, and tumor's size unit is mm 3 .

Fig 5 :

 5 Fig 5: Breast tumor growth with M 1 = 200mm 3 , c = 14days and s = 0.6. Time unit is days, and tumor's size unit is mm 3 .

Fig 6 :

 6 Fig 6: Breast tumor growth with M 1 = 6500mm 3 , c = 7days and s = 0.2. Time unit is days, and tumor's size unit is mm 3 .

Fig 7 :

 7 Fig 7: Lung tumor growth with M 1 = 1mm 3 , c = 7days and respectively s = 0.6, s = 0.5, s = 0.4, s = 0.3 and s = 0.2 (from the left to the right). Time unit is days, and tumor's size unit is mm 3 .

Fig 8 :

 8 Fig 8: Lung tumor growth with M 1 = 100mm 3 , c = 14days and s = 0.3. Time unit is days, and tumor's size unit is mm 3 .

Fig 9 :

 9 Fig 9: Lung tumor growth with M 1 = 20000mm 3 , c = 7days and s = 0.2. Time unit is days, and tumor's size unit is mm 3 .

1 aTheorem 1 .• L = G 1 a• L = G 1 a 1 a

 11111 in this case.But when s ≤ e -rc , we have G ≤ 0 therefore L = 0. Let v ∈]0, K[ be an initial value. The sequence (n p )takes its values in [0, K]. If v a ≥ G := (s a -e -rac ) K a (1 -e -rac ) then (n p ) isdecrescent and converges to : when s > e -rc .• L = 0 when s ≤ e -rc .But if v a ≤ G then the sequence (n p ) is crescent and converges to L = G 1 a . Let us rewrite this theorem :Theorem 2. Let M 1 ∈]0, K s [ be an initial tumor's size. If (sM 1 ) a ≥ G := (s a -e -rac ) K a (1 -e -rac ), then the cure's dynamic is decrescent and (n p ) converges to : when s > e -rc . In this case, the final tumor's size belongs to [G1 a , G1 a s ]. • L = 0 when s ≤ e -rc (this condition is not satisfied in general). But if (sM 1 ) a ≤ G then the sequence (n p ) is crescent and converges to L = G , and the final tumor's size belongs also to [G 1 a , G

  The chemotherapy protocol is not very interesting in this case.

  on the set F := {(c, s) ∈ R 2 /7 ≤ c ≤ 28, 0.2 ≤ s ≤ 0.6, s > e -rc }. For both, breast and lung cancers, F = [7, 28] × [0.2, 0.6]. Indeed, the constraint s > e -rc is satisfied. The functions g(c, s) are continuous on the compact set F , so they are bounded and reach their bounds, in particular, they achieve a minimum. But these functions don't have a critical point on the open set ]7, 28[×]0.2, 0.6[ since ∂g ∂c > 0 (it is also the case for ∂g ∂s ), the minimum is then achieved on the boundary. This minimum is achieved at the point (c, s) = (7, 0.2) in the two cases, breast and lung, since the functions s → g(c, s) and c → g(c, s) are crescent. It means that the minimal final tumor's size is obtained for the shortest possible cycle duration and the maximal possible drug's destruction factor, which is intuitive. Tab 10: Breast cancer : number of chemotherapy cycles and final tumor's sizes for different initial tumor's sizes and different treatments. Tab 11: Lung cancer : number of chemotherapy cycles and final tumor's sizes for different initial tumor's sizes and different treatments.

	For lung cancer :				
	M 1 (mm 3 )	c(days)	s	Dynamic	Final size (mm 3 ) Number of cycles
	20000 = (27.14) 3	7	0.2 Decrescent	[9.13 3 , 15.61 3 ]	4
	14000 = (24.1) 3	7	0.3 Decrescent	1 a [10.57 3 , 15.79 3 ]	3
	14000 = (24.1) 3	14	0.3 Decrescent	[10.92 3 , 16.31 3 ]	2
	14000 = (24.1) 3	21	0.3 Decrescent	[10.94 3 , 16.35 3 ]	2
	10000 = (21.54) 3	7	0.2 Decrescent	[9.13 3 , 15.61 3 ]	3
	10000 = (21.54) 3	7	0.3 Decrescent	[10.57 3 , 15.79 3 ]	3
	10000 = (21.54) 3	14	0.3 Decrescent	[10.92 3 , 16.31 3 ]	2
	10000 = (21.54) 3	21	0.4 Decrescent	[12.05 3 , 16.35 3 ]	2
	6000 = (18.17) 3	7	0.2 Decrescent	[9.13 3 , 15.61 3 ]	3
	1000 = 10 3	21	0.3	Crescent	[10.94 3 , 16.35 3 ]	2
	1000 = 10 3	21	0.4	Crescent	[12.05 3 , 16.35 3 ]	2
	1	7	0.2	Crescent	[9.13 3 , 15.61 3 ]	4
	1	14	0.3	Crescent	[10.92 3 , 16.31 3 ]	3
	8 Number of chemotherapy cycles for different ini-	
	tial tumor's sizes and different treatments	
	For breast cancer :				
	M 1 (mm 3 )	c(days)	s	Dynamic	Final size (mm 3 ) Number of cycles
	8500 = (20.4) 3	7	0.2 Decrescent	[3.3 3 , 5.65 3 ]	10
	6500 = (18.66) 3	7	0.2 Decrescent	[3.3 3 , 5.65 3 ]	10
	6500 = (18.66) 3	14	0.3 Decrescent	[6.71 3 , 10.02 3 ]	7
	4000 = (15.87) 3	14	0.3 Decrescent	[6.71 3 , 10.02 3 ]	7
	1500 = (11.44) 3	14	0.3 Decrescent	[6.71 3 , 10.02 3 ]	5
	1000 = 10 3	14	0.2 Decrescent	[5.43 3 , 9.3 3 ]	7
	1	7	0.6	Crescent	[8.2 3 , 9.72 3 ]	18
	1	7	0.5	Crescent	[7.05 3 , 8.89 3 ]	17
	1	7	0.2	Crescent	[3.3 3 , 5.65 3 ]	12
	1	14	0.6	Crescent	[9.61 3 , 11.39 3 ]	9
	1	14	0.2	Crescent	[5.43 3 , 9.3 3 ]	7
	1	21	0.2	Crescent	[6.33 3 , 10.83 3 ]	5