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COMPETITION IN PERIODIC MEDIA: III – EXISTENCE &

STABILITY OF SEGREGATED PERIODIC COEXISTENCE

STATES

LÉO GIRARDIN1 AND ALESSANDRO ZILIO2

Abstract. In this paper we consider a system of parabolic reaction-diffusion
equations with strong competition and two related scalar reaction-diffusion
equations. We show that in certain space periodic media with large peri-
ods, there exist periodic, non-constant, non-trivial, stable stationary states.
We compare our results with already known results about the existence and
nonexistence of such solutions. Finally, we provide ecological interpretations
for these results.

1. Introduction

We construct stable periodic sign-changing steady states in one-dimensional spa-
tially periodic media for the equation

(1.1) ∂tz − ∂xxz = f (z, x)

and its quasi-linear counterpart

(1.2) ∂t (σ(z)z)− ∂xxz = f (z, x) ,

where

f : (z, x) 7→ µ1(x)

(

a1 −
1

α
z

)

z+ − 1

d
µ2(x)

(

a2 +
1

d
z

)

z−

and the positive function σ is

σ : z 7→ 1z>0 +
1

d
1z<0.

Here L, a1, a2, α and d are positive constants, µ1, µ2 ∈ L∞ (R, (0,+∞)) are positive
L-periodic functions, z+ = max (z, 0) and z− = −min (z, 0) (so that z = z+ − z−).
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We also construct stable periodic coexistence steady states for the following
competition–diffusion system:

(1.3)

{

∂tu1 − ∂xxu1 = µ1(x) (a1 − u1)u1 − kω(x)u1u2

∂tu2 − d∂xxu2 = µ2(x) (a2 − u2)u2 − αkω(x)u1u2

where ω ∈ L∞ (R, (0,+∞)) is positive and L-periodic (with a normalized mean
value, say).

System (1.3) belongs to the wider class of elliptic or parabolic systems of Lotka–
Volterra type in the presence of strong competition, and (1.1) and (1.2) are related
to its singular strong competition limit k → +∞. To our knowledge, the study of
the strong competition limit appeared first in [8] as a way to model biological species
that are fiercely competing for the same resource. The literature on this subject
is very vast, varying from existence and uniqueness results [7], multiplicity results
in presence of strong competition [8] and the rigorous proof of Gause’s competitive
exclusion [18, 9] stating that in the homogeneous case, non-constant solutions are
necessarily unstable (in convex domains). We refer the interested reader to these
contributions and the references therein.

More recently, the strong competition limit in periodic media was the object of
investigation of two papers [16, 17] by the first author and Nadin. According to
[17], (1.2) is the equation satisfied, in the strong competition limit, by the quantity
αu1 − du2 with (u1, u2) solution of (1.3). Notice that, by normalizing (u1, u2), we
can assume without loss of generality a1 = a2 = 1. This is assumed indeed from
now on. Notice also that, although all results of [16, 17] are stated for ω = 1, they
are readily extended to the case of non-constant ω.

Steady states of (1.1) and of (1.2) satisfy the same elliptic semilinear equation:

(1.4) − z′′(x) = µ1(x)

(

1− 1

α
z(x)

)

z+(x)− 1

d
µ2(x)

(

1 +
1

d
z(x)

)

z−(x).

However, due to the different time dependencies, (1.1) and (1.2) involve in general
different notions of stability and therefore different eigenproblems. Before going
any further, let us precise this important point.

1.1. Notions of stability. For any functional space X , XL-per denotes the set of
L-periodic functions whose restriction to any interval of length L are elements of
X . Accordingly, for any second order monotone elliptic operator L , λ1,L-per (−L )
denotes the periodic principal eigenvalue of L given by the Krein–Rutman theorem.
Recall that if (u1, u2) is a solution of (1.3), then the system satisfied by (u1, 1− u2)
is a monotone system, whence its linearization admits indeed a periodic principal
eigenvalue (details can be found in [16]).

Hereafter, a solution z ∈ H2
L-per (R) of (1.4) such that the L-periodic function

f1 [z] : x 7→ ∂1f (z(x), x) ,

is well-defined (at least weakly) is referred to as linearly stable in the sense of (1.1)
if

λ1,L-per

(

− d2

dx2
− f1 [z]

)

> 0

and as linearly stable in the sense of (1.2) if

λ1,L-per

(

−σ̂(z) d2

dx2
− σ̂(z)f1 [z]

)

> 0,
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with
σ̂ : z 7→ 1z≥0 + d1z<0.

The constant solutions of (1.4) are α, −d and 0. It is easily verified that α and
−d are linearly stable in both senses whereas 0 is linearly unstable (namely, not
linearly stable) in both senses.

The definition of linear stability in the sense of (1.2) can be formally understood
by plugging perturbations of the form e−λtϕ(x), with ϕ L-periodic, into the equa-
tion (1.2) linearized at an almost everywhere nonzero steady state z. Indeed, such
a perturbation solves the linear equation if and only if

−λσ(z)ϕ− ϕ′′ = f1 [z]ϕ,

that is, due to the almost everywhere equality σ (z(x)) σ̂ (z(x)) = 1, if and only if

−σ̂(z)ϕ′′ − σ̂(z)f1 [z]ϕ = λϕ.

Similarly, a steady state solution (u1, u2) of (1.3) is a solution of

(1.5)

{

−u′′1(x) = µ1(x) (1− u1(x)) u1(x)− kω(x)u1(x)u2(x)
−du′′2(x) = µ2(x) (1− u2(x)) u2(x)− αkω(x)u1(x)u2(x)

and is referred to as linearly stable if

λ1,L-per

(

−
(

d2

dx2 + µ1 (1− 2u1)− kωu2 kωu1
αkωu2 d d2

dx2 + µ2 (1− 2u2)− αkωu1

))

> 0.

The steady states (1, 0) and (0, 1) are linearly stable whereas (0, 0) is linearly un-
stable.

By analogy with the spatially homogeneous setting and in view of the stability of
the constant solutions, (1.1), (1.2) and (1.3) are sometimes referred to as bistable.
However our main contribution is to prove that this terminology can be misleading:
because of the spatial heterogeneity, a third stable state can very well exist.

Let us point out that the previous two parts of the series “Competition in periodic
media”[16, 17] only used the notion of stability in the sense of the system (1.3).
This explains why the two notions of stability for the segregated equation (1.4) are
only introduced now.

1.2. Main results. Let (r0, r1, r2) ∈ (0, 1)3 such that 2r0 + 2r1 + 2r2 = 1. Let

(M1,M2) ∈ (0,+∞)
2

and define two 1-periodic functions µ⋆
1 and µ⋆

2 by

(µ⋆
1)|[0,1] =M11[0,r1] +M11[r1+2r0+2r2,1]

(µ⋆
2)|[0,1] =M21[r1+r0,r1+r0+2r2]

and, for all L > 0,
(

µL
1 , µ

L
2

)

: x 7→ (µ⋆
1, µ

⋆
2)
( x

L

)

.

Our first main result is concerned with the equation (1.4).

Theorem 1.1. There exists L > 0 such that, for all L > L, (1.4) with (µ1, µ2) =
(

µL
1 , µ

L
2

)

or with (µ1, µ2) =
(

µL
1 + µL

2 , µ
L
1 + µL

2

)

admits a linearly stable in both
senses, sign-changing, L-periodic solution.

Furthermore, for all L > L, there exist a neighborhood UL of
(

µL
1 , µ

L
2

)

in the

topology of
(

L∞
L-per

)2
and a neighborhood VL of µL

1 +µL
2 in the topology of

(

L∞
L-per

)

such that, for all (µ1, µ2) ∈ UL and all µ ∈ VL, (1.4) with (µ1, µ2) or (µ, µ) admits
a linearly stable in both senses, sign-changing, L-periodic solution.
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This first result will be proved by explicit construction of v and non-trivial
application of the implicit function theorem.

In biological terms, the growth rate µL
1 + µL

2 corresponds to a periodic environ-
ment where large favorable areas are separated by large neutral areas. A neutral
area could be, say, in a woodland inhabited by herbivorous animals looking for
glades, an area densely covered by trees where predators live and hide and where
linear death rates roughly equal linear birth rates and no intraspecific competition
occurs. The associated stable steady state describes the situation where one com-
petitor settles in the evenly numbered favorable areas whereas the other settles in
the oddly numbered ones. This particular form is illustrated by Figure 2.2.1.

Let us point out that well-known density results yield immediately the following
corollary.

Corollary 1.2. For all L > L, there exists (µ1, µ2) ∈
(

C∞
L-per (R, (0,+∞))

)2
such

that (1.4) admits a linearly stable in both senses, sign-changing, L-periodic solution.

Our second main result is concerned with the system (1.5) and states that the
existence of stable steady states for the segregated equation implies the existence
of stable steady states for the strongly competitive system. It will be proved as a
consequence of Theorem 1.1 and of degree theory.

Theorem 1.3. For all L > L, there exist k⋆ > 0 and (µ1, µ2) ∈
(

C∞
L-per (R, (0,+∞))

)2

such that, for all k > k⋆, (1.5) admits a linearly stable, component-wise positive,
L-periodic solution.

1.3. Discussion and comparison with known results. Theorem 1.1 and The-
orem 1.3 complement interestingly a result of the first author [16, Theorem 1.2]
stating that, provided L is sufficiently small, that is

L ∈
(

0, π

(

(

max
[0,L]

µ1

)− 1
2

+
√
d

(

max
[0,L]

µ2

)− 1
2

))

,

and provided k is large enough, all L-periodic coexistence states are unstable and
vanish as k → +∞.

Theorem 1.1 is also directly related to a result due to Ding, Hamel and Zhao
[10, Theorem 1.5] which shows in particular that the regular bistable equation

∂tz − ∂xxz = gL(x, z),

with gL : (z, x) 7→ g
(

z, x
L

)

, g 1-periodic with respect to x and independent of L, 0
and 1 linearly stable steady states (in the standard sense) and θ ∈ C1−per (R, (0, 1))
intermediate zero of g, admits bistable pulsating fronts connecting 0 and 1 provided
L is large enough and the nonlinearity g satisfies

min
x∈[0,L]

∫ 1

0

g(x, z)dz > 0 and min
x∈[0,L]

∂g

∂z
(x, θ(x)) > 0.

Their proof is based on a very important result by Fang and Zhao [14] stating
in a general setting that bistable pulsating fronts exist if all intermediate periodic
steady states are unstable and invadable. Therefore the proof of Ding–Hamel–Zhao
basically shows that the above conditions imply the nonexistence of stable periodic
steady states. Importantly,
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• on one hand, the family of scaled functions (fL)L>L in Theorem 1.1 satisfies

min
x∈[0,L]

∫ α

−d

fL(x, z)dz = 0 for all L > L

(recalling that here the two constant stable states are −d and α instead of
0 and 1);

• on the other hand, any family of regularized and positive functions obtained
from Corollary 1.2 satisfies indeed the above two positivity conditions, but
by the result of Ding–Hamel–Zhao cannot be of the prescribed scaled form
as L varies (in other words, the neighborhoods UL and VL obtained with
the implicit function theorem are not uniform with respect to L and shrink
as L→ +∞).

We point out that a recent paper by Zlatǒs [21] constructed an example of
periodic bistable nonlinearity admitting no pulsating front. His result is very related
to ours but remains qualitatively different: we focus on stable intermediate steady
states whereas Zlatǒs focuses on nonexistence of transition fronts. Furthermore,
our construction has a very simple ecological interpretation and is valid for all large
periods, whereas the construction of Zlatǒs requires a very precise period. In this
regard, our paper is an interesting complement.

Theorem 1.1 is also related to a family of results stating, loosely speaking, that
the geometry of a homogeneous domain with boundary can block bistable propa-
gation. See for instance Berestycki–Bouhours–Chapuisat [2] and references therein.
Although we do not prove that our periodic stable steady state is able to block the
propagation of a constant stable steady state, its mere existence makes it impossi-
ble to apply the theory of Fang–Zhao [14] so that the existence of pulsating fronts
remains unclear. We might study in a future work whether blocking occurs or not
in our case.

Ecologically speaking, Theorem 1.3 shows that strong interspecific competition
and heterogeneity of the habitat can lead together to spatial segregation and there-
fore to speciation and increased biodiversity. Having this interpretation in mind, we
notice that the strength of the competition is crucial: indeed, in the weak compe-
tition case, Dockery–Hutson–Mischaikow–Pernarowski [11] showed on the contrary
that heterogeneity leads to extinction of all competitors but the one with the lowest
diffusion rate. Ecologically, strong competition occurs for instance when resources
are rare. Mathematically, it is known to lead indeed to spatial segregation, or in
other words pattern formation, in homogeneous domains with appropriate bound-
ary conditions or initial conditions (see for instance [5, 6, 9] and references therein).
As such, our result can be seen as a contribution to the overarching research pro-
gram on pattern formation in strongly competing systems and as one of the first
results in spatially heterogeneous domains.

It is worthy to recall that by a result of Berestycki–Hamel–Rossi [4, Proposi-
tion 6.6], the periodic principal eigenvalue of a self-adjoint periodic scalar elliptic
operator coincides with the decreasing limit as R → +∞ of its Dirichlet principal
eigenvalue in the ball (−R,R). Consequently, if the domain of a linearly stable
in both senses, periodic, sign-changing steady state solution z of (1.4) is restricted
to a periodicity cell (y, y + L) with y chosen so that z (y) = 0, then we obtain a
steady state for the corresponding Dirichlet problem which is linearly stable in the
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following senses:

λ1,Dir

(

− d2

dx2
− f1 [z] , (y, y + L)

)

> 0,

λ1,Dir

(

−σ̂(z) d2

dx2
− σ̂(z)f1 [z] , (y, y + L)

)

> 0.

1.4. What about more general bistable equations? The particular shape
of function f in (1.4) is due to the underlying ecological model. With very few
modifications, Theorem 1.1 can be extended to more general bistable equations in
periodic media, like for instance the familiar Allen–Cahn equation

∂tz − ∂xxz = µL(x)(1 − z2)z.

1.5. Structure of the paper. In Section 2, we prove Theorem 1.1, focusing first
on the construction of v and then using the implicit function theorem to obtain the
open neighborhood U . In Section 3, we prove Theorem 1.3 thanks to Theorem 1.1
and topological arguments.

2. The segregated bistable equation

Our goal in this section is to prove that (1.4) admits sign-changing solutions that
are also stable in the sense of (1.1) and (1.2).

Before going any further, we observe the following: replacing
(

µ1

α ,
µ2

d2

)

by (µ1, µ2),
(1.4) reads

(2.1) − z′′ = µ1 (α− z) z+ − µ2 (d+ z) z−.

Hence up to end of this section we have in mind the above more compact form. The
piecewise-constant functions µ⋆

1 and µ⋆
2 defined in the introduction are accordingly

modified, with
(

M1

α , M2

d2

)

replaced by (M1,M2).
In order to construct a sing-changing, periodic and stable solution to (2.1), we

need a preliminary result concerning its linearization.

2.1. Linearization near a non-constant stationary solution. Since the right
hand side of (2.1) is only Lipschitz continuous at z = 0, we need some caution in
order to properly introduce the linearization of the equation around a sign-changing
steady state. Many authors have already addressed similar issues (see, for instance,
[9, Section 4.1]). Since we could not find the precise statement that we needed, we
decided to present a complete proof. We wish to point out that the result can be
adapted to more general equations (for instance bounded domains with Neumann
boundary conditions).

For all (µ1, µ2, z) ∈
(

L∞
L-per

)2 ×H2
L-per, we define

F :
(

L∞
L-per

)2 ×H2
L-per → L2

L-per

such that, for all test functions ϕ ∈ H2
L-per,

(2.2) 〈F (µ1, µ2, z), ϕ〉 =
∫ L

0

z′ϕ′ −
∫ L

0

(

µ1 (α− z) z+ − µ2 (d+ z) z−
)

ϕ.

We recall that, by Sobolev embedding, the inclusion H2
L-per →֒ C

1, 1
2

L-per holds true.
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Lemma 2.1. Let O ⊂ H2
L-per be an open set in the topology of H2

L-per such that

for all z ∈ O, the closed set z−1 ({0}) has zero Lebesgue measure.

Then F ∈ C 1
(

(

L∞
L-per

)2 ×O,L2
L-per

)

.

For any (µ1, µ2, z) ∈
(

L∞
L-per

)2 ×O and any (η1, η2, w) ∈
(

L∞
L-per

)2 ×H2
L-per, the

differential dF [µ1, µ2, z] evaluated at (η1, η2, w) is

ϕ 7→
∫ L

0

w′ϕ′ −
∫ L

0

(

η1 (α− z) z+ − η2 (d+ z) z−
)

ϕ

−
∫ L

0

(µ1 (α− 2z)1z>0 + µ2 (d+ 2z)1z<0)wϕ.

Remark. Some assumptions on the open set O are necessary. In general, the
Gâteaux differential of F at (µ1, µ2, z) in the direction (η1, η2, w) fails to be linear
with respect to (η1, η2, w). More precisely, it is the sum of the linear functional
above and of

ϕ 7→ −
∫ L

0

(

µ1αw
+ − µ2dw

−
)

1z=0ϕ,

which is non-linear with respect to w. We can prove this by partitioning R = {z >
0} ∪ {z = 0} ∪ {z < 0}.

Proof. The linear mapping appearing in the statement above is readily continuous.
Thus we only need to show that it is indeed the Gâteaux differential.

Fix (µ1, µ2, z) ∈
(

L∞
L-per

)2×O and (η1, η2, w) ∈
(

L∞
L-per

)2×H2
L-per. For all t > 0

and all ϕ ∈ H2
L-per,

1

t
(F [(µ1, µ2, z) + t (η1, η2, w)]− F [(µ1, µ2, z)]) (ϕ) =

∫ L

0

w′ϕ′ − 1

t

∫ L

0

(

(µ1 + tη1) (α− (z + tw)) (z + tw)+ − µ1(α − z)v+
)

ϕ

+
1

t

∫ L

0

(

(µ2 + tη2) (d+ (z + tw)) (z + tw)− − µ2(d− z)z−
)

ϕ.

The first term in the right hand side does not depend on t. We only need to consider
the second one, as the third one can be dealt with in a similar way. Rearranging
the terms, we find

1

t

∫ L

0

(

(µ1 + tη1) (α− (z + tw)) (z + tw)+ − µ1(α− z)v+
)

ϕ

=

∫ L

0

η1 (α− (z + tw)) (z + tw)+ϕ

+

∫ L

0

µ1
(α− (z + tw)) (z + tw)+ − (α− z)v+

t
ϕ.

The dominated convergence theorem yields

∫ L

0

η1 (α− (z + tw)) (z + tw)+ϕ→
∫ L

0

η1 (α− z) v+ϕ as t→ 0.
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Rearranging the last term of the preceding equality, we find

∫ L

0

µ1

(

(α− z − tw) (z + tw)
+ − (α− z) z+

t

)

ϕ

=

∫ L

0

µ1

(

(z + tw)
+ − z+

t

)

(α− z)ϕ−
∫ L

0

µ1wα (z + tw)
+
ϕ.

By dominated convergence,

lim
t→0

∫ L

0

µ1wα (z + tw)
+
ϕ =

∫ L

0

µ1wαz
+ϕ.

Since by assumption z−1({0}) has zero Lebesgue measure and the map ζ 7→ ζ+ is
smooth away from 0, the dominated convergence theorem yields once again

lim
t→0

∫ L

0

µ1

(

(z + tw)
+ − z+

t

)

(α− z)ϕ =

∫ L

0

µ1w1z>0 (α− z)ϕ.

This concludes the proof. �

2.2. Construction of the solution. We now proceed by constructing the solution
of (2.1). To do so, we first consider the equation with piecewise-constant coefficients.
In this case, solutions can be constructed by gluing together different profiles. The
implicit function theorem then leads to an open neighborhood of valid coefficients
near this piecewise-constant pair.

2.2.1. Piecewise-constant coefficients. In the following result we collect some prop-
erties of the solutions of the logistic equation with non-zero Dirichlet conditions.
These properties are well known and straightforward consequences of the compari-
son principle. For this reason, we do not present here a fully detailed proof.

Lemma 2.2. For all A > 0, M > 0, ν ∈
[

1
2 , 1
)

and R > 0 there exists a unique

positive solution wA,M,ν,R ∈ C 2 ([−R,R]) of
{

−w′′ =M (A− w)w in (−R,R)
w (±R) = νA.

The function wA,M,ν,R is even and satisfies

νA < wA,M,ν,R(x) < A for all x ∈ (−R,R).
Furthermore, let

Φ : (A,M, ν,R) 7→ w′
A,M,ν,R (−R) .

The following properties hold true.

(1) Φ is positive and continuous;
(2) it holds

lim
R→0+

Φ(A,M, ν,R) = 0;

(3) there exists γA,M,ν ∈ (0,+∞) such that

γA,M,ν = lim
R→+∞

Φ (A,M, ν,R) .

Moreover, (A,M, ν) 7→ γA,M,ν is continuous with respect to A, M and ν,
increasing with respect to A and M and decreasing with respect to ν. In
particular 0 = limν→1 γA,M,ν < γA,M,ν < γA,M, 1

2
;
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(4) the function R 7→ Φ(A,M, ν,R) is an increasing homeomorphism from
(0,+∞) onto (0, γA,M,ν);

(5) the function ν 7→ Φ(A,M, ν,R) is a decreasing homeomorphism from
[

1
2 , 1
)

onto
(

0,Φ(A,M, 12 , R)
]

.

We point out that the upper limit γA,M,ν can actually be determined explicitly.

Proof. We perform the following change of variables

w(x) = AWρ,ν

(√
AMx

)

and ρ =
√
AMR.

Here the function Wρ,ν is a solution to the scaled equation

(2.3)

{

−W ′′ = (1−W )W in (−ρ, ρ)
W (±ρ) = ν.

We can rephrase all the statements of the result in terms of the dependence of Wρ,ν

on ρ and ν. Here we consider only the dependence on ρ. The same arguments can
be adapted to show the corresponding results in terms of ν.

For any value of ρ > 0 and ν ∈ [ 12 , 1), the previous equation admits a unique,
positive solution which is even and is such that ν < W (x) < 1 for all x ∈ (−ρ, ρ).
This follows by standard arguments. We just observe that the functions x 7→
ν cos(γx)/ cos(γρ) are sub-solutions of (2.3) for γ small enough, while the constant
1 is always a super-solution.

Notice that, for all κ > 1:

− (κWρ,ν)
′′
= (1−Wρ,ν)κWρ,ν ≥ (1− κWρ,ν)κWρ,ν in (−ρ, ρ) .

For all ρ′ > ρ > 0, the following quantity is well-defined:

κ⋆ = inf {κ > 1 | κWρ′,ν ≥Wρ,ν in (−ρ, ρ)} .

Assuming by contradiction that κ⋆ > 1 and applying the strong maximum principle,
we get a contradiction. Hence the family (Wρ,ν)ρ>0 is non-decreasing, and once

more by the strong maximum principle, it is in fact increasing.
It follows that the function ρ 7→ max[−ρ,ρ]Wρ,ν(x) is increasing with limit 1 as

ρ → +∞. By classical elliptic estimates (see Gilbarg–Trudinger [15]) the family
converges locally uniformly to a bounded and positive solution of (2.3) defined on
the whole line R. Hence, as ρ→ +∞, we find that Wρ,ν → 1 locally in C 2.

We now consider the shifted family of functions

W ρ,ν(x) =Wρ,ν (x− ρ) for x ∈ [0, 2ρ].

The family ρ 7→W ρ,ν is increasing. In particular, by the Hopf lemma,

ρ 7→W
′

ρ,ν(0)

is increasing as well. Once again, classical elliptic estimates show that, as ρ→ +∞,
the family W ρ,ν converges locally uniformly to the unique solution W of

(2.4)











−W ′′
=
(

1−W
)

W in (0,+∞)

W (0) = ν

ν < W < 1 in (0,+∞)
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r1L

r2L

r0L

α

α
2

− d
2

−d

ν1α

−ν2d

Figure 2.1. Visual representation of the construction of v. In
red, areas where µL

1 = M1. In blue, areas where µL
2 = M2. In

gray, the bounds given by νL and νL. In black, the solution v.

(see Du–Lin [12, 13, Proposition 4.1]). Thus, the limit as ρ→ +∞ of W
′

ρ,ν(−ρ) is

finite and positive. We can figure out its value by testing (2.4) against W
′
. This

yields the identity

lim
ρ→+∞

W
′

ρ,ν(−ρ) =
√

1

3
+ ν2

(

2

3
ν − 1

)

.

Observe that the limit is always positive and bounded.

We conclude by observing that the continuity of W
′

ρ,ν with respect to ρ is a

classical consequence of the uniqueness of W ρ,ν and of compactness arguments. �

From the previous result we deduce a property which is crucial for our construc-
tion. For sake of brevity, from now on we will simply write

Φ1(ν, L) = Φ(α,M1, ν, r1L),

Φ2(ν, L) = Φ(d,M2, ν, r2L),

(recalling that M1 > 0, M2 > 0, r1 > 0 and r2 > 0 were fixed in the introduction).
We can finally construct the periodic stable solutions of (2.1) with the piecewise-

constant coefficients.

Proposition 2.3. There exists L > 0 such that, for any L > L, (2.1) with either
(µ1, µ2) =

(

µL
1 , µ

L
2

)

or with (µ1, µ2) =
(

µL
1 + µL

2 , µ
L
1 + µL

2

)

admits a nonzero sign-

changing solution v ∈ H2
L-per satisfying, for all L-periodic test functions ϕ ∈ H1

L-per,

∫ L

0

v′ϕ′ =

∫ L

0

(

µ1 (α− v) v+ − µ2 (d+ v) v−
)

ϕ.

Furthermore, v is linearly stable in the sense of (1.1) and (1.2).

Proof. Let

δ : (ν, L) 7→ −Φ1 (ν, L) r0L+ αν.
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The function ν 7→ δ (ν, L) is, for all L > 0, an increasing homeomorphism from
[

1
2 , 1
)

onto
[

−Φ1

(

1

2
, L

)

r0L+
α

2
, α

)

.

Since L 7→ −Φ1

(

1
2 , L

)

r0L is decreasing and goes to −∞ as L → +∞, we can
define the unique L0 > 0 satisfying

−Φ1

(

1

2
, L0

)

r0L0 +
α

2
= −d.

Then for all L > L0, we can define the unique νL ∈
(

1
2 , 1
)

and the unique νL ∈
(

νL, 1
)

satisfying respectively

δ
(

νL, L
)

= −d and δ (νL, L) = −d
2
.

Now let

ψ : (ν, L) 7→ Φ1 (ν, L)− Φ2

(

−δ (ν, L)
d

, L

)

,

well-defined in
(

νL, νL
]

for all L > L0. For all L > L0, ν 7→ ψ (ν, L) is a decreasing
homeomorphism satisfying

lim
ν→νL

ψ (ν, L) =
ανL + d

r0L
> 0,

ψ (νL, L) =
ανL + d

2

r0L
− Φ2

(

1

2
, L

)

.

Since L 7→ ψ (νL, L) goes to −γd,M2,
1
2
< 0 as L→ +∞, we can define L ≥ L0 such

that, for all L > L,

ψ (νL, L) < 0

and deduce that for all L > L, there exists a unique νL ∈
(

νL, νL
)

satisfying
ψ (νL, L) = 0, that is

Φ1 (νL, L) = Φ2

(

−δ (νL, L)
d

, L

)

.

Next, we fix L > L and define w1 = wα,M1,νL,r1L, w2 = wd,M2,−d−1δ(νL,L),r2L as
well as the nonzero, sign-changing, L-periodic function v by

v|[0,L)(x) =































w1 (x) if x ∈ [0, r1L)

−Φ1 (νL, L) (x− r1L) + νLα if x ∈ [r1L, r1L+ r0L)

w2 (x− r1L− r0L− r2L) if x ∈ [r1L+ r0L, r1L+ r0L+ 2r2L)

Φ1 (νL, L) (x− L+ r1L) + νLα if x ∈ [r1L+ r0L+ 2r2L, r1L+ 2r0L+ 2r2L)

w1 (x− L) if x ∈ [r1L+ 2r0L+ 2r1L,L)

Since, by construction, v is a C
1,1
L-per ⊂ H2

L-per juxtaposition of piecewise solutions

of (2.1), we readily deduce that it is a solution of (2.1).
Regarding the stability of the solution v, from Lemma 2.1 we evince that the

linearized elliptic operator at v, denoted L ∈ L
(

H2
L-per, L

2
L-per

)

, is

L : η 7→ η′′ + [µ1 (α− 2v)1v>0 + µ2 (d+ 2v)1v<0] η.
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First we verify the stability in the sense of (1.1). Let λ be the corresponding
periodic principal eigenvalue and ψ ∈ H2

L-per be the associated unique periodic

positive eigenfunction, normalized in L2 ((0, L)). From the identity
∫ L

0

(−Lψ − λψ)ψ = 0

we deduce
∫ L

0

(ψ′)
2
=

∫ L

0

[µ1 (α− 2v)1v>0 + µ2 (d+ 2v)1v<0]ψ
2 + λ

=M1

∫

{µ1>0}∩{v>0}

(α− 2v)ψ2 +M2

∫

{µ2>0}∩{v<0}

(d+ 2v)ψ2 + λ.

Since by construction

v ≥ νLα >
α

2
in {µ1 > 0} ∩ {v > 0}

and

v ≤ −
(

−δ (νL, L)
d

)

d < −d
2

in {µ2 > 0} ∩ {v < 0},

we deduce

λ >

∫ L

0

(ψ′)
2
> 0.

Similarly, we verify the stability of v in the sense of (1.2). The same computations
as before lead us to the desired conclusion.

This conclude the proof of existence and stability of sign-changing solutions for
piecewise-constant coefficients �

Remark. Going carefully through the proof, using νL < 1 and assuming that L is
minimal, we obtain the estimate L < L⋆, where L⋆ > 0 is the unique solution of

Φ2

(

1

2
, L⋆

)

L⋆ =
1

r0
max

(

α+
d

2
,
α

2
+ d

)

.

Hence estimating L is only a matter of estimating L 7→ Φ2

(

1
2 , L

)

. Unfortunately,
being unable to find any satisfying estimation of Φ2, we do not pursue further.

2.2.2. With regular coefficients. The function v constructed in Proposition 2.3 is
linear around v = 0. Thus there exists an open neighborhood O ⊂ H2

L-per satisfying
the assumptions of Lemma 2.1.

Proposition 2.4. Under the assumptions of Proposition 2.3, for any L > L there

exists an open neighborhood U ⊂
(

L∞
L-per

)2
of (µ1, µ2) such that for all (ρ1, ρ2) ∈ U ,

(2.1) with (ρ1, ρ2) admits a sign-changing, L-periodic, weak solution. The solution
is also linearly stable in the sense of (1.1) and (1.2).

Proof. Let L > L and let (µ1, µ2, v) ∈
(

L∞
L-per

)2×H2
L-per be the solution constructed

in Proposition 2.3.
The prerequisites of the implicit function theorem are readily satisfied for the

functional F at (µ1, µ2, v). In particular, since the solution v is linearly stable in
the sense of (1.1), the functional ∂F

∂z [µ1, µ2, v] is invertible in the following sense:

for all f ∈ L2
L-per, there exists a unique weak solution zf ∈ H2

L-per of

∂F

∂v
[µ1, µ2, z] (zf ) = f.
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This follows by standard regularity results.
By virtue of the implicit function theorem, there exists an open neighborhood

U ⊂
(

L∞
L-per

)2
of (µ1, µ2), an open neighborhood V ⊂ O ⊂ H2

L-per of v and a C 1

diffeomorphism Ψ : U → V such that, for all (ρ1, ρ2) ∈ U ,

F [ρ1, ρ2,Ψ [ρ1, ρ2]] = 0.

Finally, since the map Ψ is C 1, we find that the linear stability of the solution is
preserved in a open neighborhood of (µ1, µ2). �

3. The strongly competitive competition–diffusion system

In the previous section we have considered the equation

(3.1) − z′′ =
µ1

α
(α− z) z+ − µ2

d2
(d+ z) z−.

For this equation and particular choices of µ1 and µ2, we have constructed a sign-
changing solution v ∈ C

1,1
L-per for periods L greater than a threshold L. We have

also shown that this solution is linearly stable in the sense of (1.1) and (1.2).
In this section, we aim at using this result to prove the existence of linearly stable

solutions of (1.5). Specifically, fixing L > L and a positive L-periodic smooth
function ω, our aim is to prove that for any k > 0 large enough there exists a
positive and stable solution of (1.5) (u1,k, u2,k) ∈ C

1,1
L-per such that

(u1,k, u2,k) →
(

v+

α
,
v−

d

)

as k → +∞

in H1
L-per and C

0,γ
L-per for γ ∈ (0, 12 ).

We will show the result in a series of steps: first, we give some a priori estimates
of the solution of a more general class of systems. Then, by means of topological
arguments, we deduce from these estimates the existence of solutions. Finally we
establish the uniqueness and the linear stability of the solutions.

3.1. A priori estimate. We start by showing a priori estimates for the solutions
of a family of systems that contains (1.5) as a special case. We are here interested
in the L-periodic positive solutions of
(3.2)
{

−u′′1 = tµ1(1− u1)u1 + (1 − t)µ1

α2 (α− (αu1 − du2)
+) (αu1 − du2)

+ − kωu1u2

−du′′2 = tµ2(1− u2)u2 + (1− t)µ2

d2 (d− (αu1 − du2)
−) (αu1 − du2)

− − αkωu1u2

where k > 0 and t ∈ [0, 1]. Observe that if we take t = 1, then (3.2) reduces to the
original system (1.5).

Lemma 3.1. Let η > 0. There exists a constant C > 0 such that for any t ∈ [0, 1]
and k ≥ 1, if (u1, u2) is a nonnegative nonzero solution of (3.2) and

‖(αu1 − du2)− v‖L∞ ≤ η

then
0 < u1 < C, 0 < u2 < C and ‖(u1, u2)‖Lip ≤ C.

Proof. We start by showing that nonnegative nonzero solutions are necessarily
strictly positive. Indeed, assuming that u2 ≥ 0, we have that 0 is a solution of
the equation in u1, since in this case (α0 − du2)

+ = 0. We thus conclude by the
comparison principle that u1 > 0.
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In order to show the upper uniform bound, we first observe that by assumption

du2 ≥ αu1 + v − η

and that, moreover, there exists a constant C′ > 0 such that

tµ1(1 − u1)u1 + (1− t)
µ1

α2

(

α− (αu1 − du2)
+
)

(αu1 − du2)
+ ≤ C′.

As a result, any u1 positive solution of (3.2) satisfies the differential inequality

−u′′1 ≤ C′ − k

d
ωu1(αu1 + v − η).

It follows that any maximum M > 0 of u1 satisfies

k

d
ωM(αM + v − η) ≤ C′,

whence u1 is bounded by some constant C > 0. We can conclude similarly for the
component u2.

To prove the uniform Lipschitz estimate, we integrate the equation in u1 on the
interval [0, L]. Exploiting the L-periodicity of u1, we find
(3.3)

k

∫ L

0

ωu1u2 =

∫ L

0

tµ1(1− u1)u1 +

∫ L

0

(1− t)
µ1

α2

(

α− (αu1 − du2)
+
)

(αu1 − du2)
+.

Once again, the right hand side is bounded by C′L for any t ∈ [0, 1] and k ≥ 1.
Since u1 is periodic and smooth (C 1,1) for k bounded, there exists x0 ∈ [0, L] such
that u′1(x0) = 0. Integrating the equation in u1 on the interval [x0, x] We find that

u′1(x) = −
∫ x

x0

[

tµ1(1− u1)u1 + (1− t)
µ1

α2

(

α− (αu1 − du2)
+
)

(αu1 − du2)
+
]

+k

∫ x

x0

ωu1u2

which yields, together with (3.3), the estimate for any x ∈ [0, L]

|u′1(x)| ≤ 2

∫ L

0

tµ1|1− u1|u1 + 2

∫ L

0

(1− t)
µ1

α2

∣

∣α− (αu1 − du2)
+
∣

∣ (αu1 − du2)
+.

We conclude that the component u1 is bounded in the Lipschitz norm uniformly in
t ∈ [0, 1] and k ≥ 1. We can proceed in a similar way for the component u2. �

Lemma 3.2. Let η > 0 be sufficiently small. For any ε > 0 there exists k̄ ≥ 1 such
that any nonnegative solution (u1, u2) of (3.2) with k ≥ k̄ such that

‖(αu1 − du2)− v‖L∞ ≤ η

satisfies
∥

∥

∥

∥

(u1, u2)−
(

v+

α
,
v−

d

)
∥

∥

∥

∥

H1
L-per

∩C
0, 1

2

+ ‖αu1 − du2 − v‖
C

1, 1
2
≤ ε.

Proof. By the uniform Lipschitz estimate of Lemma 3.1 and the Ascoli–Arzela
theorem, we find that the set of solutions in the statement is compact in the C 0,γ

topology for any γ ∈ [0, 1) and limit points are Lipschitz continuous. Let (ū1, ū2) ∈
LipL-per be the limit of a converging sequence of solutions ((u1,k, u2,k))k as k → +∞.
Integrating the equation in u1,k over [0, L] and taking the limit k → +∞ (see also
the identity in (3.3)), we find that ū1ū2 = 0 must be satisfied. In particular, it
follows that

(3.4) (αū1 − dū2)
+ = αū1 and (αū1 − dū2)

− = dū2.
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Moreover, since the function v changes sign in [0, L], by taking η > 0 small enough,
we find that ū1 and ū2 cannot be identically zero. Testing the equation in u1,k by
u1,k itself, we find

∫ L

0

(u′1,k)
2 + kωu21,ku2,k =

∫ L

0

tµ1(1− u1,k)u
2
1,k

+

∫ L

0

(1− t)
µ1

α2

(

α− (αu1,k − du2,k)
+
)

(αu1,k − du2,k)
+u1,k

from which we obtain that the sequence (u1,k)k is bounded in H1
L-per. By the

compact embedding of H1
L-per in L2

L-per we also obtain that (u1,k)k converges to ū1
weakly in H1

L-per. Testing now the equation by u1,k − ū1 and using (3.3) to bound
the coupling term as in the proof of Lemma 3.1, we obtain
∫ L

0

[

(u1,k − ū1)
′]2 ≤−

∫ L

0

ū′1 (u1,k − ū1)
′
+ 2 sup

[0,L]

|u1,k − ū1|
[

∫ L

0

tµ1|1− u1,k|u1,k

+

∫ L

0

(1 − t)
µ1

α2

∣

∣α− (αu1,k − du2,k)
+
∣

∣ (αu1,k − du2,k)
+

]

.

As a result, the sequence (u1,k)k converges to ū1 also strongly in H1
L-per. Similar

conclusions hold for the sequence (u2,k)k.
We now consider the equation verified by αu1,k − du2,k. We find

− (αu1,k − du2,k)
′′ = αtµ1(1− u1,k)u1,k − tµ2(1− u2,k)u2,k

+ (1− t)
µ1

α

(

α− (αu1,k − du2,k)
+
)

(αu1,k − du2,k)
+

− (1− t)
µ2

d2
(

d− (αu1,k − du2,k)
−
)

(αu1,k − du2,k)
−.

Passing to the limit in the equation and exploiting (3.4), we obtain

− (αū1 − dū2)
′′ =

µ1

α

(

α− (αū1 − dū2)
+
)

(αū1 − dū2)
+

− µ2

d2
(

d− (αū1 − dū2)
−
)

(αū1 − dū2)
−

That is, the function αū1−dū2 is a solution of (3.1) that is η-close, in L∞ topology,
to the solution v. Since v is an isolated solution of the equation, by taking η
sufficiently small we find that necessarily αū1 − dū2 = v. As this is true for any
sequence of converging solutions ((u1,k, u2,k))k, we find the sought conclusion. �

An interesting consequence of the previous result is that the solutions of (3.2),

when η is small and k is large , are close to the segregated state
(

v+

α ,
v−

d

)

, inde-

pendently of the value of t ∈ [0, 1]. More precisely, we have the following corollary.

Corollary 3.3. There exists η1 > 0 such that for any ε > 0, t ∈ [0, 1] and k ≥
k̄(ε) > 0, if (u1, u2) ∈ C

1,1
L-per is a solution of (3.2) such that

‖(αu1 − du2)− v‖L∞ < η1

then
∥

∥

∥

∥

(u1, u2)−
(

v+

α
,
v−

d

)∥

∥

∥

∥

H1
L−per

∩C
0, 1

2

≤ ε.
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3.2. Existence of solutions. We now show the existence of solution of (1.5) when
k is large. We will prove this result in two steps, first proving the existence of
solutions of the auxiliary problem when t = 0, and then, making use of a homotopy
argument, we will transfer this result to the original problem. Our argument is
inspired by the method proposed in [8] to prove the existence of solutions of a
related problem.

Lemma 3.4. There exists η2 > 0 such that, for any k > 0, there exists a unique
positive solution (u1, u2) ∈ C

1,1
L-per

of

(3.5)

{

−u′′1 = µ1

α2 (α− (αu1 − du2)
+) (αu1 − du2)

+ − kωu1u2

−du′′2 = µ2

d2 (d− (αu1 − du2)
−) (αu1 − du2)

− − αkωu1u2

satisfying
‖αu1 − du2 − v‖ < η2.

This solution is L-periodic and linearly stable.

Proof. First, we claim that there exists η2 > 0 so small that solutions satisfying the
preceding assumptions verify in fact the identity αu1−du2 = v. Indeed, combining
the two equations in (3.5) we find that αu1 − du2 is a solution of (3.1) that is also
close to v in the L∞ topology. Since v is a stable, whence isolated, solution of (3.1)
, necessarily αu1 − du2 = v.

We proceed by showing that there exists a unique pair (u1, u2) in the class of all

(u1, u2) satisfying αu1 − du2 = v. We notice that in the set of all (u1, u2) ∈ C
1,1
L-per

satisfying αu1−du2 = v, the two equations of (3.5) are equivalent. Indeed, assuming
αu1 − du2 = v,

α
(

u′′1 +
µ1

α2

(

α− v+
)

v+ − kωu1u2

)

= v′′ + du′′2 +
µ1

α
(α− v) v+ − αkωu1u2

=
µ2

d2
(d+ v) v− + du′′2 − αkωu1u2

= du′′2 +
µ2

d2
(

d− v−
)

v− − αkωu1u2

Therefore it suffices to prove the existence, uniqueness and linear stability of
u ∈ C

1,1
L-per such that

(3.6) − u′′ =
µ1

α2

(

α− v+
)

v+ +
kω

d
u(v − αu).

Notice as a preliminary that, up to the forcing term µ1

α2 (α− v+) v+ ≥ 0, this
equation falls in the general theory of periodic KPP reaction–diffusion equations
developed by Berestycki, Hamel and Roques in [3].

On one hand, v+

α is a nonnegative nonzero sub-solution for (3.6). On the other
hand, any sufficiently large constant is a super-solution. The existence of a bounded
positive solution u satisfying αu > v+ follows. The uniqueness is easily established
thanks to a classical comparison argument relying upon the logistic form of u 7→
kω
d u(v − αu) (we refer for instance to Berestycki–Hamel–Roques [3, Theorem 2.4];

regarding uniqueness, the forcing term µ1

α2 (α− v+) v+ does not play any role). The
periodicity then follows directly from the uniqueness. Finally, by definition, the
solution u is linearly stable if

λ1,L−per

(

− d2

dx2
− kω

d
(v − 2αu)

)

> 0.
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It is well-known that the preceding inequality is satisfied if v − 2αu < 0, which is
true indeed since v

2 ≤ v+ < αu. �

We now pass to the second step of the construction. For notation convenience,

let X = C
0,1/2
L-per (any Hölder exponent γ ∈ (0, 1) would do) and let L ∈ K(X ;X)

be the linear compact operator such that, for all z, f ∈ X , z = Lf if and only if
−z′′ + z = f .

We consider the homotopy H : X2 × [0, 1] → X2 defined by

H(u; t) = u− L (u+ f(u; t)) ,

where

f (u; t) =

(

tµ1(1 − u1)u1 + (1− t)µ1

α2 (α− (αu1 − du2)
+) (αu1 − du2)

+ − kωu1u2
1
d

(

tµ2(1 − u2)u2 + (1− t)µ2

d2 (d− (αu1 − du2)
−) (αu1 − du2)

− − αkωu1u2
)

)

.

Observe that the homotopy H is of the form Id − Kt where Id : X2 → X2 is
the identity operator, and Kt ∈ K(X2 × [0, 1];X2) is a compact operator for any
t ∈ [0, 1] and is continuous in t, by standard elliptic estimates. In this regard, we
observe that k is fixed.

We have that H(u1, u2; 0) = 0 if and only if (u1, u2) is a solution of (3.5), while
H(u1, u2; 1) = 0 if and only if (u1, u2) is a solution of (1.5). Our goal is to apply the
theory of the Leray–Schauder degree in order to evince the existence of solutions
of (1.5) from the existence of solutions of (3.5), Lemma 3.4.

Now, we fix η = min (η1, η2) (see Corollary 3.3 and Lemma 3.4) and define, for
any ε > 0, the set

Oε =

{

u ∈ X2 | u1 > 0, u2 > 0, ‖αu1 − du2 − v‖L∞ < η,

∥

∥

∥

∥

u−
(

v+

α
,
v−

d

)∥

∥

∥

∥

X2

< 2ε

}

.

It is a connected open subset of X2. Moreover, it should be noticed that provided
ε is small enough, then Oε does not depend on η and reduces to

Oε =

{

u ∈ X2 | u1 > 0, u2 > 0,

∥

∥

∥

∥

u−
(

v+

α
,
v−

d

)∥

∥

∥

∥

X2

< 2ε

}

.

Lemma 3.5. For any ε > 0 there exists k̄ > 0 such that the equation

H(u1, u2; t) = 0

has no solutions for any t ∈ [0, 1] and k ≥ k̄ on ∂Oε.

This result follows directly from Corollary 3.3.

Lemma 3.6. For any ε > 0, the equation

H(u1, u2; 0) = 0

has a unique solution in Oε. Moreover there exists k̄ > 0 such that if k ≥ k̄, then
this solution has fixed point index 1, that is

indexX2(Oε; (u1, u2)) = 1.

This result follows from Lemma 3.4. We also recall that the fixed point index of
an isolated solution can be computed by linearization if the equation involves C 1

operators, [1, Theorem 4.2.11].
We can thus conclude by virtue of the Leray–Schauder theorem (see [19] and [1,

Theorem 4.3.4]).



COMPETITION IN PERIODIC MEDIA, III 18

Lemma 3.7. For any ε > 0, there exists k̄ > 0 such that, for all k > k̄, (1.5) has
a solution (u1,k, u2,k) in Oε. Moreover,

lim
k→+∞

∥

∥

∥

∥

(u1,k, u2,k)−
(

v+

α
,
v−

d

)
∥

∥

∥

∥

H1
L-per

∩C
0, 1

2

+ ‖αu1,k − du2,k − v‖
C

1, 1
2
= 0.

If needed, one can improve the convergence result, by stating that the solutions
are uniformly bounded in the Lipschitz norm and converge in the C 0,γ norm for
any γ ∈ (0, 1). See, on this subject, the results in [5].

3.3. Linear stability for k large. We now investigate the linear stability of the
solutions obtained in Lemma 3.7. To this end, we consider the linearized system
(1.5) at the solution (u1, u2) and introduce its periodic principal eigenvalue.

For all k > k̄, let

λ1,k = λ1,L-per

(

−
(

d2

dx2 + µ1 (1− 2u1,k)− kωu2,k kωu1,k
αkωu2,k d d2

dx2 + µ2 (1− 2u2,k)− αkωu1,k

))

and assume that the associated periodic principal eigenfunction (ϕk, ψk) is normal-
ized in such a way that

max
x∈[0,L]

(αϕk + dψk) (x) = 1.

Observe that since both ϕk and ψk are positive, this automatically implies that the
two functions are globally bounded.

We start by showing a priori estimates on the principal eigenvalue and the prin-
cipal eigenfunctions.

Lemma 3.8. The principal eigenvalues are uniformly bounded from below. There
exists C ∈ R such that

λ1,k > −C for all k > k̄.

Proof. It suffices to take

C = sup
k>k̄,x∈R

(|µ1(1− 2u1,k)|+ |µ2(1− 2u2,k)|) .

Indeed, the solution (u1,k, u2,k) ∈ Oε are uniformly bounded. Thus C is finite. We
then consider the sum of the equation in αϕk and in ψk. The conclusion follows
from the fact that the equation

− (αϕk + dψk)
′′
= µ1(1 − 2u1,k)αϕk + µ2(1− 2u2,k)ψk + λ1,k (αϕk + ψk) ,

where the right-hand side is smaller than or equal to (C +λ1,k) (αϕk + ψk), has no
positive L-periodic solution if λ1,k < −C. �

Lemma 3.9. For any ε > 0 and δ > 0, there exists k̄ > 0 such that

sup
{v−>ε}

ϕk + sup
{v+>ε}

ψk ≤ δ

for any k ≥ k̄.

Proof. We prove only the estimate in ψk, since the estimate in ϕk follows the same
reasoning. From now on, ε > 0 and δ are fixed and we wish to show that

sup
{v+>ε}

ψk ≤ δ.
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First, we observe that, since v ∈ C 1,1, the constant

ℓ =
1

4‖v+′‖L∞

> 0

satisfies

{v+ > ε}+ (−ℓε, ℓε) ⊂ {v+ > ε/2} and

{v+ > ε/2}+ (−ℓε, ℓε) ⊂ {v+ > ε/4}.
By uniform convergence of the sequence (u1,k)k to v+/α, we have that, for k large
enough, u1,k >

ε
8α on {v+ > ε/4}. We now consider the equation satisfied by u2,k.

We find that

−du′′2,k = µ2 (1− u2,k)u2,k − αkωu1,ku2,k

≤
[

1

2
‖µ2‖L∞ − inf

x∈[0,L]
ω(x)k

ε

8

]

u2,k ≤ −Akεu2,k on {v+ > ε/4}

with a positive constant A that can be chosen independently of k and ε whenever
k is sufficiently large.

Observe that the function S : x 7→ β cosh(
√

Akε/dx), β > 0, is a super-solution
of the previous differential inequality and that u2,k ≤ 1 in [0, L]. Thus, choosing β
in such a way that S(x) ≤ 1 for x ∈ (−ℓε, ℓε), through a simple covering argument,
the comparison principle yields

u2,k(x) ≤ 2e−
√

Akε3/dℓ for all x ∈ {v+ > ε/2}.
Finally, by the previous estimates, we deduce

−dψ′′
k = αkωu2,kϕk + [µ2(1− 2u2,k) + λ− αkωu1,k]ψk

≤ Bke−
√

Akε3/dℓ − Ckεψk on {v+ > ε/2}
where, as before, the constants B and C can be chosen independently of k and
ε whenever k is sufficiently large. We can make use again a comparison with a
super-solution, see [20, Lemma 2.2], and conclude that

Ckεψk(x) ≤
D

dℓ2
+Bke−

√
Akε3/dℓ for all x ∈ {v+ > ε}

for D universal positive constant. The result follows by taking k large enough. �

With the uniform estimates of Lemma 3.8 and Lemma 3.9 we are now in position
to show that the solution (u1, u2) constructed in the previous section is indeed
linearly stable if k is sufficiently large.

Of course, if lim inf
k→+∞

λ1,k = +∞, then the proof is done. Hence we assume from

now on that lim inf
k→+∞

λ1,k < +∞. Up to extraction of a subsequence, we also assume

that λ1,k → lim inf
k→+∞

λ1,k as k → +∞. In particular, (λ1,k)k is bounded.

Lemma 3.10. For all k > k̄, we define Zk ∈ C
1,1
L-per as

Zk = αϕk + dψk.

Then the sequence of positive functions (Zk)k is uniformly bounded in W 2,p
L-per and

C
1,γ
L-per for any p <∞ and γ < 1. Each Zk solves

−Z ′′
k =

[

µ1

(

1− 2
v+

α

)

+
1

d
µ2

(

1 + 2
v−

d

)]

Zk + λ1,kσ(v)Zk + ok(1)
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where ok(1) is a sequence of functions, bounded uniformly in L∞ and such that
ok(1) → 0 in Lp

L-per for any p <∞.

Proof. Once again, we take the sum of the equation in αϕk and the equation in ψk.
We thus find

(3.7) − (αϕk + dψk)
′′
= µ1 (1− 2u1,k)αϕk +µ2 (1− 2u2,k)ψk +λ1,k (αϕk + ψk) .

We observe that the terms in the right hand side of (3.7) are uniformly bounded.
Thus there exists Z ∈ (H2 ∩C 1,γ)L-per such that, up to subsequence, Zk → Z ≥ 0.
By uniform convergence we have maxZ = 1. As a consequence of Lemma 3.9, we
also have that

(αϕk + ψk) →
(

1v>0 +
1

d
1v<0

)

Z = σ(v)Z

in Lp for any p <∞.
We now rearrange the terms of (3.7) as follows:

− Z ′′
k =

[

µ1

(

1− 2
v+

α

)

+
1

d
µ2

(

1 + 2
v−

d

)]

Zk + λ1,kσ(v)Zk

+ λ1,k [(αϕk + ψk)− σ(v)Zk]

+

[

2αµ1

(

v+

α
− u1,k

)

ϕk − 2µ2

(

v−

d
+ u2,k

)

ψk

]

−
(

µ1

(

1− 2
v+

α

)

dψk +
1

d
µ2

(

1 + 2
v−

d

)

αϕk

)

.

In order to conclude, we need to show that the second, third and fourth lines in
the previous equation are small contributions in the Lp

L-per norm. Now, we just
proved that the second line converges to zero in the Lp topology. The third line

also converges to zero, since (u1, u2)k →
(

v+

α ,
v−

d

)

in C 0,γ . Finally, by Lemma 3.9,

the fourth line also converges to zero in Lp
L-per. �

We now recall that the solution v is, by construction, linearly stable in the sense
of (1.2). This implies in particular that any eigenpair (λ, Z) satisfying

(3.8) − Z ′′ −
[

µ1

(

1− 2
v+

α

)

1v>0 +
1

d
µ2

(

1 + 2
v−

d

)

1v<0

]

Z = λσ(v)Z

is such that λ has a positive real part. More precisely, using the uniqueness part of
the Krein–Rutman theorem, we can establish the following convergence result.

Lemma 3.11. There exists k̄ > 0 such that for any k ≥ k̄ the solution (u1,k, u2,k)
is linearly stable.

Furthermore, the sequence ((λ1,k, Zk))k and the principal eigenpair (λ1, Z) given
by the notion of stability in the sense of (1.2) satisfy the following equalities:

lim inf
k→+∞

λ1,k = λ1 > 0 and lim
k→+∞

Zk = Z

in W 2,p
L-per and C

1,γ
L-per for any p <∞ and γ < 1.

Proof. In view of Lemma 3.10, (Zk)k converges to some limit Z∞ in W 2,p
L-per and

C 1,γ for any p <∞ and γ < 1. This limit is obviously an eigenfunction associated
with the eigenvalue lim inf

k→+∞
λ1,k and, moreover, Z∞ is L-periodic, maxZ∞ = 1 and
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Z∞ > 0. Hence, by uniqueness up to normalization of the positive eigenfunction,
the result follows. �
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