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1. INTRODUCTION.
Nowadays industrial applications increasingly need improved technical and scientific understanding so as to  
optimise production and competitiveness. Hence, developing empirical, numerical or theoretical models has 
become  crucial.  Derivation  of  mathematical  models  consists  in  determining  behaviour  laws  and  the 
corresponding effective parameters. The knowledge of the domains of validity of these models is of great  
importance.  Paper industry would also draw a great  benefit from the improved understanding of physical 
processes provided by such theoretical investigations. As an example, deriving knowledge models of physical 
processes involved in the new technology of paper pressing at high temperature will allow enhancement of 
both paper quality and production rate.
This article is devoted to the mathematical modelling of phase change of water into vapour phase during hot  
paper pressing. The overall behaviour is obtained from the fibre scale by an upscaling technique which is 
based on asymptotic expansions. The main characteristics of the method are briefly recalled in part 2. Then,  
the method is used to investigating phase change in porous media in order to derive a model for hot paper 
pressing.

2. PRESENTATION OF THE METHOD.
Numerous mathematical techniques may be found in literature,  that  allow derivation of the  macroscopic 
behaviour from the physical description at a finer scale (Kaviany (1)). The essential goal is to reproduce the 
behaviour of the finely heterogeneous paper at the macroscopic scale at which numerical calculations will be 
performed.  Then,  the  effective  macroscopic  parameters  are  generally  obtained  by  identification  with 
experimental results that are obtained at the macroscopic sample scale. The most frequently used upscaling 
technique is the volume averaging method. Unfortunately, this method does not give the domain of validity of 
the  macroscopic  models.  In  this  work,  we  use  an  homogenisation  technique,  namely the  method  of 
homogenisation for periodic structures, that has initially been introduced by Bensoussan and co-authors (2). It 
permits to obtain the macroscopic laws, their domain of validity, and also the effective parameters without any 
macroscopic pre-requisite. The main steps of the upscaling procedure are the following: 1) definition of the 
physical phenomena involved at the microscopic scale; 2) identification of the different scales. In the present 
case there are two scales whose ratio is measured via a small parameter,  ; 3) writing of the microscopic 
description in a dimensionless form. The dimensionless numbers arising from this new writing are estimated, 
which gives rise to the definition of several distinct dimensionless local descriptions; 4) writing of the physical 
variables in the form of asymptotic expansions in powers of  5) investigation of the local boundary value 
problems obtained at the successive orders of magnitude of 
That  yields  a  catalogue  of  macroscopic  models  which  are  related  to  the  distinct  dimensionless  local 
descriptions. The domain of validity of each model is defined by means of the orders of magnitude of the 
dimensionless numbers. For a specific practical problem (i.e. a given pressing process and a given paper), the 
corresponding dimensionless numbers  can  easily be  estimated  by selecting  the  appropriate  characteristic 
quantities. The suitable model for describing the process under consideration can then be selected throughout 
the catalogue. 

3. LOCAL EQUATION DESCRIPTION. 
The local physical description is based on Ishii’s work (1975). We analyse different problems linked to the 
distinction of dimensionless parameters. These have to  be evaluated for the physical studied situation and 
therefore the macroscopic equivalent model is found when it exists.
The chosen scale is microscopic scale corresponds to the pore one. The source term is not written at this 
scale. Nevertheless, phase change may occur at the interface between the considered fluids (air/vapour and 



water).  The following conservation equations are  therefore  written :  mass,  momentum, energy. They are 
completed by the boundary conditions. We assume that  the vapour has no contact  with the solid, that  is 
equivalent to an annular situation. The skeleton may be considered as rigid or deformable. This modifies only 
the water velocity at the solid interface.

3.1 - BULK EQUATIONS

Mass conservation :   0v.
t kk
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Where k and vk  are density and velocity of k component, respectively.
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Where pk and k are the pressure and the viscosity.

Energy conservation :  k
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Where Cp is the specific heat , T is the temperature,  is the thermal conductibility and 
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volume dilatation rate. For a perfect gas,  = 1/T and for a liquid  is negligible.

State equation for fluids : p  =  A  k k k

3.2 - SOLID - LIQUIDE INTERFACE WS

* velocity continuity : Vw = u's   ( or = 0  if the skeleton is assumed as rigid)

where Vw is the wetting phase velocity and u's represents the partial derivative of the solid displacement.

* Temperature jump : Tw = Ts
* Energy conservation:  w w s sgrad .N grad .NT Tw s   where N(w,s) is the unit normal vector.

3.3 - LIQUID – GAZ INTERFACE WA

a) Mass :     0N.N. wiwwaiaa  vvvv  , where vi is the interface velocity.
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where psat, Hwa and  are the saturated vapor pressure, the liquid-gas interface curvature and the superficial 
tension, respectively.

c) Energy :    aawwpa
2
apw

2
wapawpww

0

2

1

2

1
TCTCm0 g.Ng.Nv.vvv.vv 













































where vp = (vi.nk)nk+vt ,   kikkk
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m N.vv  , gk,, is the free Gibbs energy gk = uk-Tk sk + (pk/k), uk is the 

mass internal energy and sk is the mass entropy.
d) Thermal condition : T T Twi ai i 

e) Energy condition :      
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4 – FORMAL EQUATIONS



4.1 - Introduction of dimensionless quantities.
For each physical value , we may define the associated dimensionless quantity :    =  R

* .  

where R is the physical reference value and * the dimensionless variable.

4.2 – Numerical values of reference variables
Reference values presented in the above table are used here to obtain dimensionless variables.

Variable Unit Water Air Fibre
 Pa . s 10-3 19.10-6

 kg. m-3 103 1.23 1,5.103

 m² . s-1 10-6 1,5.10-5

T s 10-3 10-3 10-3

P Pa 105 à 106 105 à 106 105 à 106

V m . s-1 10-2 10-2

T K 293 à 373 293 à 373 293 à 373
 J .m-1 .s-1 .K-1 0.602 0.026 0.33

Cp J . kg-1 . K-1 4.18.103 103 1,33.103

 m² . s-1 1,4.10-7 2,1.10-5 1,6.10-7

 N . m-1 72,75.103

(293)
58,8.103

(373)
K Pa 2.109 105

A kg . m-1 . s-2 2.106 8,1.104

Table 1 : Reference values

We may now estimate the order of magnitude of these figures in respect of .
 a = O ( . w); a = O ( . w); a = O (w); Ta = O (tw); pa = O(pw

)
; Ta = O (Tw);

 a = O ( . w); Cpa = O (Cpw); a = O (-1. w); Ka = O (² . Kw); Aa = O ( . Aw)

Table 2 :Reference values evaluation versus  with   = O (10-2)

4.3 – Formal equations
We may introduce in the preceding equation each dimensionless variables. Nevertheless in order to simplify 
the notation, the symbols * and R are now omitted. Furthermore, dimensionless parameters constituted by 
given reference values are introduced.

(1) – Mass Conservation :   0v.
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number. It has been demonstrated that the situation is homogenisable only in the case : St  O () 
(AURIAULT - 1990).
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Euler and Reynolds numbers, respectively.



The EULER number may be written as : Eu = Q / Re = O (-1) / Re

With : 
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(3) – Energy conservation :
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where hk represents the mass enthalpy. 
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(4) – Solid – liquid interface
-4 velocity continuity at the ‘interface : vw = u’s
-5 Thermal condition : Tw = Ts

The Biot number may be introduced here : 
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The Biot number B is zero valued here as there are a finite flux and a negligible thermal resistance. Hence 
the temperatures (T and T) corresponding to each interface side are equal.

-4 Energy : Cws w w s s grad .N grad .NT Tw s .
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as the thermal conductibilities for both fibre and water are almost equal.

(5) - Boundary conditions Liquid - Gas :
- Mass conservation :     0N.N.CL wiwwaiaa1wa  vvvv 
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- Momentum equilibrium : 
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tension number, the phase change number, respectively. The surface tension number N will be 

considered at the order of magnitude of 1.



- Energy :
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We assume that  vp = O (vr). If vp = O (.vr), it is then necessary to introduce the scale factor   in 

front  of the scalar product.  Nevertheless, as the Eckert  number is weak,  this modification has no 
influence.

- Thermal condition : T T Twi ai i 
-5 Energy condition :
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number and the phase change number, respectively.

The following table recapitulates the order of magnitude for the different dimensionless parameters for 
both gas and water, considering that the fluid velocities are of the same order of magnitude.

DIMENSIONLESS NUMBERS FLUID
St    (STROUHAL)  OS t 

Re    (REYNOLDS)  OR e 

Eu    (EULER)  2
u OE  

Cws  1OCws 

CLwa1  

N  

CLwa9  

Table 3 : Evaluation of dimensionless parameters in order of magnitude of .

The Eckert, Peclet and CLwa4 numbers will be considered as variable parameters for the following 

presentation. Furthermore, it is interesting to note that :
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(6) – Synthesis of formal equations and dimensionless parameters.



From the preceding equations and the dimensionless parameter evaluations, the following formal equations 
may be rewritten where k represents each present phase :
1 – Mass conservation :   0v. kk  

2 – Momentum equilibrium :   k
1

kkk Pgrad)vdivgrad(v0  

3 – Energy conservation :     kkceukkkke p.VE.P.Eg.h.VP  

4 – Solid-liquid interface :
a) Velocity continuity : vw = u's
b) Thermal condition : Tw= Ts
c) Energy :  w w s sgrad .N grad .NT Tw s

5 - Liquid – gas interface
a) Mass :      0N.vvN.vv wiwwaiaa  

b) Momentum :  
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c) Energy :
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d ) Thermal condition :    Twi = Tai =Ti

e) Chemistry :      
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f) State equation : Pk = Ak k

5. APPLICATION TO HOT PAPER PRESSING.

5.1 - Problem presentation.
Hot  paper  pressing is  a  new technology that  brings  up  the  following main technical problems:  The 
temperature of the heated roll may reach temperatures as high as 300 °C. As a result, water phase change 
is particularly important near the heated roll. Thus, the vapour pressure becomes considerably high, which 
gives rise to an enhancement of the phenomenon of water expulsion. This phenomenon is favourable to the 
process but must be fully predicted in order to optimise the technology; The main technical problem occurs 
at the outlet of the press. In this region, as the applied pressure is considerably reduced, a new violent 
phase change occurs that may induce a damage of the paper. In this study, we derive mathematical models 
that allow a better understanding of these problems. Therefore, use of these models would help to improve 
and optimise this new technology. The mathematical modelling technique can also be used so as to improve 
the performance of any other technical process that involves porous media.
As  presented  above,  3  dimensionless  independent  parameters  (phase  change,  Peclet  and  Eckert 
parameters) govern the choice of the macroscopic equation to be selected. We will analyse here only the 
thermal problem, assuming the mechanical one to  be solved. Furthermore, we investigate the following 

cases : CLwa4 = O (3  or  2  or    or 1), Pe = O ( 2  or    or  1) and Ec  O (4).

5.2 Homogenisation results.

I    :  CLwa4  = O (1)

This situation is not homogenisable, that is to say that no equivalent macroscopic description exists. It is 
therefore necessary to notice that the experimental results can not be extrapolate to another situation, in 
which the boundary condition type are modified.



II -   CLwa4  =  O (²)

A  :  Pe = O (²)
In this case,  diffusion is the only effect that  is obtained at  the macroscopic scale. The given effective 
coefficient presented here is the same for all the II cases.
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B  :  Pe = O ()
A convective term appears. We may remark that only the wetting phase appears here.
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C  :  Pe = O (1)
We obtain in this case, a change phase term, that completes the convective and diffusive ones. The non 
wetting phase appears also in the convection.
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In this study, we have assumed the temperature continuity at interface. Hence, we have : Twa = T

With in the II-cases :










































d
y

1

w

ik
k

jw
jkw

eff
ij






and
  











































dV
y

1

w

w

ikij

0
jwi

k

j
jkw

**
eff 






w is defined by a boundary problem. Nevertheless it is not presented here.



III -   CLwa4  = O ()

A  :  Pe = O (²)
A diffusive term is found :
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B  :  Pe = O ()
Convective and phase change terms appears simultaneously. Moreover each term has the same order of 
magnitude.
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C  :  Pe = O (1)
Phase change, convection and diffusion terms are present. Non wetting phase appears now in the phase 
change and the convection terms. However its influence is weak ( coefficient in front of each term).
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IV  :  CLwa4 = O (3)

The results are equivalent to those without any phase change. Indeed, the introduction of the asymptotic 
development of the phase change term is introduced at a too high order to take place in the macroscopic 
equation.

6 - CONCLUSION
The main aspects of the homogenisation were presented. Then, the local physical equations that represent 
the phase change phenomena were written. These were set in a dimensionless form in order to apply the 
asymptotic expansion technique. Different thermal equations were obtained at the macroscale depending 
on dimensionless parameters. It  is advisable to  evaluate these parameter in the studied situation and to  
consider the advocated equations. A classical equation structure is found in which a source term is obtained 
directly in the macroscopic equation. This term does not appears at the microscopic description where the 
phase change takes place, as this phenomena was describe as an interfacial exchange and not as a source 
term.
Hence the obtained equation and corresponding parameters are dedicated to each technological situation. 
Moreover these results are valid for any porous media that correspond to the presented hypotheses.
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