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1 Introduction 

In the scope of performance assessment of a deep geological repository for nuclear wastes, 
numerical simulations, and therefore accurate mathematical models are of importance for a better 
understanding of underground contaminant migration. A common feature of the potential 
geological formations selected in France for nuclear wastes repository is the presence of 
discontinuities at several length scales. As a result, flow and transport models must account for 
the fractured nature of the host rock. The modelling strategy developed at IPSN (French Institute 
for Nuclear Safety and Protection) gives a great importance to continuum approaches, as it is 
more suitable for describing the large scale involved in the performance studies. 

This work is aimed towards deriving the macroscopic goveming equations of contaminant 
transport in a fractured porous medium. Such a medium is locally characterised by a 
representative elementary volume (REY) whose size is 0(1) and that consists of a porous matrix 
domain, n,;. and a fracture domain, n,, whose common boundary is denoted r (figure 1).

At the local scale, (i.e. at the REV scale ), contaminant transport is govemed by the following 
equations. 

In the fractures ( n / ):

µAv1 -Vp1 = ô,
V.v

1 
=0,

ac, - - - -
dt 

-V.(D1Vc1 -c1v1 )=0, 

(Stokes equation) 

(mass balance equation) 

( diffusion-convection equation) 

(1) 

(2) 

(3) 

where v
1

, p
1

, c
1 

and D
1 

are the velocity, pressure and concentration fields and the tensor of 
molecular diffusion in the fractures, respectively. 

In the porous matrix ( n
m 
): 

vm =-KmVPm' 
v.v

m 
=O, 

(Darcy's law) 
(mass balance equation) 

(4) 

(5)



( diffusion-advection equation) (6) 

where vm , Pm , cm and Dm are are the velocity, pressure and concentration fields and the tensor of 
dispersion in the matrix, respectively. 

On the boundary (r):

- - - -

v
f
"n = vm .n

P1 =pm 

(d1Vc1 ).ïi = (dm Vcm ).ïi 

( continuity of fluxes) 
( continuity of pressures) 
( continuity of diffus ive fluxes) 
( continuity of concentrations) 

(7) 
(8) 

(9) 

(10) 

The essence of homogenization method is to determine an equivalent macroscopic behaviour by 
upscaling the local description. The purpose of the present study is to homogenize the local 
description (1-10), in order to determine the influence of the matrix-transport on the structure of 
the macroscopic transport equation. 

The fundamental assumption behind homogenization theory is that the scales are separated: 

l<< L, 

where l and L are the characteristic lengths at the heterogeneity scale and at the macroscopic 
scale, respectively. As this definition conjures up a geometrical separation of scales, we shall 
draw attention to the fact that this fundamental condition must also be checked regarding the 
phenomenon. 

In. this study, we use the method of homogenization for periodic structures, introduced by 
Bensoussan et al. (1978) and Sanchez-Palencia (1980). The key parameter of the model is the 
small parameter 

l 
ê=-<<1, 

L 

which is a measure of the separation of scales. 

We also assume the medium to be periodic. This assumption is actually not a restriction: it 
allows determination of the macroscopic behaviour without any prerequisite on the form of the 
macroscopic equations. ln the case of a periodic medium, the REV is merely the period. 

In this study, we use the approach suggested in (Auriault, 1991), by which the problem is tackled 
in a physical rather than mathematical manner. Indeed, it offers the additional benefit that the 
conditions under which homogenization does apply are expressly stated. This formulation of the 
method is on the basis of definition and estimation of the non-dimensional numbers arising from 



the local description under consideration. This fundamental step is called normalization and is 
aimed at specifying ail cases that can be homogenized. 

2 Normalization 

The purpose of this section is to define the set of non-dimensional numbers that characterize the 
local description (1-9) and then to estimate them with respect to the small parameter e.

From equations (1) and (3), we can define 

(Peel et number in the fractures). 

Similarly, equations (4) and (6) introduce 

(Peclet number in the porous matrix). 

Finally, from the boundary conditions (7) and (9) we get the two following non-dimensional 
numbers: 

lvm .nl lcJm Vcm).nl 
lv,.nl' lcJ1Vc1).nl. 

For estimating these non-dimensional numbers, let us consider L as the reference characteristic 
length. This arbitrary choice does not affect the final result. Thus, the numbers to be estimated in 
powers of e are the following: 

µV L2 V L 
F =_..!,_ N =-- Pe =....!,_

1 L8P' 1 D T '

1 D ' 

le I le 

(in the fractures) 

( V
1

< and D
1

< are characteristic values of the velocity and the molecular diffusion, respectively 

and 8P is a characteristic macroscopic pressure drop). 

1 2 V D V P !. 1 !. m Q =-x-< xF- N =-< xN D Pe =-< xPe1,
m L2 V I '  m D I !.' m V 

· m< 
m

< 

< 

le 

( l
P 

is the characteristic length at the pore scale ). 

(in the porous matrix) 



(on the boundary) 

The goals of the analysis are two-fold: 

i) To define the conditions for which homogenization can be applied (homogenizable cases)
ii) To draw the cases for which the matrix-influence is maximum.

It can be shown that the physics does impose (Auriault and Adler, 1995): F
1 

= O(e2
}, and that a

maximum influence of the matrix-transport is characterised by (Auriault, 1983), (Auriault and 
Lewandowska, 1995): 

Now, the equations describing the flow and the transport in the porous matrix are meaningful if 
l 

l
P 

<< l. Let us assume that L = O(e).
l 

Therefore, the non-dimensional numbers related to the boundary conditions are defined by the 
above estimations. As for the non-dimensional numbers related to the porous matrix, � is 

defined and N
m 

and Pe
m 

are such that: 

Note that the fact that a physical situation is homogenizable and that the influence _of matrix
transport is maximum is, in particular, characterised by the order of magnitude: 

Now, it turns out that the orders of magnitude of Pe
1 

and N
1 

are linked and that three distinct 

orders of magnitude for Pe
1 

can be considered: 

i) 

ii) 

iii) 

Pe
1 

= O(e) 

Pe
1 

= 0(1) 

Pe
1 

= O(e-
1
) 

( dominant diffusion) 

( equivalent diffusion and convection) 

( dominant convection) 

Any other order of magnitude for Pe 
I 

will lead to a non-homogenizable physical situation, i.e, a 

physical situation for which no continuous macroscopic description is conceivable. We have 
homogenized the local description corresponding to case ii). The macroscopic description is 
presented in the next section. 



3 Scaled-up Model in the Case of Equivalent Diffusion and Convection in the Fractures 

This case is·characterised by the following estimations: 

F1 = O(e2 ), N1 = 0(1), Pe1 = 0(1). 
Qm = O(e), Nm = O(e-2), Pem = O(e-1).
V D
� = O(e), � = O(e2)

v,c v,c 

(in the fractures) 
(in the porous matrix) 

(on the boundary) 

As a result, the non-dimensional local description is the following, in which all quantities are 
now non-dimensional quantities: 

2 - - -
e µ!!,.v

1 
- Vp

1
= 0 in n,

V.v1 =0 inQ1
ac, - �- ---V(dVc -c v )=0 inn, 
dt 

· 
f If 

vm = -e.Km Vpm in n
m

v.v
m 

=O inn
m

dcm - 2-- -

iJt-V.(e dVcm -ecmvm ) = 0 in n
m

vf "ii = evm .ii on r 
Pt= Pm on r

- - 2 - -
(d1Vc1).ii = e (dmVcm).ii onr 
cf = cm on r

(11) 
(12) 

(13) 

(14) 
(15) 

(16) 

(17) 
(18) 
(19) 
(20) 

Applying homogenization (Auriault, 1991) to this local description leads to the following 
macroscopic behaviour: 

v, = -K/VP, 
V.VI =0,
- _ .- . - ac1 V.(D, vcf -Cf�)=

ai-
-

Coupling effect with the matrix- transport 

(21) 
(22) 

(23) 

k1 and b/ are the effective tensors of permeability and dispersion, respectively. They are 
symmetrical tensors and depend only upon the geometry of the periodic cell. 

The influence of the porous matrix appears only in the transport. equation (23) and, in particular, 
through the memory function H(t). The convolution product 



shows that the behaviour, at a given time, depends on the history of the second time derivative of 
the concentration. 

4 Conclusions 

We have investigated the problem of contaminant transport in a fractured porous medium. An 
important conclusion drawn from this study is that the macroscopic description strongly depends 
upon the values of a set of specific physical parameters. Thus, we have defined three 
homogenizable physical situations for which the influence of matrix-transport is maximum. 
In the present work, we have homogenized only one of these physical situations, which 
corresponds to equivalent diffusion and convection in the fractures. The macroscopic behaviour 
exhibits strong memory effects. 
In the framework of performance assessment of a potential repository site, besides providing a 
model of solute transport in a fractured porous rock, as the analysis is focused at a particular 
scale, the present study also offers guidelines for the site characterisation. 
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Figure 1: Periodic cell of the fractured porous medium. 




