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dual-arm motion to humanoid motion
for tasks involving contact with
the environment
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Veljko Potkonjak1 and Aleksandar Rodić3

Abstract
In this article, we explore human motion skills in the dual-arm manipulation tasks that include contact with equipment with
the final aim to generate human-like humanoid motion. Human motion is analyzed using the optimization approaches
starting with the assumption that human motion is optimal. A combination of commonly used optimization criteria in the
joint space with the weight coefficients is considered: minimization of kinetic energy, minimization of joint velocities,
minimization of the distance between the current and ergonomic positions, and maximization of manipulability. The
contribution of each criterion for seven different dual-arm manipulation tasks to provide the most accurate imitation of
the human motion is given via suggested inverse optimization approach calculating values of weight coefficients. The
effects on actors’ body characteristics and the characteristics of the environment (involved equipment) on the choice of
criterion functions are additionally analyzed. The optimal combination of weight coefficients calculated by the inverse
optimization approach is used in our inverse kinematics algorithm to transfer human motion skills to the motion of the
humanoid robots. The results show that the optimal combination of weight coefficients is able to generate human-like
humanoid motions rather than individual one of the considered criterion functions. The recorded human motion and the
motion of the humanoid robot ROMEO, obtained with the strategy used by human and defined by our inverse optimal
control approach, for the tasks “opening/closing a drawer” are assessed visually and quantitatively.
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Introduction

Human motion modeling has been widely studied and

explored in the literature with the aim to design and control

a humanoid robot inspired by human motion in daily

human activities. Human motion can be analyzed in differ-

ent ways. For instance, a biomechanical perspective is

characterized by the need for new information on the char-

acteristics of normal and pathological human movement.1
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In mathematics and robotics, human motion is viewed as a

set of differential equations. In order to create a robot with

anatomical features close to or resembling those of human

beings, humanoid robotics should devote considerable

attention to the analysis of human motion characteristics.

Humanoid robots have a highly redundant kinematic struc-

ture and can be used for the imitation of bioinspired fea-

tures to model human motion and/or human skills.

There are numerous techniques and strategies to analyze

human motion, such as imitation learning and optimization

approaches. Imitation learning is based on estimating the

characteristics of the demonstrated motion in a task or joint

space. Considering the state of the art in the field of human

motion imitation, it could be observed that the program-

ming by demonstration is a powerful tool for transfer

motion into humanoid robot motion.2–4 Since human

motion is optimal, we can assume that humans try to mini-

mize the unknown objective function during the manipula-

tion tasks. Accordingly, human motion can be analyzed

using optimization approaches with the cost function.5

The purpose of this research is to define the objective

function optimized in human motion with the aim to trans-

fer human skills to humanoid robots. Although the human

model is complex and includes many degrees of freedom

(DoFs), our aim is to transfer human skills to a humanoid

robot with fewer DoFs. To that end, the scaled kinematic

model of the robot ROMEO will be used as a kinematic

model of a human body. Human motion tasks which

include contact with the environment are analyzed herein.

The human motion in task space is partially imposed by the

task, while the motion in joint space is free to a certain

extent due to redundancy. This type of motion has not been

sufficiently explored in the literature. Unlike some other

studies where criterion functions are defined in the task

space,6,7 the authors have decided to observe human

motion characteristics based on the criterion functions in

the joint space and therefore enable an explicit human to

humanoid motion transfer. More precisely, we take the

basic criterion functions defined in the joint space (mini-

mization of the kinetic energy, minimization of joint velo-

cities, and minimization of the distance between the current

position and ergonomic configuration of humans while

keeping the arm away from the singularity (maximization

manipulability)) which are well-known in the optimization

process in robotics. We combine all of these criteria in

order to define the combination of criteria which best

describes human motion. The optimization process is rep-

resented at kinematic level due to the simplicity of the

approach and the fact that humanoid robots are often con-

trolled in position, while the torque information is not

directly controlled (especially in the case of multiple con-

tacts with the environment as in the present study). The

results obtained from the optimization process confirm a

priori knowledge about the activation of the upper body

joints during the task.8 The optimal combination of basic

criterion functions, which provides the most accurate

imitation of recorded human movement, is based on the

analysis of the same motion performed by 15 actors. The

effects on the actor’s body characteristics and the charac-

teristics of the environment in the choice of criterion func-

tions are additionally analyzed. The strategy of human

motion obtained using the inverse optimal control algo-

rithm is implemented to the robot ROMEO for the purpose

of performing the task previously done by a human. Con-

sequently, the desired humanoid motion is generated so to

include human motion skills.

The article is structured as follows. “Transfer from a

human to a humanoid robot motion” section provides an

overview of conversion of the recorded human motion to

humanoid robot motion. The inverse optimal control algo-

rithm is presented in “Characterization of human motion

using an inverse optimal control approach” section. The

following section presents the analysis of seven different

types of the dual-arm motions performed by 15 actors using

the proposed inverse optimal control algorithm. In

“Discussion” section, human skills are transferred to the

robot ROMEO for achieving a task done by an actor using

an inverse kinematic (IK) algorithm. The experimental

results demonstrate that human-like humanoid motion is

achieved.

State of the art and challenges in analyzing
human motion strategies

This chapter provides an overview of optimization algo-

rithms used for the analysis of human motion as well as

the criterion functions frequently used to explain the char-

acteristics of human motion behavior. The final part of

this chapter presents the contributions of our research to

the field.

Human motion as an optimization problem

Prior to initiating the task execution, it should be mentioned

that it is in the nature of every human being to perform a

motion in the simplest way and with minimum effort.

Therefore, we can assume that humans are always mini-

mizing some unknown criteria in order to create motions.

Based on the analysis of human motion, it is possible to

extract some criteria that are often used in optimization

algorithms in robotics, such as joint limit avoidance, max-

imization of manipulability, minimization of the magnitude

of the velocity and force, joint torques and torque change,

kinetic energy, muscle effort, jerk, and so on.9–12 The

choice of the criterion function depends on the way in

which the human motion is analyzed. Hence, the analysis

of human movement can be done at the kinematic or

dynamic level. Tomić et al.13 have examined the impact

of each criterion, such as minimization of kinetic energy,

velocity, and minimization of deviations from the ergo-

nomic position, on the quality of human motion imitation

with and without contact. They used the IK algorithm and
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included the criterion function using the null space of the

Jacobian. Several authors based their studies on defining

the dynamic criterion for the purpose of human motion

analysis. Khatib et al.14 analyze the activation of joints and

muscles during the motion and define a muscular effort

minimization criterion in order to obtain optimal human

postures using musculoskeletal dynamics. Their research

is based on the biomechanics of human motion. The

derived minimization criterion is implemented on the con-

trol algorithm of the robot. Zheng and Yaman15 propose an

optimal criterion, which includes the minimization of joint

torques and associated contact forces, in order to imitate the

given reference motions obtained from human motion cap-

ture data. They took into consideration the contact between

feet and floor, while the contact between hands and equip-

ment was disregarded.

Upon observing the way in which humans perform the

task, it is reasonable to think that humans use combinations

of different criterion functions instead of a single criterion,

as presented in the article above. Park et al.16 and Albrecht

et al.17 used the sets of parameters (such as minimization of

joint jerks, minimization of torque changes, and so on) to

produce the combination of criterion functions for human

motion analysis. Mombaur et al.6,7 defined the imitation of

the human locomotion as an optimization problem with an

objective function defined in the task space. The objective

function is a weighted sum of the basic criterion function

such as minimization of total time, integrated squares of the

three acceleration components, and the integrated squared

difference of the body orientation angle and direction

toward the goal. The aim of their research was to produce

a universal combination of the weighted coefficients for the

optimization algorithm that satisfies the imitation of any

type of human locomotion. Billard et al.18 extend the pseu-

doinverse optimization method for solving the IKs in order

to determine the optimal imitation strategy which best

satisfies the constraints of the given task. They defined the

objective function as a weighted sum of the basic criterion

functions defined into the Cartesian and joint spaces. Their

optimization algorithm minimizes the difference between

the current and the desired position of the joints and the

three-dimensional (3-D) Cartesian position of the hands.

They compute the trajectory of robot joints that imitates

human motions. The constraints of the robot’s body are

taken into account. Likewise, using the joint space, Yang

et al.19 analyzed human motion by combining joint displa-

cement minimization, changes in potential energy, and dis-

comfort basic function in a multiobjective optimization

algorithm in order to predict a static posture for the human.

The virtual human Santos has been used to evaluate differ-

ent performance measures and to test the applicability of

their optimization algorithm to posture prediction. In each

basic function, they proposed the weight coefficient for

each joint, taking into account the importance of particular

joints for carrying out the task. They applied the optimiza-

tion algorithm for each basic function separately and

compared it with the results obtained for multiobjective

optimization.

Unlike some previous studies, our research is based on

the analysis of human motion using the inverse optimal

control approach with criterion functions defined in the

joint space. Given that the human body is a highly redun-

dant system, there are different solutions for performing the

same motion in the task space. We seek the combination of

the values of the weight coefficients that generates the

humanoid motion that is closest to the recorded human

motion. This weight will define the criterion optimized

by human behavior. Comparing with previous studies, we

calculate the values of weight coefficients separately for

the different types of the dual-arm motions. In this way, we

are able to define a relation between characteristics of the

human motion in the joint space and the criterion function

which describe them. Furthermore, similar motion patterns

in joint space are characterized by a similar criterion func-

tion even if the motion in the task space is very different.

Characteristics of human motion joint activation,
ergonomy, and manipulability

The task performed by a human is largely determined by

muscle activation. Potkonjak et al.8 have analyzed motion

distribution through the arm joints. The distribution of the

motion is connected to the properties of biological systems

and the type of hand motion. On the “handwriting” task,

humans control their proximal joints for slow movements

and positioning, while the movement of the distal joints

follows them and controls fine and fast motions. In humans,

the high-inertia arm joints (shoulder and elbow) provide the

smooth global motion, while the low-inertia hand joints

(wrists) perform fast and precise local motions. Based on

the biomechanical research, Liu et al.20 analyzed the habits

of the human to use some muscles more than others during

the motion. Using the nonlinear optimization algorithm,

they minimized the energy objective functions, which com-

pute the total amount of torque due to muscle forces and

calculate the activity of each muscle during the motion.

Yang et al.19 explain the difference of joint activation via

their optimization algorithm, by adding different scalar

weight coefficients for each joint. This approach will be

used in our optimization algorithm via the weights associ-

ated with the minimization of kinetic energies and mini-

mization of joint velocity.

The characteristics of human motion are largely condi-

tioned by the equipment used during the task. If the task

does not require interaction with the equipment, a human

will choose the most comfortable way to perform the task

as explained by Tomić et al.13 In other cases, human will

adjust their motion to carry out a task and increase comfort

as much as possible. Human comfort while performing a

task is widely explored in ergonomics, biomechanics, and

robotics. Yang et al.21 proposed an algorithm based on the

combination of IKs, inverse dynamics, and biomechanical

Tomić et al. 3



information for increasing the comfort level during the

motion. The discomfort level of each joint is calculated

as a ratio between torques exerted by the joint (calculated

using the inverse dynamic) and maximum torque that can

be produced by the joint, which is obtained from the ergo-

nomics data. Ma et al.22 combined the conventional posture

analysis techniques (proposed in ergonomic analysis) and

the fatigue index in the muscles to calculate comfort during

the manual handling operations. Yang et al.19 proposed a

discomfort index as an objective way to estimate the most

comfortable position of the human body. They defined the

ergonomic configuration of the joints, for which the values

of the joints are in the middle of their ranges, as the most

comfortable position for the human. Since we want to avoid

the calculation of the torque, in our research, we will define

the discomfort as the difference between the current con-

figuration of joints and the comfortable configuration pro-

posed by Yang et al.19

The characteristics of the body and the type of the

motion affect greatly the feasibility of the task. The

ability of the robot to move its end effectors in any

direction is presented via the manipulability index.23

Manipulability index is defined as a ratio between the

norm of the motion in joint space and Cartesian space.

A joint configuration close to a singularity is character-

ized by a small value of manipulability. Conversely, the

ergonomic configuration of the human body provides

human to perform the motion in any direction in the

joint and Cartesian spaces. The feasibility of hands’

motion for the dual-arm manipulation tasks performed

by a robot is extensively analyzed in the literature.24,25

Following the same principle, we define one of the cri-

teria in our optimization algorithm which maximized the

index of manipulability.

Paper contribution-questions and answers about
human motion strategy during the dual-arm
manipulation tasks

The present research provides answers to the following

questions:

� What are the criteria optimized by the motion per-

formed by a healthy human?

� Can we represent each human motion as a result of

the optimization process and the combination of the

basic criterion functions using the inverse optimal

control approach?

� Do the size of the human, type of contact with the

environment, and the distance between the human

and the environment have an influence on the criter-

ion function minimized?

� Do humans usually choose a specific strategy to

generate the same motion with different constraints

or the strategies depend on the person performing

the motion?

� Is the generated strategy obtained from the human

motion able to generate a good imitation of the ana-

lyzed human motion with a redundant humanoid

robot?

In this article, we will show that the inverse optimal

control algorithm is able to generate a motion of the scaled

model of the humanoid close to the recorded human

motion. The weight coefficients of the combination of cri-

terion functions are used as optimization variables. Since

we recorded the motion performed by healthy actors, we

expect that the combination of the weight coefficients will

be the same for the same type of motion and for most

actors. Nevertheless, the characteristics of the actors can

influence the combination of weight coefficients. We will

comment the relationship between the characteristics of the

actor motion and the combination of weight coefficients

obtained by the optimization process. The final part of this

article will show that the IKs algorithm with the combina-

tion of the criterion functions, which is calculated during

the optimization process, is able to generate a human-like

dual-arm motion of the robot ROMEO.

Transfer from a human to a humanoid
robot motion

The conversion from human to humanoid motion can be

represented in four steps. The first step corresponds to

human motion recording. In the second step, a kinematic

model of the human is defined based on the humanoid

characteristics and the recorded data are processed using

the imitation algorithm. The objective is to obtain the

motion that most resembles the human motion with

the scaled model of the humanoid by taking into account

the limited mobility of the humanoid robot versus the

human being. In the third step, the inverse optimal control

algorithm is used for defining the criterion optimized by

human motion. The last step deals with the motion gener-

ation of the robot ROMEO using the previously defined

criterion. An overview of the conversion from human to

humanoid motion in these four steps is given in Figure 1.

The skeleton of an adult human consists of 206 bones

linked with different types of joints that tend to be flexible.

Many humanoid robots have a kinematic arm and leg struc-

ture, which consists of seven DoFs per arms and six DoFs

per legs with a size of the segments close to the human. A

humanoid robot with such characteristics, such as the

humanoid robot ROMEO, can produce accurate human

motion imitation. In our research, we analyze the dual-

arm manipulation in humans using the kinematic model

of ROMEO upper body, which consists of 19 DoFs (seven

DoFs per arms, two DoFs in the neck, two DoFs in the

head, and one DoF in the trunk). We additionally include

six DoFs in the trunk, which are not included in the kine-

matic model of the ROMEO, and emulate the leg and

spine motions (three prismatic and three rotation joints

4 International Journal of Advanced Robotic Systems



(see Figure 2(a)). In this way, we presented the extended

kinematic model of the robot ROMEO as a kinematic

model of the human. The modified Denavit–Hartenberg

convention26 is used to define the extended kinematic

model of the robot upper body.

The marker-based advanced real-time tracking (ART)

motion capture system is used for the human motion

recording.27 The sampling frequency for the acquisition

data is set to 100 Hz. The dimensions of the robot segments

are not exactly the same as the dimensions of the actor’s

segments. In order to have joint motions of the robot with

all characteristics of human motion, the upper body kine-

matic model of the robot should be scaled to the dimensions

of the human (see Figure 2(b)), obtained from the motion

capture system for each actor separately. The dimensions of

human segments are calculated by taking the mean Eucli-

dean distance between two adjacent joints and using sev-

eral data samples taken from the recorded data during the

initial configuration. The dimensions of paired segments

located on the left and on the right side of the body are

assumed to be identical. They are calculated by taking the

mean value of the estimated segment dimensions on the

right and the left side of each actor.

The imitation algorithm is used to generate the desired

motion of scaled model of the robot ROMEO resembling

recorded human motion. Our imitation algorithm is based

on the use of virtual markers attached to the scaled model

of the robot. The configuration of the scaled model of the

robot is defined to maximize the matching between the

virtual and real marker frames and the position of joints

of our model and the model of the actor. Virtual markers

are positioned on a scaled model of the humanoid, while

the real marker is placed on the human body. The imitation

algorithm is formulated as an analytical optimization prob-

lem, which calculates the joint configuration of the scaled

robot model for each time sample. The trajectories of hands

in the Cartesian space, which are used to specify the task,

are calculated using the results of the imitation algorithm.

The detailed explanation of the imitation algorithm and

human motion data recording by means of the ART motion

capture system are detailed in the study by Tomić et al.28

Characterization of human motion using
an inverse optimal control approach

In this section, an inverse optimal control approach is

defined in order to characterize human motion.

The inverse optimal control algorithm

The final goal is to define the optimization criterion used

by a human to produce the experimentally recorded

motion. Since the studied motion involves at least par-

tially contact with the environment, the criterion is opti-

mized with the constraint that human hands follow a given

motion defined by the task. We consider an optimal con-

trol problem of the form

min Fðqt; _qtÞ
s :t : _X ¼ JðqtÞ _qt

� �
ð1Þ

where t is a time sample, qt and _qt 2 Rn are position and

velocities of the joints generalized coordinates as a function

of t, respectively, _X velocity vector of the actor’s hands

obtained by the imitation algorithm, JðqtÞ is the Jacobian

matrix of the scaled model of the robot ROMEO that maps

joint motion to hand motion, and Fð�Þ is the objective func-

tion that should be minimized. For the objective function

Fð�Þ we make the assumption that it is expressed as a

weighted sum of the n base criterion function fið�Þ with

the corresponding weight coefficient ki 2 Rþ

Fðqt; _qt; kÞ ¼
Xn

i¼1

kifiðqt; _qtÞ ð2Þ

Based on the literature review of the common criteria

that can be minimized using a kinematic model, the set of

the base criterion function fið�Þ is chosen

1. minimization of the kinetic energy

f1ð _qtÞ ¼
1

2
_qT
t A _qt ð3Þ

The kinetic energy of the system is a quadratic function

of joint velocities _qt where A is the inertia matrix of the

dynamic model of the actor, calculated using the Hanavan

Figure 1. Transfer from a human to a humanoid robot motion—
overview.
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model of the human body. Using this criterion, the velocity

of the shoulder joints (with high inertia) will be reduced

with respect to the wrist joints (with small inertia).

2. minimization of the norm of joint velocities

f2ð _qtÞ ¼
1

2
_qT
t I _qt ð4Þ

The weighted matrix is the identity matrix I.

3. minimization of distance between the current posi-

tion and the ergonomic configuration of human

f3ðqtÞ ¼
1

2
ðqt � qergonomyÞT Aðqt � qergonomyÞ ð5Þ

where qergonomy is the ergonomic configuration of the

human proposed by Yang et al.19 The inertia matrix A

is chosen in order to include the motion priority of each

joint.13 In order to represent the objective function Fð�Þ
as a function of _qt, the criterion f3ðqtÞ should be

adapted as a function of _qt, using the relation between

qt and _qt

f3ð _qtÞ ¼
1

2
ðqt�Dt þ Dt _qt � qergonomyÞT Aðqt�Dt þ Dt _qt � qergonomyÞ

ð6Þ

where qt�Dt is the previous value of the joints generalized

coordinate and Dt is the increment of the time calculated

according to the frequency for data acquisition.

4. maximization of the manipulability

f4ð _qtÞ ¼ detðJ � JT Þ ð7Þ

where J ¼ JðqtÞ. Since we define the criterion function

which should be minimized, the criterion f4ðqtÞ is written

in the form

f4ð _qtÞ ¼
1

2
ð _qt � poÞT ð _qt � poÞ ð8Þ

which is proposed by Zhang et al.29 o ¼ @ detðJJT Þ
@qt

is a vector

of manipulability gradient detðJJT Þ and p 2 Rþ is a con-

stant coefficient. The ith element of o is calculated using

the equation

oi ¼
@ detðJJ T Þ

@qi
t

¼ detðJJT Þ � trace ðJJ T Þ�1 @J

@qi
t

JT þ J
@J

@qi
t

� �T
 ! !

ð9Þ

Here, traceð�Þ denotes the trace of a matrix argument

and qi
t is the ith element of the vector qt. This criterion

allows that the joint motion tends toward the motion that

maximizes manipulability. The term p determines how fast

the convergence occurs. The value p ðp ¼ 106Þ is selected

to minimize the coefficient of manipulability calculated

with detðJJT Þ.
Consequently, the task of determining the best objective

function Fð�Þ is reduced to determining the best weight

Figure 2. Kinematic model of the robot ROMEO scaled to the dimension of the human.
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coefficients kenergy; kvelocity; kergonomy, and kmanipulability

(k1 ¼ kenergy; k2 ¼ kvelocity; k3 ¼ kergonomy; k4 ¼ kmanipulability.

This notation is used to be explicit and easy to read.).

The final equation for objective function Fð _qtÞ with

weight coefficients is

Fð _qtÞ ¼ kenergy

1

2
_qT
t A _qt þ kvelocity

1

2
_qT
t I _qt

þ kergonomy

1

2
ðqt�Dt þ Dt _qt � qergonomyÞT

Aðqt�Dt þ Dt _qt � qergonomyÞ

þ kmanipulability

1

2
ð _qt � poÞT ð _qt � poÞ ð10Þ

where kenergy; kvelocity; kergonomy; and kmanipulability are the

weight coefficients which correspond to criterion minimi-

zation of kinetic energy, minimization of joint velocities,

minimization of the distance between the current

position and the ergonomic configuration of human, and

maximization of manipulability, respectively. The weights

represent the contribution in the percentage of each criter-

ion to the optimal function (kenergy þ kvelocity þ kergonomyþ
kmanipulability ¼ 1).

The optimization problem is solved under the constraint
_X ¼ JðqtÞ _qt given in equation (1) that describes the task to

be achieved by the human hand with or without contact

with the environment. The task can be integrated into the

optimization problem using the Lagrange multiplier math-

ematical method with a selected set of optimization criteria

and constraints

Lð _qt; lÞ ¼ Fð _qtÞ þ lð�JðqtÞ _qt þ _X Þ ð11Þ

The theorem states that the optimal solution is

obtained where the gradient of equation (11) with respect

to _qt and Lagrange multiplier l 2 Rn becomes all zeros.

Therefore, the joint velocity for the criterion defined by

kenergy; kvelocity; kergonomy; kmanipulability is

_qt ¼ K

JðqtÞT
�

JðqtÞKJðqtÞT
��1

_Xþ

kergonomyDtJðqtÞT
�

JðqtÞKJðqtÞT
��1

JðqtÞKAT ðqt�Dt � qergonomyÞ�

kmanipulabilitypJðqtÞT
�

JðqtÞKJðqtÞT
��1

JðqtÞKo�

kergonomyDtAT ðqt�Dt � qergonomyÞ þ kmanipulabilitypo

0
BBBBBBBB@

1
CCCCCCCCA

ð12Þ

where K ¼ ðkenergyAT þ kvelocityI þ kergonomyDt2AT þ kmanipulabilityIÞ�1.

Genetic algorithm for calculation of the weight
coefficients

The observed dual-arm model is a redundant system and

enables performing the same task differently. Using varied

combinations of weight coefficients, we are able to generate

different types of motion in the joint space within the same

task of the hands in Cartesian space. In such context, it is

necessary to define the fitness function, which represents a

measure of similarity of generated motion by our inverse

optimal control algorithm and the desired movement. Since

wrist position error is eliminated by introducing the constraint

in the optimization function (11), the fitness function Fð�Þ is

calculated as an integral of the error between the desired and

obtained the position of the shoulder and elbow in Cartesian

space using the trapezoidal numerical integration

FðCÞ ¼
ðt end

0

Eðt;CÞdt � t end

2N

XN

n¼1

ðEðtn;CÞ � Eðtnþ1;CÞÞ

Eðtn;CÞ ¼ ~P
d

j ðtnÞ � ~P
o

j ðtn;CÞ
��� ���

Eðtnþ1;CÞ ¼ ~P
d

j ðtnþ1Þ � ~P
o

j ðtnþ1;CÞ
��� ���

ð13Þ

where C ¼ fkenergy; kvelocity; kergonomy; kmanipulabilityg is a

combination of the weight coefficients, tn and tnþ1 repre-

sent the nth and ðnþ 1Þ th
time samples, respectively, t end is

the duration of the motion, N is the number of samples

during the motion, and Eðtn;CÞ is the square norm of the

error between the vectors of the desired value of the arm

joints obtained via the imitation process ~P
d

j ðtnÞ ¼
½Pd

RightShoulderðtnÞ Pd
LeftShoulderðtnÞ Pd

RightElbowðtnÞ Pd
LeftElbowðtnÞ �

(Pd
RightShoulderðtnÞ;Pd

LeftShoulderðtnÞ;Pd
RightElbowðtnÞ; and Pd

LeftElbowðtnÞ
are desired positions of right shoulder, left shoulder, right

elbow, and left elbow in Cartesian space, respectively) and

the position of the arm joints calculated by equation (12) for

the C combination of the weight coefficients ~P
o

j ðtn;CÞ ¼
½Po

RightShoulderðtn;CÞ Po
LeftShoulderðtn;CÞ Po

RightElbowðtn;CÞ Po
LeftElbowðtn;CÞ �

(Po
RightShoulderðtn;CÞ;Po

LeftShoulderðtn;CÞ;Po
RightElbowðtn;CÞ; and Po

LeftElbowðtn;CÞ
obtained positions of right shoulder, left shoulder, right

elbow, and left elbow in Cartesian space, respectively). A

small value of the fitness function indicates a good match

between the desired and the obtained motion.

Since the fitness function admits many local minima, the

algorithm based on the gradient calculation would not

always give a global solution. This is why a genetic algo-

rithm, suitable for such context, has been used.30

For the purpose of our research, a genetic algorithm

is defined as a multiobjective optimization approach.
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The genetic algorithm aims to calculate the optimal com-

bination of weight coefficients for which the fitness func-

tion defined by equation (13) has a minimum value.

Therefore, one combination of weight coefficients

C ¼ fkenergy; kvelocity; kergonomy; kmanipulabilityg in genetic

algorithm notation is one individual. Each individual con-

sists of four chromosomes and represents a unique solution

within the solution space. In our case, each chromosome

represents one weight coefficient. The value of each weight

coefficient is defined in the range ½ 0 1 � and is coded into

the genetic algorithm using a real-valued representation of

the chromosome. The population of our genetic algorithm

is represented by a set of 40 individuals. By testing the

genetic algorithm with different numbers of individuals

in one population, we concluded that 40 individuals are a

good compromise between complexity of our genetic algo-

rithm and its execution time and the quality of optimiza-

tion. With the aim to cover the complete solution space, a

uniform distribution of the individual is used to generate

the initial population. The fitness function defined by (13)

is evaluated for each individual per generation. The value

of the fitness functions is used to determine the possibility

of each individual to be selected for the next generation

during the selection process. We used the roulette-wheel

selection which selects the solutions with the lowest val-

ues of the fitness functions but also gives a chance some

weaker solutions may survive the selection process. The

weaker solution may include some components which

may prove useful following the crossover process. The

roulette-wheel selection process is selected to prevent

convergence toward the local minimum and try to find

the global optimal solution. The crossover rate was

selected to be equal to 0.7, which means that 70% of the

new (children) individuals are made using the crossover

operator. The rest children individuals are defined using

the mutation operator or are the elite individuals. In our

genetic algorithm, two individuals with the lowest values

of the fitness function in current generation (elite individ-

uals) are selected and directly included into the next gen-

eration with the aim to accelerate the convergence of the

genetic algorithm toward an optimal solution. With the

aim to make new combinations of the weight coefficients

(individuals) which are different from the existing, the

mutation operator is used. Mutation provides genetic

diversity and enables the genetic algorithm to search a

broader space and may bring individuals out of the local

minimum and move toward the global one. Our mutation

operator adds a unit Gaussian distributed random value to

a gene of the chromosome. If it falls outside of lower and

upper bounds for the gene, the new gene value is clipped.

The imposed condition for stopping the genetic algo-

rithm is heuristically obtained as the change of the best

value of the fitness function Fð�Þ is not greater than 10�6

for the previous 50 generations.

Results

The dual-arm motions are classified as uncoordinated and

coordinated with subdivided coordinate motion, as sym-

metric and asymmetric,31 or as goal-coordinated and pure

bimanual motions.32 Additionally, movements can be

divided into translational and rotational movements. The

analyzed dual-arm motions include contacts between hands

and equipment. Thus, the arm motions are limited by the

characteristics of the equipment and perform a primitive

motion that includes translation/rotation around one axis.

Based on the above-given classification and the axis of the

rotation/translation, we have chosen different types of dual-

arm motions

� rotational motions—rotation of the steering wheel,

rotation of valves, and rotation of the canoe paddles

and

� translational motions—cutting with a knife, inflating

a mattress using a pump, grating food, and opening/

closing a drawer.

Each recorded task consists of a five times repetition of

a dual-arm motion primitive. Before recording, all actors

practice each motion for approximately 5 min. Each actor

carried out the required motions under the same conditions

and using the same equipment. Nine male and six female

actors (with age 32 + 11 years; with the height 1.75 + 0.1

m) participated in the experiments.

In order to detect the starting and ending point of one

primitive motion, we paid attention to the samples where

the minimum values of the joint velocity are detected and

hands are currently stopped. One execution of a primitive

motion is represented as a part of the joint trajectories

between the samples of two minimum values, which are

repeated during the motion. We normalized temporarily

each primitive motion in order to have the common phase

for performing the same motion for all actors.

Since the characteristics of the human motion (criterion

optimized) are obtained by imitating the recorded human

motion using our inverse optimal control algorithm and the

criterion functions, the quality of imitation is defined

through the value of the fitness function (see equation

(13)). The fitness function is calculated using the genetic

algorithm as described in the previous subsection. The fit-

ness function, calculated for the best combination of the

weight coefficients, represents the minimum deviation

between the obtained and the recorded motion. According

to the results of the genetic algorithm, the best combination

of the basic criterion functions with the same value of the

fitness function is obtained if more than 80% individuals in

a generation converge to the same solution. The average

values of the fitness function are calculated per sample for

all actors. Table 1 presents the fitness function for all

experiments.
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The fitness function given in Table 1 represents the

integral sum of the errors between the achieved and the

recorded position of all observed joints (right elbow, right

shoulder, left elbow, and left shoulder). Therefore, the

average error in the following motion of each joint per

sample in “opening/closing a drawer” task is about

0.0052 m, since the fitness function sums displacement of

four joints, two elbows, and two shoulders. Hence, the

conclusion is that each recorded human motion can be

reproduced with great accuracy by the appropriate combi-

nation of criterion functions.

In the following subsections, the objective function

(10) minimized for various observed motions is pre-

sented. A qualitative motion evaluation in joint space

is considered to explain the obtained results. The final

part of this section will provide a general conclusion on

motion characteristics and their correlation with basic

criterion functions.

“Opening/closing a drawer”

In this subsection, the characteristics of the “opening/clos-

ing a drawer” task are presented. The “opening/closing a

drawer” task represents a symmetric horizontal-translation

motion (see Figure 3(a)). The motion is constrained by the

equipment and only horizontal translation of the hands is

allowed. The orientation of the hands is fixed and pre-

scribed by the equipment (the fingers of both hands are

placed inside the drawer with the palms down). The height

of hands is determined by the characteristics of the drawer.

Upon observing the trajectories of hand motion for the

task, recorded by the motion capture system, it is obvious

that the motions of all actors for the given task are close,

mainly because it is highly conditioned by the characteris-

tics of the equipment. The analysis of motion in joint space

is performed using the results from the imitation algo-

rithm, which give us trajectories of each DoF. The results

show that during this motion, the shoulder (shoulder pitch

and shoulder yaw) and elbow joints move more than other

joints (see Figure 3(c)). Furthermore, the motion of the

elbow yaw joints is larger than the motion of shoulder

joints. The trajectories of the joints given in Figure 3(c)

represent the mean values obtained for all actors during

the same motion. We also noticed that the size of an actor

affects the motion of arm joints during the task because

the position of the equipment was fixed and was not

determined by the size of the actor. In the case when the

actor is taller, the actor’s arms are bent down. On the other

hand, smaller actors did not bend down their arms and had

to rely more on their elbows and trunk joints to perform

the task.

The combination of the weight coefficients obtained by

the genetic algorithm while solving the inverse optimal

problem for the task “opening/closing a drawer” is given

in Figure 3(b). The results of the genetic algorithm,

obtained for all actors in the same motion, are depicted in

the 3-D graph where horizontal axes show a number of

actor and particular criterion, while the vertical axis shows

the impact of a particular criterion per each actor. For

descriptive and consistent illustration, impact of each cri-

terion is highlighted in the same color

� green—maximization of manipulability criterion,

� magenta—ergonomy criterion (minimization of dis-

tance between the current and ergonomic configura-

tion criterion),

� red—minimization of joint velocity criterion, and

� blue—minimization of kinetic energy criterion.

The results show that 9 of 15 actors use the velocity

minimization criterion with the value k velocity which takes

values near 1. Since the shoulder and elbow joints have far

greater motion than other joints, the velocity minimization

criterion is dominant for such type of motion. In accor-

dance with the results presented in Figure 3(b), the criterion

of manipulability is dominant in the case of six actors when

an actor has some restrictions on motion caused by its

dimensions and/or distance from the drawer (indicated in

green color in Figure 3(b)). In the case of four actors, the

mean value of k manipulability is 1, while in the case of two

actors where the velocity criterion has an influence in gen-

eration motion, k manipulability takes value 0.53. Some prob-

lems appear when an actor is not well positioned for

performing the task. Since the “opening/closing a drawer”

task is horizontal translation motion, the distance between

actor and equipment has an influence on the way in which

motion will be performed. If the actor is far from the

drawer, he/she will keep the arms straight and try to per-

form the task. This arm configuration is near singularities

and reduces the possibilities of arm manipulation. The actor

tries to move hands away from the singularity and max-

imizes manipulability. The problem of manipulation also

appears in the case when the actor is near the drawer. That

is why the actor moves all joints more in order to increase

manipulability and perform the task.

Eventually, one can conclude that for “opening/clos-

ing a drawer” task, human motion is planned so to mini-

mize joint velocities and maximize manipulability, while

their relative ratio depends on actor and equipment

characteristics.

Table 1. The average values of the fitness function in a one-time
sample of all actors for all tasks.

Task Fitness (m)

Rotation of the valves 0.0466
Rotation of the canoe paddles 0.0413
Rotation of a steering wheel 0.0127
Inflating a mattress using a pump 0.0096
Cutting with a knife 0.0043
Grating of food 0.0029
Opening/closing a drawer 0.0206
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“Rotation of the valves”

In this subsection, the characteristics of the task “rotation of

the valves” will be presented. The “rotation of the valves”

is a goal-oriented rotational motion around the vertical axis

(see Figure 4(a)). Both arms work independently while

performing this task. Palms are placed perpendicularly to

the room floor and grasp the handles vertically placed on

the valves. The height of hands is determined by the char-

acteristics of the valves.

According to the analysis of the motion in the joint

space, it is obvious that some common characteristics could

be observed for “rotation of the valves” and “opening/clos-

ing a drawer” tasks. The results obtained in the joint space

(see Figure 4(c)) show that during these motions, the

shoulder (shoulder pitch and shoulder yaw) and elbow

joints move more than other joints. Thus, it is also expected

that minimization of joint velocity criterion is dominant for

the “rotation of the valves” motion.

Although one can intuitively expect that minimization

of joint velocity dominates due to intensive joint

movements, obtained results could be well justified and

explained. The combination of the weight coefficients

obtained by the genetic algorithm is presented in Figure

4(b) and shows that for this motion, the criterion maximi-

zation manipulability is dominant in the case of the nine

actors. Mean value of kmanipulability in these cases is 0.9048

with variance 0.0218. The minimization of joint velocity

criterion is dominant in the case of the four actors with a

mean value of kvelocity equation 0.8517 and variance

0.0501. The minimization of distance between the current

position and the ergonomic configuration is dominant in

the case of two actors (in the case of actor no. 1,

kergonomy ¼ 1, while in the case of actor no. 14,

kergonomy ¼ 0:5267). The criterion maximization of

manipulability is dominant when the position between

actor and equipment or actor current pose is not suitable

for performing the motion in a common way. The actor is

forced to take a certain pose in order to accomplish the

task easier. In the example of “rotation of the valves”

motion, several cases appear

Figure 4. (a) “Rotation of the valves” task. (b) Resulting weight coefficients defining the objective function—the “criterion maximi-
zation of manipulability” prevails. (c) Joint motions—shoulder and elbow motions dominate.

Figure 3. (a) “Opening/closing drawer” task. (b) Resulting weight coefficients defining the objective function—the criterion
“minimization of joint velocity” prevails. (c) Joint motions—shoulder and elbow motions dominate.
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� the actor is tall and far from the equipment—the

actor bends the trunk (increase amplitude of the

trunk pitch joint) and performs the task moving

the shoulder and elbow joints and

� the actor is small (or tall) and near the equipment—

the actor keeps trunk vertically and moves shoulder

and elbow joints more in order to perform the task.

Since the actor is far or near equipment, these body

poses require additional movements to avoid singularities.

Human tendency to perform the task in the most com-

fortable manner is evident in the case of the two actors, for

whom ergonomy criterion prevails. The comparison

between the average configuration of the actor through the

motion and the comfortable configuration shows that in the

case of the one actor, these configurations are similar, while

in another case, the influence of the maximization manip-

ulability criterion is evident (and kmanipulability ¼ 0:4204 in

the case of actor no. 13).

According to the results, we can conclude that in the

“rotation of the valves” motion, the position between actor

and equipment and actor characteristics have a strong influ-

ence on criterion contribution. In a line with the analysis of

the motion in the joint space, it is evident that the mini-

mization of joint velocity criterion describes this motion

best if the actor is well posed with the respect to the equip-

ment and he/she is of medium height. In the cases when

these conditions are not satisfied, the criterion minimiza-

tion of distance between the current and ergonomic config-

uration and maximization of manipulability are dominant.

“Rotation of a steering wheel” and “inflating a
mattress using a pump”

The “rotation of a steering wheel” task is an asymmetric

dual-arm rotational motion (see Figure 5(a)). The motion of

the hands is circular in accordance with the form of a steer-

ing wheel. The rotation starts from the initial position

where the arms are symmetrically placed on the wheel. The

hands are able to rotate the steering wheel (diameter 0.3 m)

in both directions (in the experiments, the motion was

+90� starting from the initial position). During the motion,

the relative position between both hands is unchangeable.

The “inflating a mattress using a pump” task is a sym-

metric dual-arm translation motion (see Figure 6(a)). The

hands grasp the equipment horizontally and their relative

position does not change during the motion. In both

motions, the actors are sitting while they carry out the tasks.

During the “rotation of a steering wheel” task, the hands

have a large motion in the Cartesian space and the task

requires greater activation of shoulder and wrist joints com-

pared to the motion of other joints (see Figure 5(c)). The

wrist joints (wrist pitch and wrist roll) are active during the

motion because the actors should change the hand orienta-

tion with respect to the referent coordinate system in order

to perform the motion. As for this motion, the actors use

their hands only and sit comfortably while using the equip-

ment. The trunk motion is limited.

The results show that the criterion of kinetic energy

minimization is dominant for this type of the motion (see

Figure 5(b)). The influence of the inertia is evident in these

results. The criterion of kinetic energy minimization is

dominant in the case of the eight actors (the mean value

of the weight coefficient kenergy is 0.8165 with variance

0.0116). The motion of the wrist joint does not have a big

influence on the choice of the criterion functions because

its inertia is significantly smaller compared with the inertia

of the other joints (shoulder joints).

During the “rotation of a steering wheel” motion, the

actor’s body position is near the human ergonomic posi-

tion. This is evident in results, whereas in the case of five

actors, the criterion of kinetic energy minimization shares

its domination with ergonomy criterion (mean value of the

weight coefficients kergonomy is 0.4738 and mean value of

the kenergy is 0.4313). Two of the actors adapted the position

of joints in order to decrease the motion of the shoulders. In

Figure 5. (a) “Rotation of a steering wheel” task. (b) Resulting weight coefficients defining the objective function—the criterion
“minimization of kinetic energy” prevails. (c) Joint motions—shoulder and wrist motions dominate.
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this case, the velocity minimization criterion is dominant,

which is also supported by the results of our inverse opti-

mal control algorithm.

The angle of rotation of a steering wheel is not limited

and it happened that some actors made a bigger angle of

rotation compared to others. This fact confirms that the

choice of criterion function is related to the activation of

joints during the motion.

In the case of “inflating a mattress using a pump” task,

elbows are the most active joints compared with other

joints and the criterion of kinetic energy minimization is

dominant in the case of nine actors as confirmed by the

results presented in Figure 6(b) (mean value of the weight

coefficients kenergy is 0.8896 with variance 0.0144). The

pump produces greater resistance during the motion of

the handle and additional effort was needed to perform

the task. Besides the elbow, two actors used shoulder more

intensively to perform the task and the criterion of the

velocity minimization is dominant in their cases (weight

coefficients kvelocity take the value 1). As well, the motions

of some actors passed through the human ergonomic con-

figuration and the criterion which minimizes distance

between the current and the ergonomic configuration is

dominant in two cases (mean value of the weight coeffi-

cients kergonomyy is 0.796 with variance 0.008). The criterion

of manipulability appeared as dominant in the case of two

actors (weight coefficients kmanipulability take the value 1)

when the actors kept the arm straight and carried out the

task moving the trunk.

The conclusion is that “rotation of a steering wheel”

and “inflating a mattress using a pump” point out mini-

mization of kinetic energy as a dominant criterion

because the motion of a particular joint, especially the

shoulder joint (for “rotation of a steering wheel”) and

the elbow joint (for “inflating a mattress using a

pump”), which have big effective inertia, moves more

than other joints.

“Cutting with a knife” and “grating of food”

In this section, we analyzed “cutting with a knife” and

“grating of food” together in order to compare the same

type of the motion. During the motion, the left hand is used

as a hand support, while the right hand performs the task.

The “cutting with a knife” task is one-arm support trans-

lation motion (see Figure 7(a)). The right hand does the

translational motion in order to perform the task. The

motion of the right hand is not strongly defined by the type

of the equipment used. The right hand can rotate around the

handle of the knife. The amplitudes of the right hand’s

motion are limited by the size of the knife.

The “grating of food” task is also a one-arm support

translation motion (see Figure 8(a)). The orientation of the

right hand is restricted and the palm should be in line with

the plane surface of the grater. The trajectory of the right

hand is related to the angle between the grater and the table

surface, which is not predefined. Actors used grater in a

way they considered the most comfortable. The right

hand’s motion is limited by the size of the grater.

The “cutting with a knife” task is performed by the

activation of the shoulder (shoulder pitch and shoulder

yaw) and the elbow joints during the motion. The criterion

of velocity minimization gives the same priorities to

motions of these joints. This criterion is dominant in the

cases of 10 actors. In accordance with the results obtained

by the genetic algorithm, the mean value of the weight

coefficient kvelocity for these cases is 0.9598 with the var-

iance 0.0072.

The influence of the relative positions between actors

and equipment and actor characteristics are showed up in

this motion. The criterion of maximization manipulability

is dominant in two cases (the weight coefficient kmanipulability

takes the value 1 in both cases) when the actor is small and

near the equipment and in the case when the actor is tall and

far from the equipment. Therefore, the same motion plan-

ning pattern from the “rotation of the valves” tasks

Figure 6. (a) “Inflating a mattress using a pump” task. (b) Resulting weight coefficients defining the objective function—the criterion
“minimization of kinetic energy” prevails. (c) Joint motions—elbow and wrist motions dominate.
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appeared in these motions. Since the actors were free to

perform the task in the most comfortable way for them in

the case of the two actors, the ergonomy criterion is domi-

nant (in the case of actor no. 4, kergonomy ¼ 1 and in the case

of actor no. 10, kergonomy ¼ 0:5632). For these actors, fur-

ther analysis showed that the average position of the actor’s

right-hand joints during the motion is near the human ergo-

nomic configuration.

In the “grating of food” task, the motion of the elbow

joint is dominant compared to other joints, which is shown

in Figure 8(c). The criterion of kinetic energy minimization

is dominant in this motion, which is supported by greater

values of the weight coefficient kenergy in the case of 10

actors (the mean value of the k energy values is 0.8875 and

variance 0.0194). These results are expected since the

motion of the elbow joint is greater than the movements

of others joints (such as the case of the “inflating a mattress

using a pump” task too). The other criteria are dominant in

some particular cases. The criterion of maximization

manipulability is dominant in the case of actor no. 12, while

the criterion of minimization of distance between the cur-

rent and the ergonomic configuration is dominant in four

cases (the mean value of the kergonomy values is 0.9743 and

variance 0.0015). Since the “grating of food” and “cutting

with a knife” tasks are the one-arm support motions, the

same conclusion for these exceptions stands.

“Rotation of the canoe paddles”

The “rotation of the canoe paddles” task represents a goal

coordinated rotational motion around one horizontal axis

(see Figure 9(a)). The relative position between the arms is

constant and determined by the characteristics of the equip-

ment. Palms of the hands are kept parallel to the room floor.

According to the motion analysis for each joint, we can see

that for this task the shoulder (shoulder pitch) and elbow

joints have the big motion amplitude.

This motion requires motion of many joints to perform

the rotational hand motion in the sagittal plane at the same

distance independent of the actor in the frontal plane.

Figure 8. (a) “Grating of food” task. (b) Resulting weight coefficients defining the objective function—the criterion “minimization of
kinetic energy” prevails. (c) Joint motions—elbow motions dominate.

Figure 7. (a) “Cutting with a knife” task. (b) Resulting weight coefficients defining the objective function—the criterion “minimization
of joint velocity” prevails. (c) Joint motions—shoulder and elbow motions dominate.
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Consequently, domination of different criteria depends a

lot on the actor’s body characteristics. Intensive joint

motions lead to domination of velocity minimization cri-

terion in the case of five actors (the mean value of the

kvelocity values is 0.8581 and variance 0.0489). On the other

hand, the other criteria also contribute to this motion. The

criterion of maximization manipulability appeared as a

dominant in the case of three actors (the mean value of the

kmanipulability values is 0.8823 and variance 0.0109), the cri-

terion of minimization of kinetic energy is dominant in the

case of three actors (the mean value of the kenergy values is

0.7132 and variance 0.0196), and the criterion of the mini-

mization of distance between the current and the ergonomic

configuration is dominant in the case of three actors (the

value of the kergonomy is near 1), while the combination of all

criteria is evident in the cases of one actor. It is very diffi-

cult to conclude which of the criterion function represented

this motion best but, the relative position between actor and

equipment as well as the human characteristics definitively

has significant influence to the criteria which will be

selected.

Discussion

The results reveal that the amplitude of each particular joint

and a combination of joint activations during the motion

influence the domination of the corresponding criterion

function. In the case where the joints with big effective

inertia are moved more compared to other joints, the human

body needs more effort and energy to perform the motion.

Thus, minimization of kinetic energy criterion dominates

and the value of the weight coefficient k energy is the largest

compared to the values of other weight coefficients. In the

tasks where the motions of all joints are with small ampli-

tudes, the human does not waste a lot of energy during the

task and consequently, minimization of velocity criterion is

dominant, while the weight coefficient kvelocity has the big-

gest value.

The influence of inertia matrices is well presented in the

task “rotation of a steering wheel.” The motion is obtained

by moving the shoulder and wrist joints and the minimiza-

tion of velocity criterion could be expected to be dominant

because the amplitude of the motion of both joints for

performing the task is similar. However, this is not the case

because the effective inertia of the wrist joint is negligible

compared to the inertia of the shoulder and the criterion of

kinetic energy minimization is dominant. We can conclude

that the choice of the criterion function and the motion

strategy is highly related to the type of motion.

Moreover, the environmental characteristics, such as the

size of the human body and the distance between the human

and the environment, also affect the choice of criteria.

Accordingly, it is expected that the same motion in the task

space, performed by several people, can show different

characteristics in the joint space. The criterion of manipul-

ability appears as dominant for each task where the posi-

tions of the hands are close to a singular position or when

joint motions are near the joint limits. The actor should

adapt his/her motion in order to perform the task. The

criterion of maximization of manipulability is the most

expressed in the task “rotation of the valves.” The fact that

a human performs a task in the comfortable (ergonomic)

manner is proven in the cases of the several motions. The

ergonomy criterion (minimization of the distance between

the current and the ergonomic configuration) dominates in

the majority of motions where average joint positions are

near the human ergonomic configuration. The influence of

this criterion is evident for the task “rotation of a steering

wheel” since the equipment size and position are defined to

be comfortable for the human. To sum up, a human will use

a specific strategy (combination of the criterion functions)

to perform the same task in the different environment

Figure 9. (a) “Rotation of the canoe paddles” task. (b) Resulting weight coefficients defining the objective function—the criterion
“minimization of joint velocity” prevails, although all other criteria are present depending on the actor’s characteristic. (c) Joint
motions—shoulder and elbow motions dominate.
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provided that he/she is positioned well while performing

the task. In some tasks, the choice of the criterion will be

additionally defined by the characteristics of the actor.

The results obtained from the genetic algorithm show

that the best imitation of human motion (minimal value

of the fitness function) is not obtained in the case when

only the dominant criterion is included in the IKs algorithm

but the weighted combination of the criterion functions.

The influence of each criterion separately and the combi-

nation of the criteria in the IKs algorithm without using the

weight coefficients were earlier presented in article.28 In

some cases, the best imitation is obtained with the combi-

nation of all criterion functions. The similarity of the

recorded actors’ motion and motions obtained for different

values of weight coefficients for the “rotation of the canoe

paddles” task is represented through the value of the fitness

function. The average values of the fitness function in a

one-time sample obtained by each criterion and by the

optimal combination of the weigh coefficients (combina-

tion of all criteria) are represented in Figure 10. According

to the results presented in Figure 10, we can see that the

optimal combination of the weight coefficient gives the

smallest values of the fitness function for number of actors

(actors nos. 3, 4, 5, 6, 7, 8, 12, and 14) compared with the

value of the fitness function obtained by each criterion. It

implies that the optimal combination of the weight coeffi-

cient obtained by genetic algorithm generates the motion

which is closest to recorded actor’s motion. On the other

side, the genetic algorithm gave the results where the one

criterion is absolutely dominant (the value of one weight

coefficient is near 1) in the case of the actors nos. 1, 2, 9,

10, 11, 13, and 15. Therefore, in these cases, the combina-

tion of the weighted coefficients did not decrease the value

of the fitness function and the best imitation of the recorded

actor motion is obtained using one criterion. This is con-

firmed with the comparative analysis presented in Figure

10. However, changes in the value of some weight coeffi-

cients, even those are not dominant, in some cases, can

greatly affect the quality of imitation and decrease the

value of the fitness function.

Human-like dual-arm motion of the robot
ROMEO

In the previous section, we defined the optimization algo-

rithm for characterization of human motion. The algo-

rithm is based on the inverse optimal control approach

and criterion functions, which are able to describe

human-like motions. The obtained results of the inverse

optimal control algorithm are included in the IKs algo-

rithm given by equation (12).

The following paragraphs show that our inverse kine-

matics approach with the optimal combination of the cri-

terion functions is able to generate the human-like motions

of the real humanoid robot ROMEO. The experimental

validation is presented in this section.

The kinematic structure of robot hands is similar to a

human and allows the robot to faithfully imitate all human

motions. Furthermore, the distribution of segment masses

of the robot ROMEO coincides with the human and it can

Figure 10. The average values of the fitness function in a one-time sample obtained by the each criterion and by the optimal
combination of the weigh coefficients for the “Rotation of the canoe paddles” tasks.
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be expected that the criterion functions which describe the

motions of human arms will be the same for the motion of

the robot. An additional condition that occurs is that the

motion of the robot must be defined according to the char-

acteristics of the robot (the length of segments and restric-

tions in the joints). In order to obtain human-like dual-arm

manipulation task performed by the robot, the original

motion of human hands should still be recognizable in the

robot motion, although it has been modified according to

the characteristics of the robot.

The knowledge of the weights of each criterion for the

task will help us to define the generalized combination of

criterion functions for each motion, which will eliminate

the exceptions based on the position between the actor and

the equipment and the characteristics of the actor. We addi-

tionally defined by the genetic algorithm which calculates

the combination of weight coefficients and minimizes the

sum of the fitness function of all actors while performing

the same task. The results are presented in Table 2.

The IKs algorithm proposed by (12) with a calculated

combination of the weight coefficients will produce the

human-like motion of the robot ROMEO. Figure 11 shows

the snapshots of the motion in “opening/closing a drawer”

task performed by the actor and the robot ROMEO. The

motion of the robot shown in Figure 11(b) is obtained by

our IKs algorithm with the generalized combination of the

weight coefficients (presented in Table 2), while the motion

of the robot shown in Figure 11(c) is obtained for the com-

bination of the weight coefficients kenergy ¼ 1; kvelocity ¼
kmanipulability ¼ kergonomy ¼ 0. The joint limits are included

in the IKs algorithm using the approach explained in detail

by Baerlocher and Boulic.33 The motion of the robot hands

is free of the collision with the equipment. The self-

collision is avoided since the robot imitates the recorded

human motion which is out of the self-collision. The

images show that the motion of the robot obtained for the

generalized combination of the weight coefficient tends to

be more similar to the actor motion, compared to the

motion of the robot obtained with the criterion minimiza-

tion of the kinetic energy.

The robot motion generated by the generalized combi-

nation of the weight coefficient produced motions in

shoulder and elbow joints, as can be seen in Figure 11(b).

The obtained motion of the robot is similar to the actor

motion (see Figure 11(a)) and fully resembles the human

motion. On the other side, the robot motion obtained by

Table 2. The generalized combination of criterion functions calculated for each experiment.

Task/criterion
functions

Rotation of
the valves

Rotation of the
canoe paddles

Rotation of a
steering wheel

Inflating a mattress
using a pump

Cutting with
a knife

Grating
of food

Opening/closing
a drawer

k energy 0 0.2862 0.4448 0.7987 0 0.4384 0
k velocity 0.3916 0.2223 0.0683 0.1942 1 0.0942 0.9989
k ergonomy 0 0.2833 0.4869 0 0 0.4673 0.0007
kmanipulability 0.6084 0.2082 0 0.0070 0 0.0001 0.0003

Figure 11. “Opening/closing a drawer” task performed by the actor and the robot ROMEO. The motion of the robot obtained for the
generalized combination of the weight coefficients (b) tends to be more similar to the actor motion (a), compared to the motion of the
robot obtained with the criterion minimization of the kinetic energy (c).
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minimization of the kinetic energy is characterized by a

large movement of the elbow joints, while the motion of

shoulders is insignificant. The robot performs the task by

moving the elbows to the side, away from the trunk. More-

over, we can see that upper arm in scenario (b) is aligned

with the vertical axis as it is the case with the actor’s

motion, while in scenario (c), it is not the case. Therefore,

the obtained motion in (c) is not like the actor’s motion.

These results are confirmed by the similarity measure. The

similarity measure between the recorded actor’s motion

(expressed as the motion of the scaled model of the robot

ROMEO using imitation process _qimitation) and the obtained

motion of the robot ROMEO (using the IKs algorithm and

weight coefficients _q ROBOT) is calculated as a sum squared

error over all joints velocities

S ¼
XN

n¼1

ð _qimitationðtnÞ � _qROBOTðtnÞÞ2 ð14Þ

The similarity measure of the robot’s motion obtained

from the generalized combination of the weight coefficient

is 0.0269, while the similarity measure for the robot motion

obtained by minimization of kinetic energy criterion is

0.0762. The conclusion is that the IKs algorithm given by

(12) with the combination of the weight coefficients,

obtained from our inverse optimal control algorithm, can

generate the same human-like motion with a humanoid

robot with the kinematic structure close to or resembling

that of the human body.

Conclusion and the future work

The present study presents the inverse optimal control algo-

rithm as the optimization tool for the analysis of the char-

acteristics of the basic dual-arm human motion using the

combination of the basic criterion functions. The study is

performed on the set of seven basic human motions per-

formed by 15 actors. The obtained results provide general

conclusions on human motion, as follows:

� The characteristics of dual-arm motions performed

by a healthy human are directly connected with the

activation of the particular arm joints and a combi-

nation of joint activations since these humans try to

do motions in the way they consider most comfor-

table (optimal).

� The criterion of kinetic energy minimization is a

dominant criterion for the tasks that require greater

mobility of the shoulder, elbow, or trunk joints (the

joints with bigger values of the inertia matrix) but

not wrist joint.

� Tasks that are not characterized by a large motion of

the joints or evenly activation of the joints have a

dominant criterion of minimization of velocity.

� In tasks where the human performs motion near

the singular configuration or near his joint limits,

the criterion of manipulability minimization is

dominant.

� In each of the analyzed motions which pass near

human ergonomic configuration, the criterion mini-

mization of the distance between the current and the

ergonomic configuration is dominant since humans

will perform the motion on the most comfortable

way if it is possible according to the characteristics

of the task.

� The optimal function (using weights of basic criter-

ion function) exists. Changes in the value of some

weight coefficients even those which are not domi-

nant significantly affect the quality of the imitation

and increase the value of the fitness function.

� The strategy of performing the same motion by dif-

ferent actors is the same but may change due to the

influence of the environment and human body

characteristics.

� Our IKs algorithm is able to generate the human-like

motions with a redundant humanoid robot with the

kinematic characteristics close to or resembling

those of humans. The IKs algorithm with different

combinations of weight coefficients will produce the

different robot’s motions in joint space for the same

motion of the robot’s hands in the task space. Our

IKs algorithm with a generalized combination of

weight coefficients (calculated for each task sepa-

rately) will produce the robot’s motions which are

closest to recorded human motions.

The results of the research can be applied to several

areas. The characteristics of the basic motion of healthy

people acquired in this work can be used for the analysis

of human motion with the disability in motor skills.

Furthermore, our IKs algorithm can be used for genera-

tion of a complex motion, which represents a set of the

analyzed basic motions, changing the combination of the

weight coefficients from one basic motion to another.

Implementation of the explored characteristics of human

motion on the humanoid robot will enable the most

natural cooperation between humanoids and humans,

help the elderly persons in their everyday life, and allow

better integration of humanoid robots into the human

environment.

Our future research should be directed toward enlarging

the set of the analyzed basic human motions and inclusion

of basic criterion functions which consider dynamics. The

soft computing methods, such as fuzzy logic, will be imple-

mented to calculate the characteristics of new human

motion (the weights), which will be used in the IK model

to generate human-like humanoid motion.
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