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Abstract: In this article, we propose a general symbolic dynamic modelling framework devoted
to Mobile Multibody Systems subject to hard persistent contacts. In particular, all rigid planar
and spatial wheeled vehicles belong to this class of systems. To illustrate the approach we apply
it to a realistic model of the three dimensional bicycle. Though being a familiar object for
everybody, deriving the fully nonlinear dynamics of this system in a closed symbolic form is far
from being trivial. Using a Newton-Euler algorithm coupled to a projective approach based on
an explicit model of the contacts, the approach is successfully applied to the simulation of a
free bicycle. It shows how the passive asymptotic stabilisation of the bicycle can be naturally
ensured when it is thrown with sufficient initial velocities.

Keywords: Dynamic modelling, nonlinear systems, nonholonomic systems, bicycle locomotion,
dynamic stability.

1. INTRODUCTION

Since its birth at the beginning of the nineteen century, the
bicycle has continuously evolved, from the first wooden
draisine to our today’s electric bicycle (Herlihy, 2004).
Nowadays, it is back on the front stage as an icon of the
ecological lifestyle and could be used to equip our future
towns of fleets of partially-autonomous connected vehicles.
Despite the fact that the bicycle is an everyday object
which speaks to everyone, its modelling and fast simulation
in the realistic three-dimensional context is far from being
a child’s play, especially when expecting a closed symbolic
form of its fully nonlinear dynamics. This challenging issue
is manifested by the long chain of contributions on the
topic, starting from the earlier works by Bourlet (1899);
Boussinesq (1899) to the recent results of Meijaard et al.
(2007); Consolini and Maggiore (2013), including the im-
portant steps by Jones (1942); Henaff (1987); Franke et al.
(1990) to name but a few. The reasons of these difficulties
are numerous. First, in contrast to other familiar mechani-
cal objects, as our industrial manipulators are, the bicycle
is a non-holonomic system, i.e., a system whose description
requires more parameters than the number of its local
Degrees of Freedom (DoF). Mathematically, this translates
into the fact that its dynamics are partially governed
by a set of non-integrable constraints on the velocities.
While these systems are known from a long time since the
works of Hertz (Hertz, 1894), their numerical resolutions
often requires to cope with a set of Differential Algebraic
Equations (DAE) requiring specific methods of integration
able to cope with stiff systems (Benner et al., 2015). In
robotics, non-holonomic systems have been largely studied
in the context of mobile robotics of planar wheeled vehicles
such as the usual unicycles or the simplified model of car-

like platforms (Campion et al., 1996). Though sharing
non-holonomy with these simple wheeled platforms, the
bicycle differs from them by the fact that contrarily to a
simple unicycle, its locomotion dynamics cannot be fully
described with a kinematic model but also require a further
dynamic model. As such, the bicycle belongs to the less
common class of dynamic non-holonomic systems which
have been studied over the past years in the community
of geometric mechanics and control (Bloch et al., 1996),
with applications to planar systems as the snake-board
(Ostrowski et al., 1995). Remarkably, in these systems,
the locomotion is based on the transfer of kinetic momen-
tums from their internal (shape) degrees of freedom to
their external (net) ones, through non-sliding conditions
imposed by their wheels (Ostrowski et al., 1995). How-
ever, the bicycle differs from these other dynamic non-
holonomic locomotion systems, since its wheels are not
used for kinetic momentum transfers, but rather to ensure
the three-dimensional stability while rolling. Moreover,
being essentially three-dimensional, its dynamics involve
much more geometric nonlinearities than planar systems,
making the modelling quite heavy and laborious. Finally,
and above all these reasons, the geometric model of the
contacts, i.e., the calculation of the contact point of the
two wheels with the ground is not trivial at all, and in fact
requires solving at each step of time, a nonlinear algebraic
equation, a quartic, that prevents its dynamics to be stated
in a closed symbolic form (Meijaard et al., 2007).

In the following, we address the issue of modelling the
three-dimensional bicycle. To that end, we will immerse
this objective in the more general context of modelling
three-dimensional Mobile Multibody Systems (MMS) sub-
ject to persistent contacts with a planar solid ground.



Following (Boyer and Belkhiri, 2014), the geometric non-
linearities are reduced to their minimum by firstly de-
riving the dynamics of the MMS in their intrinsic form,
i.e. directly on the configuration principal fiber bundle
SE(3) × S, where SE(3) stands for the net displace-
ments of the MMS, while S is the shape space of its
internal DoF. Secondly, these free dynamics are projected
onto the kernel of a set of constraints on G × S which
model the rolling without slipping, non-sliding and non
penetrating conditions imposed by the contacts between
the wheels and the ground. To derive these equations
(free dynamics and constraints) in a symbolic form, we
will take advantage of the recursivity of Newton-Euler
based algorithms (Featherstone, 2008), while calculating
the kernel of the constraint equations with some of the
symbolic functions of Matlab. The approach results in a
single algorithm (given in appendix A) which can work
for any tree-like MMS supported on the ground through
persistent contacts. The algorithm is next applied to the
case of a three-dimensional bicycle with comparisons with
a benchmark recently proposed in (Meijaard et al., 2007).
While addressing this special case, our general algorithm
has to be fed with a model of the contact. Remarkably, the
resolution of the quartic mentioned above is circumvented
by moving the plane of the ground at each step of the
simulation in order to ensure its point-contacts with the
two wheels while keeping the gravity normal to the ground.
This approach gives undetectable discrepancies with the
numerical resolution of (Meijaard et al., 2007). These en-
couraging results tend to show that a closed form of the
fully nonlinear dynamics of the three-dimensional bicycle
could be reach in a near future.

The article is structured as follows. We start by giving the
parametrization of a MMS and the notations we use in
the article in section 2. In section 3, we quickly remind
the Newton-Euler model of a MMS. In section 4, we
introduce a Newton-Euler based algorithm solving the
inverse dynamics of a MMS as they are required in the
next section 5, which deals with the reduced dynamics
of a MMS subject to persistent contacts. The general
algorithm allowing to compute these reduced dynamics is
given in section 6. This algorithm is applied to the three
dimensional bicycle in section 7. The article ends by a
conclusion (see section 8).

2. PARAMETRISATION AND NOTATIONS.

In all the following, we consider a Mobile Multibody Sys-
tem or MMS, i.e. a Multibody System subject to both over-
all rigid net motions in SE(3) and shape time-variations
in a manifold named shape-space. As represented in figure
1, the MMS has a tree-like structure interacting with its
surrounding medium through hard persistent contacts as
those imposed by rolling without slipping of a wheel, or the
punctual contact of two solids. We attach to the ambient
geometric space a fixed spatial orthonormed frame denoted
by Fe = (Oe, se, ne, ae), where se supports the vertical
axis, while (Oe, ne, ae) defines the ground which is assumed
to be planar. The considered MMS is composed of a se-
quence of n+1 rigid bodies interconnected through n one
Degree of Freedom (DoF) angular joints. Regarding the
bodies, they are denoted B0,B1, ...,Bn, where B0 stands for
the reference body, i.e. an arbitrarily distinguished body

Fig. 1. Schematic view of a Mobile Multibody System.

whose motions define the net motions of the MMS, and
with respect to which, the motions of the other bodies
define the shape motions of the MMS. The bodies are
numbered from B0 toward the tips of the branches in
increasing order. In the following, we denote by j and i, the
indices of the current body and its antecedent respectively,
i.e., i = a(j) where a denote the antecedent of j. We attach
to each body Bj a mobile frame Fj = (Oj , sj , nj , aj),
where the center Oj coincides with the center of the
joint j, and aj supports the joint axis while sj and nj

are defined according to the direct orientation of space.
At any time t, the robot configuration is defined by the
vector of joint positions r = (r1, ..., rn)

T defining the
relative angles around the joint axis between the bodies,
together with the orientation matrix eR0 and the position
vector eP0 of the mobile frame attached to the reference
body F0 = (O0, s0, n0, a0) with respect to Fe. The time
evolution of r defines the shape motion of the MMS,
while that of (eR0,

eP0) , eg0 ∈ SE(3) defines its rigid
net motion. Regarding the contacts, they are modelled
as a set of holonomic and/or non-holonomic kinematic
constraints. Practically, these constraints are deduced by
forcing the velocity of points of bodies in contact (e.g. with
the ground) to be zero. If we define by m the number of
independent constraints imposed by the contacts, in this
paper, we will consider only the systems that fulfill the
mobility condition m < 6 + n. Finally, throughout this
article, we will use the following notational conventions.
For any physical variable modelled by a tensor, the right
lower index will represent the body index (to which it is
related) while the left upper exponent will indicate the
index of the reference frame, which is also the projection
frame (e.g. eR0, eP0). When the tensor related to a body is
expressed in the mobile frame of this body, the upper index
is omitted. Finally, time derivation is sometimes denoted
by a ’dot’.

3. NEWTON-EULER MODEL OF A MOBILE
MULTIBODY SYSTEM.

To model our MMS, we use the Newton-Euler formalism
of robotics, which works indifferently for MMS and MS
(not mobile). Let us start by introducing the geometric
model of the MMS which relates the pose of any frame
Fj with that of the antecedent frame Fi, both expressed
in the earth frame Fe and represented by the two (4× 4)
matrices egi and egj of SE(3). This model can be detailed
as:



egj =
egi

igj(rj) =
egi

(

iRj(rj)
iPj

0 1

)

, (1)

where iRj and iPj are the orientation matrix and the
position vector of Fj with respect to Fi. Regarding the
velocity of the body j, it is a (6×1) vector of se(3) denoted
ηj and related to the velocity of the antecedent body i
through the recursive relation:

ηj = (V T
j ,Ω

T
j )

T = Adjgiηi + ṙjAj , (2)
where Vj and Ωj are respectively the linear and angular
Galilean velocities of the considered body, both expressed
in its mobile frame, Aj = (0T3 , a

T
j )

T is the (6 × 1) unit
vector supporting the joint axis j, and Adjgi is the adjoint
map operator which allows changing a velocity in se(3)
from Fi to Fj (Murray et al., 1994):

Adjgi =

(

jRi
jRi

iP̂T
j

0 jRi

)

. (3)

Let us remark that in (3), we introduced the ’hat’ notation
which changes a (3 × 1) vector into its associated (3 × 3)
skew-symmetric tensor. Thus, for any vectors A and B in
R

3, Â is defined such that ÂB = A×B.

Once the Galilean velocities are defined, by time derivation
of (2), the acceleration of Bj is given by the relation:

η̇j = Adjgi η̇i + ζj + r̈jAj , (4)
where ζj represents the component of accelerations in
(4) which depends on velocities through the detailed
expression:

ζj =

(

(jVi +
jPi ×

jΩi)× ṙjaj
ṙj

jΩi × aj

)

. (5)

Finally, by applying the Newton’s law and the Euler’s the-
orem on the jth body, one obtains the dynamic equations
of Bj in the Newton-Euler form:

fj = Mj η̇j + fin,j + fext,j +
∑

k|a(k)=j

AdTkgjfk, (6)

where k are the indices of all the successive bodies to Bj .
Moreover, in (6), we introduced:

• the (6×1) force vector fj (element of se(3)∗) exerted
by Bi onto Bj ;

• the (6×6) inertia tensor Mj of Bj (element of se(3)∗⊗
se(3)), which can be detailed as:

Mj =

(

Mj MST
j

MSj Ij

)

, (7)

where Mj and Ij are the tensors of linear and an-
gular inertia while MSj is the tensor of first inertia
moments, all being related to Bj ;

• the (6× 1) vector of Coriolis and centrifugal forces:

fin,j =

(

−Ωj × (MSjΩj) + Ωj × (MjVj)
Ωj × (IjΩj) +MSj(Ωj × Vj)

)

, (8)

• the (6× 1) vector of external forces denoted by fext,j
(like the gravity, the forces applied on the MMS by a
fluid, etc ...).

4. A NEWTON-EULER ALGORITHM.

In the past years, the above Newton-Euler model has been
extensively exploited to generate efficient and simple algo-
rithms solving the inverse, forward and hybrid (inverse-
forward) dynamics of both MS and MMS (Featherstone,

2008). These algorithms can be programmed either nu-
merically or using customized symbolic programming tech-
niques. Moreover, while they primarily enjoy a o(n) com-
plexity, they can be parallelized to obtain fast enhanced
algorithms with a o(log(n)) complexity (Featherstone,
1999). When considering MMS, a simple Newton-Euler
algorithm which will be used later, consists of computing
the joint torques τ and the external reaction wrench f0
exerted on the reference body B0, in order to impose a
given motion t 7→ (r, ṙ, r̈, eg0, η0, η̇0)(t). Such an inverse
algorithm can be derived as follows. Firstly, we compute
all the bodies transformations, velocities and accelerations
(0gj , ηj , η̇j) by using (1), (2) and (4) as forward recursions
(from B0 to the tip branches) initialized by eg0(t), η0(t)
and η̇0(t) and fed with r(t), ṙ(t), r̈(t). Secondly, (6) is used
as a backward recursion (from the tip branches to B0) for
computing the inter-body wrench fj . Finally, projecting
fj , j = n, n− 1, ..., 1 onto the joint axis Aj gives τ , while
the last computed wrench is merely f0. This computational
process is formally defined as:

(

f0
τ

)

= I(η̇0, η0,
eg0, r̈, ṙ, r),

where I denotes the recursive inverse dynamics algorithm.

5. REDUCED LOCOMOTION DYNAMICS OF A
MMS WITH PERSISTENT CONTACTS.

In accordance with the assumptions of section 2, we
address the following dynamic problem: knowing at each
time t, the state of the MMS ( eg0,

eη0, r, ṙ), and the
torques τ applied to the joints (through control laws or
stress-strain material laws); the forward dynamic problem
consists in calculating the accelerations of the reference
body η̇0 of the MMS subject to hard persistent contacts,
and the vector of joint accelerations r̈. In such a case, the
forward dynamic equations can be written in the following
assembled Lagrangian form (Boyer and Belkhiri, 2014):







(

M+
0 M+T

0

M+
0 m+

)(

η̇0
r̈

)

+

(

F+
0

Q+ − τ

)

=

(

AT

BT

)

λ,

eġ0 = eg0η0. (9)

In (9), the bottom row stands for a reconstruction equation
allowing to recover the motion of B0 on SE(3) knowing
the time evolution of its velocity η0 in se(3). The time
evolution of η0 along with that of the internal DoF of
the MMS is governed by the top row of (9), in which
M+

0 is the rigid inertia matrix of the MMS, M+
0 is the

coupling matrix between the external and internal DoFs
andm+ is the inertia matrix of the internal DoFs. As far as
(F+

0 , Q
+)T and τ are concerned, they are the vector of the

external and internal generalized forces and the vector of
torques applied on the joints respectively. Finally, λ is the
vector of Lagrange multipliers which physically represent
the external reaction forces transmitted from the media
to the MMS through the persistent contacts which are
modelled by m independent kinematic constraints of the
following general form:

0m = A(eg0, r)η0 +B(eg0, r)ṙ, (10)

where, A and B are matrices (m = rank(A,B)) deduced
from zero relative velocities conditions imposed at the
contact points by the media to the MMS.



Using these constraints, the dynamics of the mobile system
can be reduced through the projection of (9) in the kernel
of the constraints (10). Practically, this reduction consists,
firstly, to reduce the kinematics as follow:

(

η0
ṙ

)

= H

(

ηr
ṙr

)

, and (11)

(

η̇0
r̈

)

= H

(

η̇r
r̈r

)

+ Ḣ

(

ηr
ṙr

)

. (12)

where H = ker(A,B) is the kernel of the subspace of
admissible velocities, (ηTr , ṙ

T
r )

T is the vector of reduced
velocities. Secondly, introducing (12) in (9) that we then
project onto the space of (virtual) velocities verifying
(11), and since HT (A,B)T = 0, we obtain the reduced
dynamics:

(

η̇r
r̈r

)

= −

(

M+
r M+T

r

M+
r mr

+

)−1(
F+
r

Q+
r − τ

)

, (13)

which have to be supplemented with the reduced recon-
struction equation:

(

eġ0
ṙ

)

=

(

eg0 0
0 1

)

H

(

ηr
ṙr

)

. (14)

In (13), we have introduced the following reduced matrices:
(

M+
r M+T

r

M+
r mr

+

)

= HT

(

M+
0 M+T

0

M+
0 m+

)

H, and (15)

(

F+
r

Q+
r

)

= HT

((

F+
0
Q+

)

+

(

M+
0 M+T

0

M+
0 m+

)

Ḣ

(

ηr
ṙr

))

. (16)

6. COMPUTATIONAL ALGORITHM.

In this section, we propose a symbolic off-line computation
of the reduced dynamics (13,14). It is based on the
calculation of the free dynamics of the system, i.e. (9) with
λ = 0, together with a recursive symbolic calculation of the
constraints (10). Then, once all the matrices of (9) and
(10) known, H and Ḣ and finally (13,14) are symbolically
computed. Further details about these calculations are
given in the three subsections below.

6.1 Calculation of the free dynamics

As regards the calculation of the free dynamics, it is based
on the fact that one can reconstruct the assembled La-
grangian dynamics (9) by using the Newton-Euler inverse
algorithm I of section 2.3. In fact, remarking that we have
the identity:
(

M+
0 M+T

0

M+
0 m+

)(

η̇0
r̈

)

+

(

F+
0
Q+

)

= I(η̇0, η0,
eg0, r̈, ṙ, r),

it becomes straightforward to show that feeding I with
some specific unitary inputs allows to calculate (numeri-
cally or symbolically), column after column, all the matri-
ces M+

0 , M+
0 , m+ together with F+

0 and Q+.

6.2 Calculation of the constraints

To calculate the model of constraints (10), we start by
defining for each body Bj , its Jacobian matrix Jj as
follows:

ηj = Jj

(

η0
ṙj

)

, (Jj
ext, Jj

int)

(

η0
ṙj

)

.

Referring to (2), these Jacobian matrices are calculated
through the following forward recursion on the body
indices:

{

Jj
ext = AdjgiJj

ext,

Jj
int = AdjgiJi

int +Aje
T
j ,

starting from the initial values J0
ext = 16×6, J0

int =
06×(n−1) and with ej a (n × 1) unit vector whose the jth

component is equal to 1. Then, the algorithm properly
calculates the matrices A and B of the model of constraints
(10). This is performed by forcing to zero the velocity of
the material point whose the position overlaps 0Pj(k) at
t in the direction 0u(k) (which is an unit vector of F0).
In these conditions, 0Pj(k) and 0u(k), with k the index
of the constraint (k ∈ {1, 2...m}), are some inputs of the
algorithm that have to be specified by the geometry of
contacts. Finally, we initialize the matrix of constraints
by:

(A,B) = 0m×(6+n−1),
and calculate from k = 1 to m the velocity of the material
point whose the position overlaps Pj(k):

Vj(k) =

(

13 −P̂j(k)

03 13

)

Jj(k),

that we project onto j(k)u(k), to derive the kth row of the
matrix of kinematic constraints (A,B):

(A,B)(k) =
j(k)u(k)TVj(k).

In this way, the matrix of kinematic constraints is built
row by row.

6.3 Calculation of the reduced dynamics

Finally, H is computed symbolically using the Matlab
function Null based on the Singular Value Decompo-
sition, while Ḣ is obtained through a symbolic time-
differentiation of H using the diff function of Matlab.
At the end, using the free dynamics together with these
expressions of H and Ḣ, the reduced dynamics (13) are
computed by using the symbolic expressions of the pro-
jections (15) and (16). The entire algorithm including the
calculation of the free dynamics is reported in Appendix
through 3 recursions.

7. APPLICATION TO THE BICYCLE.

In this section, we propose to apply the framework, in-
troduced previously, to the simulation of the asymptotic
stability of a free bicycle and to a controlled turning
maneuver (see video https://youtu.be/B9mu7xQlL2w).

7.1 The bicycle.

The bicycle consist of four bodies: a frame, a fork and
two wheels (n = 4), described in accordance with the
assumptions presented in section 2. We define by w and
c the wheel base length and the trail respectively. The
steer axis tilt, angle between the fork and the vertical, is
denoted by θ. As depicted in figure 2, the frame has been
chosen as the reference body and, consequently, is denoted
by B0. Starting from B0, the fork and the front wheel will
be respectively denoted B1 and B2 while the rear wheel
will be denoted B3. For each bodies of the bicycle, the



Fig. 2. Schematic view of a bicycle.

parameters are given with respect to the body’s frame and
the inertia matrices are express at the center of mass. The
bicycle frame has a mass m0 and its center of mass, G0 is
located in F0 at (x0, y0, 0)

T . Its inertia matrix expressed
at G0 in F0 is equal to:

(

I0xx I0xy 0
I0xy I0yy 0
0 0 I0zz

)

.

As the fork is concerned, its center of mass is denoted G1

which is located in F1 at (x1, 0, z1)T . It has a mass m1 and
its inertia matrix is equal to:

(

I1xx 0 I1zx
0 I1yy 0
I1zx 0 I1zz

)

.

In order to complet the parametrization of the studied
system, the front and rear wheels have a mass denoted
m2 and m3 and a radius denoted h2 and h3 respectively.
Their center of mass is located at the joint axis (i.e at
the wheel hubs) and due to their geometries, their inertia
matrix is diagonal with, for the front wheel (for the rear
wheel), an axial inertia moment I2zz (I3zz) and radial
inertia moments I2xx = I2yy (I3xx = I3yy respectively).

7.2 Model of contacts.

Fig. 3. Parametrization of contacts between the wheels and
the ground.

We assume that the contacts between the wheels and the
flat ground are perfect, i.e. the tires are not subjected to
friction and deformation. In this example, the constraints
reflect the fact that in any direction normal to the plane,
each wheel can not penetrate nor separate the ground at
the contact point while in a direction parallel to their
plane, the wheels roll without slipping. In order to write
the six non-holonomic rolling constraints under the form
(10), we define two geometric contact points denoted by
P2 for the front wheel and P3 for the rear wheel as illus-
trated in figure 3. To locate these points, we introduce

two angles denoted by ψ2 and ψ3 which parameterize
their angular positions along the boundaries (the tires)
of the two wheels. The calculation of these contact points
is not a trivial task since it requires to solve numerically a
quartic at each time step of the simulation (Meijaard et al.,
2007). Here this implicit calculus is replaced by an explicit
calculation based on the projection of the dynamics in the
kernel of the kinematic constraints including the two holo-
nomic constraints imposed by no penetrating nor lifting.
Thus, these two implicit constraints have to be solved once,
before starting the simulation, in order to initialize it with
a compatible configuration. In this context, for computing
ψ2 and ψ3, we assume that the contacts are imposed on
the material points of tires whose altitude (with respect to
Fe) is minimum, i.e.:

∂(ePT
2 se)

∂ψ2
= 0 and

∂(ePT
3 se)

∂ψ3
= 0,

where eP2 and eP3 are the positions of P2 and P3 in the
earth frame Fe respectively, when se is the vertical axis.
Once all calculations done, ψ2 and ψ3 are given by:

ψ2 = atan(a2/b2) and ψ3 = atan(a3/b3), (17)
with:


















a2 = cos r1(
eR11

0 sin θ + eR12
0 cos θ) + eR13

0 sin r1,

b2 = eR11
0 cos θ − eR12

0 sin θ,

a3 = eR12
0 , and

b3 = eR11
0 ,

where eRij
0 is the i, j component of eR0. Once, ψ1 and ψ2

computed, (17) allows defining the current position of the
contact points in which the velocity with respect to the
ground are forced to zero. In short, this defines the points
0Pj(k) and the directions u(k) that feed the algorithm for
the calculation of the A and B matrices of (10). Once
H is calculated symbolically, the symbolic calculation of
Ḣ needs to time-differentiate (17) using standard com-
position of derivations fed by the time differential of the
arguments of (17):

ψ̇2 =
ȧ2b2 − ḃ2a2
a22 + b22

, and ψ̇3 =
ȧ3b3 − ḃ3a3
a23 + b23

,

with:


































































ȧ2 = (eR12
0 Ω0z −

eR13
0 Ω0y) cos r1 sin θ

+(eR13
0 Ω0x − eR11

0 Ω0z) cos r1 cos θ

+(eR11
0 Ω0y −

eR12
0 Ω0x) sin r1

−eR11
0 ṙ1 sin r1 sin θ −

eR12
0 ṙ1 sin r1 sin θ

+eR13
0 ṙ1 cos r1 ,

ḃ2 = (eR12
0 Ω0z −

eR13
0 Ω0y) cos θ

−(eR13
0 Ω0x − eR11

0 Ω0z) sin θ ,

ȧ3 = −eR11
0 Ω0z +

eR13
0 Ω0x , and

ḃ3 = eR12
0 Ω0z −

eR13
0 Ω0y .

where Ω0x, Ω0y and Ω0z are the three components of the
Galilean angular velocity of B0 in F0.

7.3 Results and Discussions

In order to simulate the bicycle, we applied the algorithm
of Appendix A with the help of the Symbolic Toolbox
of Matlab to generate an explicit analytical model of
the bicycle free dynamics and its constraints. This model



Table 1. Simulation parameters.

Parameter Value Parameter Value

m 6 n 4

w 1.02m g 9.81m s−2

c 0.08m I2xx = I2yy 0.1405 kgm2

θ π/10 rad I2zz 0.28 kgm2

h2 0.35m I3xx = I3yy 0.0603 kgm2

h3 0.3m I3zz 0.12 kgm2

x0 0.6m I0xx 2.8 kgm2

y0 0.3m I0yy 9.2 kgm2

x1 0.0288m I0zz 11.0 kgm2

z1 0.368m I0xy −2.4 kgm2

m0 85 kg I1xx 0.0584 kgm2

m1 4 kg I1yy 0.06 kgm2

m2 3 kg I1zz 0.0076 kgm2

m3 2 kg I1zx −0.0091 kgm2

depends on the 26 parameters of the system (see table
1). Then, using H = ker(A,B) and Ḣ, the projection
formula (15) and (16) are applied to the free dynamics to
automatically generate the reduced dynamics (13), (14). A
crude implementation of the algorithm (with no optimiza-
tions) provides a symbolic dynamic model that involves
few thousand basic operations (=,−,+,×, /). Using a
quaternion parametrization for reconstruction, the model
is time-integrated numerically in Matlab with a predictor-
corrector method (a fourth-order explicit method for the
prediction step and a fifth-order implicit method for the
correction step). At the end, the bicycle can be simulated
in real time (with Matlab), on a intel i7 CPU @ 3GHz (as
example 5 s of simulation takes less than 2.6 s of computa-
tion with a time step of 0.005 s).

Passive asymptotic stabilisation of a bicycle: For this
first example, we have chosen to reproduce the simulation
presented in (Meijaard et al., 2007). It is related to the
asymptotic stabilisation of a free bicycle (i.e. τ1 = τ2 =
τ3 = 0). To that end, the initial conditions are chosen
as follows. The speed along n0 (forward axis) is fixed to
V0y = 4.6m s−1 while the angular speed around n0 (roll
axis) is fixed to Ω0y = 0.5 rad s−1. A top view of the
bicycle motion is displayed in figure 4. Figure 5 presents
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-4

-2

0

0 5 10 15 20 25

Fig. 4. Trajectory of the bicycle in the y-z plane, in the
context of the asymptotic stabilisation study case.
The time interval between each snapshoot is equal
to 0.5 s

the plots of the time evolution of the rolling velocity Ω0y
and forward velocity V0x of the frame as well as the angular
velocity of the handlebar ṙ1 for the same test. Starting
from their initial values, the plots of figure 5, which
perfectly fit with the benchmark of (Meijaard et al., 2007),
clearly show that the bicycle self-stabilizes along time.
Moreover, it can be noticed that, while the time runs, the
values of Ω0y and ṙ1 tend to zero while the forward speed
of the frame increases up to reach a constant value closed
to 4.625m s−1 which is greater than the initial condition.

As mentioned by (Meijaard et al., 2007), this is due to
the energetic conservation of the system. Figure 6 and 7
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Fig. 5. The rolling speed Ω0y, the forward speed V0y and
the handlebar speed ṙ1 versus time t.

show the angular positions of contacts ψ2 and ψ3 on the
front and rear wheels respectively. In the standing position
of the bicycle (that plotted in figure 3), the contact points
are located just behind the wheel axis (i.e. ψ2 = (π+θ)rad
and ψ3 = π rad). Along simulation, these contact points
first move before converging to their standing position
(indicated by the red dotted line in the figures) when the
bicycle recover its stable vertical configuration.
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Fig. 6. Time-evolution of the angular position of the
contact point on the front tyre (i.e. ψ2) for the
asymptotic stabilisation study case.
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Fig. 7. Time-evolution of the angular position of the con-
tact point on the rear tyre (i.e. ψ3) for the asymptotic
stabilisation study case.

The simulator offers also the possibility to compute the
Lagrange multipliers associated to the constraints.In our
case, there are six multipliers (3 per wheel). As an example,
figures 8 shows the time evolution of λ4 which represents
the force applied radially (i.e. along the axis s0) on the rear
wheel at the contact point. This reaction force ensures the
non-penetration of the rear tyre into the ground. Let us
note that the multipliers are all expressed in the frame F0

(the bicycle frame) but can be easily expressed into the
ground frame for the purpose of ground-tyres interactions
study.

Controlled turn manoeuver: In this second and last
numerical example, the handlebar and the rear wheel are
actuated in order that the bicycle performs a turn at a
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Fig. 8. The time evolution of λ4 the force applied on the
rear wheel prohibiting the no penetration of the tyre
in the ground.

controlled forward speed. To do that, we use the following
simple control torque law:

If t ≤ t3:
τ1(t) = −Kps(r1dfs(t, t1, t2)− r1(t)). (18)

Else:
τ1(t) = −Kps(r1d(1− fs(t, t3, t4))− r1(t)) . (19)

End.

where, Kps is a steering proportional gain, r1d is the
desired steering angle, t1 ≤ t2 ≤ t3 ≤ t4 are switching
times used to perform a curved path, and fs(t, ti, tf ) is a
slope function defined as follows:

If t ≤ ti:
fs = 0 . (20)

Else if ti < t ≤ tf :

fs =
t− ti
tf − ti

−
1

2π
sin

(

2π
t− ti
tf − ti

)

. (21)

Else:
fs = 1 . (22)

End.

In the above control law, ti and tf are the starting and
ending times of the slope function respectively. As far as
the rear wheel is concerned, the torque applied on its hub
is defined by:

τ3 = Kpd(ṙ3d − ṙ3) , (23)
where Kpd stands for a drive proportional gain and ṙ3d is
the desired rear wheel speed. The values of the control law
parameters are indicated in table 2. As shown in figure

Table 2. The simulation parameters of the
controlled turn manoeuver.

Parameter Value Parameter Value

Kps 10 Nm r1d π/12 rad

Kpd 40 Nms ṙ3d 20 rad.s
−1

t1 0 s t2 = t3 1 s

t4 2 s

9, the bicycle, starts from a straight vertical configuration
with an initial forward velocity V0y = ṙ3dh3 = 6 m.s−1,
and performs a turn of 0.067 m−1 curvature approxi-
mately. When the handlebar starts to move, the bicycle
naturally (passively) tilts toward the center of the curve
while turning. After a certain duration, the handlebar is
straightened up. Moreover, the forward speed is enough
high to ensure the asymptotic stabilisation of the bicycle
(see Meijaard et al. (2007)). To illustrate this observation,
in figure 10, we plotted for the same manoeuver the time
evolution of the rolling, steering, and forward velocities
which do stabilize with time. Figures 11 and 12 show the
time evolution of the torques applied to the handlebar, i.e.

0
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15

20

0 5 10 15

Fig. 9. Trajectory of the bicycle in the y-z plane when per-
forming a controlled turn. The time interval between
each snapshot is equal to 0.5 s.

τ1, and to the rear hub, i.e. τ3. Finally, as far as the contact
points are concerned, we plotted in figure 13, the angular
position of that between the front tire and the ground as
a function of time. Note that during the maneuver, this
contact point significantly migrates forward along the tire
to reach 0.13 rad ∼= 7.5 deg.
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Fig. 10. Time-evolution of the rolling (in blue), steering
(in red), and forward (in yellow) velocities during the
turn manoeuver.
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Fig. 11. Time-evolution of the steering torque τ2.
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Fig. 12. Time-evolution of the driving torque τ3.
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Fig. 13. Time-evolution of the angular position of the
contact point on the front tyre (i.e. ψ2) during the
turn manoeuver.

8. CONCLUSIONS

In this paper, we have presented a general algorithm
devoted to the symbolic modelling of the dynamics of
tree-like structure Mobile Multibody System constrained
by both holonomic and nonholonomic contacts. Based on
the Newton-Euler approach of robot dynamics as well
as the reduction process of (Boyer and Belkhiri, 2014),
the proposed approach is applied to the three-dimensional
bicycle with an explicit model of the contact. Futhermore,
following Boyer and Belkhiri (2014), this dynamic model
of the bicycle can be enhanced in order to take in account
flexibilities. Comparisons with a recently proposed bench-
mark of this system give undetectable discrepancies and
tend to prove that, contrarily to what is today believed,
an exact and explicit model of the fully nonlinear dynamics
of the bicycle in a closed form suited to nonlinear control
could be derived in future.
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Appendix A. ALGORITHM

J0 = (16×6, 06×(n−1));
J0

int = 06×(n−1);
Z0 = 06×1;
for j = 1 to n do

ηj = Ad jgiηi + ṙjAj ;
Jj = Ad jgiJi +Aj(0

T
6 , e

T
j )

T ;

Jj
int = Ad jgiJi

int +Aje
T
j ;

Zj = Ad jgi(ζi + Zi);
M+

j = Mj ;
F+
j = fin,j + fext,j ;
M+

j = 0(n−1)×6;
end
m̂ = 0(n−1)×(n−1);
Q+ = 0(n−1)×1;
for j = n to 1 do

M+
i = M+

i +AdTjgiM
+
j Ad jgi ;

F+
i = F+

i +AdTjgi(F
+
j +M+

j ζj);

M+
i =M+

i +AdTjgi(M
+
j +M+

j (Aje
T
j ));

m̂ = m̂+ ej(A
T
j (M

+
j Jj

int));
Q+ = Q+ + ej(A

T
j (F

+
j +M+

j ζj +M+
j Zj));

end

m+ = m̂+ m̂T − diag(m̂); (A,B) = 0m×(6+n−1);
for k = 1 to m do

Vj(k) =

(

13 −P̂j(k)

03 13

)

Jj(k);

(A,B) = (A,B) + ek

(

uT
j(k)Vj(k)

)

;

end


