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Macroscopic modelling of gas flow through a fractured porous medium

P.Royer
Ecole des Mines, Paris, France
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Laboratoire *Sols, Solides, Structures’, UJF, INPG, CNRS, Grenoble, France

ABSTRACT : This work is concerned with modelling the seepage of gas through a rigid fractured medium. It
summarises results obtained using the homogenization method for periodic structures. Thereby, unlike the
phenomenological approaches, the macroscopic behaviour is deduced from the physics at the microscopic
scales, without any prerequisite. The homogenized model is then compared to the model of Warren and Root
for a slightly compressible fluid flow in a fractured porous medium. Finally, a correction of pseudo steady

state phenomenological models is proposed.
1 INTRODUCTION

A fractured porous medium is a dual porosity
medium, i.e., it consists of two interacting porous
systems whose permeabilitics arc very different.
One of the two porous structures is associated with
the fractures and the other one with the porous
matrix. Modelling such an heterogeneous system
turns out to be a difficult task. Nonetheless, the
internal disorder repetition allows a large-scale
continuous description. In other words, physical
processes can be described by means of equations
with transfer coefficicnts that are independent of the
macroscopic boundary conditions. Two kinds of
approaches may be distinguished: i) Directly
macroscopic approaches ; ii) Upscaling methods.

The first investigations were on the basis of
phenomenological approaches, i.e. directly
macroscopic approaches (Barenblatt et al. 1960),
(Barenblatt 1963), (Warren & Root 1963). The first
model (Barenblatt et al. 1960) shows an important
characteristic of dual porosity systems: the
interporosity flow, i.e. the fluid exchange between
both constitutive media. In these phenomenological
models, a pseudo steady state flow is described.
They are based on the conjecture that the
interporosity flow occurs in response to the
fracture-porous matrix difference in pressure.

On the other hand, homogenization techniques
allow the determination of an equivalent
macroscopic behaviour by upscaling the local
description. By definition, this macroscopically
equivalent medium behaves “ in average ” like the

initial heterogeneous medium under a given
excitation. The condition required for applying these
methods is the separation of scales. Homogenization
techniques have already proved to be efficient for
modelling fluid flow in porous media. In particular,
the homogenization method for periodic structures
leads to precise descriptions since no macroscopic
prerequisite is required. When looking for a
macroscopic equivalent description of fluid flow in
fractured porous media, three separated scales
whose characteristic lengths are very different may
be under consideration : the pore scale, the fracture
scale and the macroscopic scale. An innovative three
scale homogenization method for periodic structures
was established in (Auriault & Boutin 1992),
(Auriault & Boutin 1992), (Royer & Auriault 1994),
(Royer 1994). Pore-flow and fracture-flow are
controlled by Stokes equations. This upscaling
method allows the influence of the local effects, i.e.
at the pore scale, to be conveyed to the macroscopic
level.

The goals of this paper are two-fold: i) To present
the model of gas flow in fractured porous media
derived via homogenization; ii) To compare the
homogenized model with the phenomenological
models. Since there is no dual porosity
phenomenological model for highly compressible
fluid flow, this comparison is carried out for a
slightly compressible fluid.

In section 2, the description obtained by the three
scale homogenization approach is presented.
Attention will be focused on the result itself. For
details concerning the derivation of this model, the



reader will be referred, when required, to several
former papers. Section 3 relates specifically to
comparing the homogenized model with the model
of Warren and Root for a slightly compressible fluid.
Finally, a correction of the interporosity flow term
is proposed, which yiclds a more accurate
description for transient regimes,

2 HOMOGENIZATION OF GAS FLOW
THROUGH A FRACTURED POROUS
MEDIUM

2.1 General

To fit the homogenization method for periodic
structures to three scales problems, the medium is
assumed to be doubly periodic. There is no loss of
generality by introducing the assumption of
periodicity (Auriault, 1991). No specific internal
geometry is at issue for both periods, the work is
aimed towards deriving a general macroscopic model.
At the pore scale, consider the medium to be Q-
periodic and its characteristic length to be /. The
solid and the pores occupy the domains Q, and
Q, , respectively, and their common boundary is I’
(Fig. 1a). A second periodic structure exists at the
fracture level, whose period is Q' and whose
characteristic length is [', such that I'>>/. The
porous matrix and the fractures occupy the domains
,, and €, respectively, and their common

boundary is T" (Fig. 1b). In a given medium, / and
I' arc defined but the macroscopic characteristic
length, /", must be chosen such that [">>['.
Therefore, the dual porosity medium exhibits two
separations of scales instead of one in the single
porosity case:

IJI"<<1 between the fracture scale and the

macroscopic level,
IfI'<<1 between the pore scale and the fracture
scale.
[f the first condition is not checked the
homogenization cannot be applied because the
macroscopic scale and the fracture scale are not
separated. If the second one is not checked, it means
that the medium is a two scale medium.
Thus, it is assumed that both conditions of
separation of scales are satisfied, so that the medium
is a three scale medium and the homogenization
theory can be applied.

The macroscopic behaviour of such a medium
under fluid flow depends upon the relative order of
magnitude between both scale ratios. The largest

coupling effects between the pore-flow and the
fracture-flow appear when the scales are equally
scparated (Auriault & Boutin 1992), (Auriault &
Boutin 1992), (Royer & Auriault 1994), (Royer
1994), i.e. when

l I
TR =00).

This is the case under consideration hercafier for the
investigation of gas flow in a rigid fractured medium.

2.2 Local description

In the pores (Q,) and in the fractures (), gas
flow is expressed by Navier-Stokes equations. For
slow flows, inertial and transient terms of Navier-
Stokes cquations can be neglected (Auriault et al.
1990). For the sake of simplicity, assume the fluid
to be linear. Thus, the gas state equation is a linear
relationship between the fluid pressure and the fluid
density. Let us assume the system to be initially at
rest: fluid velocity is zero-valued and pressure and
density are constant (£, and p,, respectively).
Thus, the problem is governed by the following set
of equations with k= p in the pores (£,) and
k= f in the fractures (£ ). Fluid pressure and
density are £, + I} and p,+ p, , respectively, where
P, and p, are increments.

UAT, + (A +)V(V.5,)-VP =0 (1)
2 19,0+ ) =0 @
p, = AP, whtndn%:lsaoaman o)
V,=0 on T )

i, i<, >,,.;?-(é |5, di onT (5)
n’
ly=F onI' (6)

2.3 Non-dimensional numbers

Details concerning the estimation of the following
non-dimensional numbers are given in (Royer &
Auriault 1994), (Royer 1994).

The momentum balance equation (1) introduces:
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Figure 1: a, fracture scale period, b pore scale period

[t can be shown that the homogenization method can
be applied if:

0=0,=0, =0() = ) .

The Strouhal number is defined from the mass
balance equation (2):

9Py
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k=p,f.

I'he case of interest is that where S, =O(1). For
equally separated scales we get S, = O(1).

Thus, when cast in non-dimensional form, the
governing equations are written as follows, where all
quantities arc now non-dimensional quantities:

e\ uav, + (A+wW(V.5,))- VP, =0 %)

a”‘W«pwp.)v.)-o (8)

p,= AP, where A= %Lt aconstant  (9)
0

\7,-() on T (10)
|

V, . n'=<y > 0= ( v_odQ).a' onl(11)
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pwP, onl (12)

The upscaling process may now be performed.
Density, pressure and velocity fields are now looked
for in the form of asymptotic expansions in power
of €. Once these expansions have been introduced
in the non-dimensional set of equations (7-12), the

successive boundary value problems at the different
orders of € must be resolved so as to derive the
macroscopic description. Application of
homogenization theory to this problem and calculus
are detailed in (Royer & Auriault 1994), (Royer
1994). For a general introduction to the
homogenization method for periodic structures, the
reader is referred to (Auriault 1991).

2.4 Scaled-up model
The derived macroscopic behaviour is:

ar, <P >
_-L =] I A
¢ +9 > a3

-V.i(P+P)K, VP )=0

where

d-%ll is the fracture porosity,
0-%1 is the pore porosity.

a<p >, ‘
The term ¢———= shows the fluid exchange

between both porous systems. <7, >, is defined
by:

<P,>‘-ﬁl»‘!l’,m.

where P, is defined by the following boundary
value problem over X :



oP, +§
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P,=P, onT",

in which P, is €' -periodic.
The macroscopic velocity is:
P=-K VP,
where R, is the fracture permeability and is
determined from the geometry of Q', .
It turns out that F, and F, are such that:

P, =F(P),

where F is a non-lincar time-dependent functional
exhibiting memory efTects,

The macroscopic behaviour is strongly influenced by
the flow in the pores. It induces memory effects and
strong non-linearities. This result highlights how the
local effects may affect the macroscopic behaviour,

3 COMPARISON WITH THE
WARREN AND ROOT

MODEL OF

3.1 Introduction

To our knowledge, there is no rigorous
phenomenological model for highly compressible
fluid flow in fractured porous media, The existing
models are derived for slightly compressible fluids.
In these models, a pseudo steady state flow is
described: it is assumed that the interporosity flow
q, i.¢. the flux of fluid from matrix to fractures,
occurs in response to the fracture-pore difference in
pressure:

q=sK,(F,=F;)

where s is a characteristic coefficient of the
fractured rock proportional to the specific surface of
the block. In this scction, one of these classical
models, namely, the model of Warren and Root is
compared to the homogenized model. For the
purpose of this comparison, the homogenized model
is linearised so as to describe the flow of a slightly
compressible fluid. The result of this comparison
suggests a way to improve the interporosity term in
the classical models.

3.2 The model of Warren and Root

The dual porosity model of Warren and Root
(Warren and Root 1963) is a simplification of the
complete model of Barenblatt (Barenblatt et al.
1960). Fluid flow in the porous matrix is neglected:

K,AP, = p'c'-aﬁ--:x,(g -P)

5 (13)
AP
oC T;LFSK,(P,—P,)-O (14)
In Fourier space, the system is written as:
K AP, =iw¢'C'P, ~sK,(P,~ P;) (15)
109C" P, + 5K (P, = P;) =0 (16)

where @ is the pulsation,
Elimination of P, between equations (15) and (16)

yields:

i0¢C"sK ’

K, AP, -IWC'P, +ml,
»

3.3 Homogenized model for a slightly compressible
Suid

an

For the comparison to be possible, the model
obtained in section 2 must be rewritten for a slightly
compressible fluid. The equation of state (3) is
replaced by:
p.+p=p(1+CPR), k=p,f (18)
where I(."I;|<<l; and (" is the compressibility
coefficient. Permeabilities are assumed to be

constant and isotropic. Then, model (13) is changed
to:

o OBy o O Py g
yc at HIC' at

K,AP, =0 (19)

P, is the solution of the following diffusive

cquation in £,



LdP,
K,AF, =¢C 7,&'

with the boundary condition:
r=pP onl",

Proceeding by Fourier analysis leads to the following
solution in Fourier space (Auriault 1983), (Royer &
Auriault 1994), (Royer et al. 1996):

h=(-HE,

where k is complex-valued and @ -dependent,
In Fourier space equation (19) can therefore be
written as follows:

KAF =
[C +91-9)C"~9C" < k>, limP, 20)
in which
1
<k>,= kdQ .
st

The inverse Fourier transform of equation (20) gives
the description for a transient excitation:

. 9P
KAl =9C'+ 901-9)C') 5L
@n

. { a’P,
-¢C ik(l-f)w—df

where K(/) is the inverse Fourier transform of
<k>fio and characterises the memory effccts
induced by the dual porosity structure of the
medium. The convolution product in equation (21)
corresponds to the phenomenological interporosity
flow. The memory function K(7) is similar to that
introduced in (Auriault 1983) and taken up again in
(Auriault & Royer, 1993) for transient heat transfer
in double conductivity composites,

I'he memory function K(r) can be represented by
an infinite sum of exponential terms;

K(r)-ia, exp(=b,1), b <b, <. .
pel

The objective is to check whether a long time
approximation of the homogenized model would
coincide with the pseudo stcady state model of
Warren and Root. For this purpose, let us

approximate K(1) by:

K1) = a, exp(-By1).

Translating this approximation in Fourier space,
equation (20) becomes:

K, AP, =

i 22
CL9+60-0)- 45N, p=s

Thus, equation (22) is an approximation of (20) for
low pulsations.

3.4 Comparison with the model of Warren and Root

Let us now compare both descriptions in Fourier
space. The identification of equations (17) and (22)
yields:

oC'sK a,lw
sK, +#m “C‘“-’.-b, vio

This identification is not possible for all values of @
(Auriault & Royer 1993). Thus, the model of
Warren and Root cannot be identified to the long
time approximation of the homogenized model. This
shows that the model of Warren and Root fails to
reproduce transient regimes. This is ascribed to the
pscudo steady state approximation, i.c. to the form
of the interporosity flow term.

Now let us improve the interporosity flow term
to make the model of Warren and Root suitable for
transient regimes. Consider the convolution term in
equation (21):

(23)

' a'
[k(:-r)wf’-dr

Integration by parts of this integral gives an infinite
sum of time derivatives of F, . Therefore, model
(21) for transicnt excitations can be written as
follows:



. . ap
K,AF =[9'C"+9(1-9')C") 51

)
—d, -a—,,-—...d, -~

24)

Equation (24) suggests to correct the interporosity
term by incorporating a time derivative of F, :

P,
g=sK(F,-F-0—5), (25)

where @ is a constant.

It can be shown that using correction (25), the
model of Warren and Root can be identified with the
long time approximation of the homogenized modcl
(Auriault & Royer 1993), (Royer & Auriault 1994),
(Royer 1994).

4 CONCLUSIONS

Through classical phenomenological approaches,
transport phenomena in dual porosity media arc
directly modelled at the macroscopic scale. Thus, the
influence of local heterogencities on the macroscopic
behaviour cannot be perfectly disclosed.
Furthermore, phenomena such as flow in the pores
or storage capacity in the fractures are often simply
discarded.

The homogenization method for periodic
structures allows the derivation of the macroscopic
behaviour from the complete microscopic
description. Since there is no macroscopic
prerequisite, the influence of the local effects is
conveyed to the macroscopic level. Model (13)
constitutes the first model of gas flow through a dual
porosity medium that takes the strong
compressibility of the fluid into account. Pscudo
steady state phenomenological models are shown to
be rough approximations for transient excitations in
the context of slightly compressible fluid flow,
Then, it is proved that adding a fracture pressure
time derivative in the interporosity flow term
overcomes, 1o some extent, the limitations of the
pscudo steady state approximation.
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