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COMPRESSIBLE FLUID FLOW IN HETEROGENEOUS MEDIA WITH
INTERFACE FLOW RESISTANCE

P. R(}yer’ and J.-L. Auriaul?
Ecole des Mines de Paris, France
2 | aboratoire Sols, Solides, Structures, UJF, INPG, CNRS, Grenoble, France

1. General

This work is concerned with modelling compressible fluid flow in a rigid porous composite
medium, in the presence of an interface flow resistance. The temperature is assumed to be constant.
The equivalent macroscopic model is obtained by upscaling the description at the heterogeneity scale.

Consider a composite medium which is made of two porous solids with a fine periodic

structure. Solids 1 and 2, of permeabilities k and k, and porosities ¢, and ¢,, occupy simply
connected domains €, and £,, respectively. I" denotes their common boundary. Tt is assumed that a
flow resistance is acting on the interface T'. The period, of dimension O(1), is small compared to the

macroscopic characteristic length L : —i-s ¢ <<1. Fluid flow in the composite medium at the local
scale is governed by the following equations:

= = dF,
() V.[kBVR]= oSt in Q,
o0 ne o, A
@) V.[kRVE]=¢, = in €,
(3) (kRVR )i = (k,RVP)A  on T
(4) (k,RVP).ii, = gu’,’ ~B) onT

P is the pressure, 7, is the outward normal to €2, and & > 0 is the interface flow resistance.

2. Upscaling Method

The goal of this work is to derive a macroscopic model which is equivalent to (1-4). The method
is as follows: a. Muke the local description dimensionless; b. Evaluate the dimensionless numbers
with respect (o the scale separation parumeter €; ¢. Use n perturbation method - the multiple scale
expunsion method- (o obtain the macroscopic model.

The set (1-4) introduces four dimensionless numbers: the permeability ratio A, the Biot's
number B, the transient number 7' and the pressure ratio C 4

|, R
A-ﬁ’ B= (P,,_-P'z -ﬂ. T = : o f¢¢lc,2' C-—Pl-
k, KBVRLA| K |v.[k,P,\7P,] kTP P,

For a system undergoing transient excitations, the condition on T for which an equivalent
macroscopic model can be derived is Z‘aO{e’), [1]. Let us limit the study to cases where

permeabilities and pressures are of (he same order of magnitude: A = Of1), C=0(1). Concerning B,
the cases of interest are




B=0(¢"),q=-10123
These cases yield different macroscopic models. Clearly, A and B arc well determined for a
composite medium. Therefore, their valucs with respect to € depend on the macroscopic
which is related to the excitation. As a consequence, a given medium shows different
models, depending on the excitation.
The pressure fields may now be looked for in the form of expansions in powers of £.
macroscopic models are deduced from the existence condition of this asymptotic expansion. '

3. Macroscopic models

Note that the set (1-4) is m::gly non-linear. However, the upscaling is conducted as in [2)
[3], where linear heat transfer linear pollutant diffusion are investigated, respectively.
dilferent macroscopic models are summarised in Figure 1.
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Figure 1. The different macroscopic models

Horizontal arrows show the sole continuous paths between the different models,
Fmt(t: ;;ossible by either increasing or decreasing h. Models /, /I and /Il are one-pressure-field
in the form

fl.[x'ﬁp]x o> %.a =11,

K® a=1,11,111, are three diffcrent effective permeabilities. They arc similar to the e
permeabilities obtained from the linear seepage problem, see [2], [3] where heat and di

problems are solved. K' is the effective permeability in absence of contact resistance (h = o).

h-dependent. K" = K' + K* # K' is independent of h. < ¢ > is the volume average of the
Models IV and V are two-pressure-field models. Model 1V is as follows

V.[K'RVR]=9, %"-’u%m’ -R)

V[K'RIR]= 9, 51~ 2 (- )

H is the average of the interface flow resistance. Model V is derived from model /V by taking H:
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