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Modelling astronomical adaptive optics performance with temporally-filtered Wiener reconstruction of slope data

We build on a long-standing tradition in Astronomical Adaptive Optics (AO) of specifying performance metrics and error budgets using linear systems modeling in the spatial-frequency domain.

Our goal is to provide a comprehensive tool for the calculation of error budgets in terms of residual temporally-filtered phase power-spectral-densities (PSDs) and variances. In addition, the fast simulation of AO-corrected PSFs provided by this method can be used as inputs for simulations of science observations with next-generation instruments and telescopes, in particular to predict postcoronagraphic constrast improvement for planet finder systems.

 and Jolissaint [4]. We follow closely the developments of Ellerbroek [5] and propose the synthesis of a distributed Kalman filter to mitigate both aniso-servo-lag and aliasing errors whilst minimizing the overall residual variance. We discuss applications to (i ) Analytic AO-corrected point-spread-function (PSF) modelling in the spatial-frequency domain; (ii ) Post-coronagraphic contrast enhancement; (iii ) Filter optimisation for real-time wave-front reconstruction; and (iv ) PSF reconstruction from system telemetry.

Under perfect knowledge of wind-velocities we show that ∼ 60 nm rms error reduction can be achieved with the distributed Kalman Filter embodying anti-aliasing reconstructors on 10 m-class high-order AO systems, leading to contrast improvement factors of up to three orders of magnitude at few λ/D separations (∼ 1 -5λ/D) for a 0-magnitude star and reaching close to 1 order of magnitude for a 12-magnitude star.

Introduction

Synthetic modelling of Adaptive Optics (AO) systems has been pursued over the years using linear approximations. These approximations allow a fast and accurate estimation of performance over a broad parameter range for both classical (singleconjugate) AO [START_REF] Rigaut | Analytical model for Shack-Hartmann-based adaptive optics systems[END_REF][START_REF] Flicker | Analytical evaluations of closed-loop adaptive optics spatial power spectral densities[END_REF][START_REF] Jolissaint | Synthetic modeling of astronomical closed loop adaptive optics[END_REF] and multi-conjugate AO [START_REF] Ellerbroek | Linear systems modeling of adaptive optics in the spatial-frequency domain[END_REF][START_REF] Rigaut | Principles, limitations, and performance of multiconjugate adaptive optics[END_REF][START_REF] Gavel | Tomography for multiconjugate adaptive optics systems using laser guide stars[END_REF]. This is particularly relevant in the era of Extremely Large Telescopes (ELTs), where a high number of synthesise the closed-loop linear filters -a specific case being the commonly-used integrator controller -borrowing from the motivation and further developing the results of [START_REF] Poyneer | Fourier transform wavefront control with adaptive prediction of the atmosphere[END_REF][START_REF] Massioni | Fast computation of an optimal controller for large-scale adaptive optics[END_REF] on distributed filters. The latter relies on the hypothesis of phase spatial invariance. As such, the AO loop operations can all be approximated by convolutions with localised kernels which translate into filtering functions when a basis of complex exponentials is chosen. All parameters being equal, the two approaches above are equivalent but differ in how the controller is applied to the measurements. In direct space the data is convolved (after inverse Fourier-transforming the matrix of gains). In Fourier space, the Fourier transform of the wavefront measurements is taken, then each mode is weighted by a complex function (the filtering process) followed by an inverse Fourier transform to gather the reconstructed phase.

Although this is not a review paper we strive to generalise and provide further insight into previous work in this field. Our developments make extensive use of Fourier transforms, in both time and space over continuous and discrete supports (with the necessary adaptations), and the well-established relationships between the Laplace transform and Z-transforms [START_REF] Oppenheim | Signals & Systems[END_REF][START_REF] Oppenheim | Discrete-time signal processing[END_REF].

The foreseeable applications of these results include

• Analytic AO-corrected PSF modelling

• Post-coronagraphic contrast enhancement

• Filter optimisation for real-time wave-front reconstruction

• Evaluation of error terms for post-processing system telemetry to reconstruct the AOcorrected PSF

Of particular interest for the analysis carried out here are cases where the use of an optical spatial filter [START_REF] Poyneer | Spatially filtered wave-front sensor for high-order adaptive optics[END_REF] is limited, such as in cases where the size of the sub-apertures compared to the turbulence coherent length makes it hard to reach a suitable trade-off between aliasing rejection (small spatial filter width) and robustness to changing seeing conditions (large spatial filter width) [START_REF] Sauvage | SAXO: the extreme adaptive optics system of SPHERE (I) system overview and global laboratory performance[END_REF]. In such cases a reconstruction process which can compensate for predicted aliasing errors is highly desirable, particularly in the case of high contrast imaging.

The formulation of the distributed Kalman filter (DKF) is motivated by physical and technological constraints. On the one hand complex-exponential (Fourier) modes are considered statistically independent (both spatially and temporally). On the other hand, if N is the number of degrees of freedom, the runtime computation of modal coefficients can be accomplished using transforms that scale with N log(N ), compared to N 2 operations required by standard linear-systems solvers (explicit vector-matrix multiplication). Thus such an approach has the potential to provide a much welcome improvement in runtime application.

Moreover, since a distributed controller is obtained, the off-line computation of gains boils down to solving scalar (or small scale) algebraic equations in parallel for each Fourier mode.

Considering that Kalman filters are seamlessly obtained as the minimisers of the residual phase variance criterion (which is to say Strehl-ratio maximisers) they naturally achieve the best tradeoff between aniso-servo-lag, spatial aliasing and propagated noise.

Mitigation of these errors is crucial for achieving high post-coronagraphic contrast levels sufficiently close to the PSF core to enable the detection of Earth-mass companions orbiting nearby stars [START_REF] Guyon | Limits of adaptive optics for highcontrast imaging[END_REF].

Illustrative examples are given for two scenarios 1. PSF modelling and performance optimisation for current general-purpose AO systems 2. Post-coronagraphic raw constrast improvement in current 10m-class telescopes using a distributed Kalman filter [START_REF] Massioni | Fast computation of an optimal controller for large-scale adaptive optics[END_REF][START_REF] Poyneer | Toward feasible and effective predictive wavefront control for adaptive optics[END_REF] with embedded temporal prediction of the atmosphere.

This paper is organised in the following way: Section 2 formulates the residual wave-front error statistics in the static and dynamic cases; Sec. 3 provides the distributed Kalman Filter formulation and reviews that of the integrator as a specific case covered by state-space models; Sec. 4 outlines the modelling for Shack-Hartmann based AO; Sec.5 and Sec. 6 quantifies AO performance and raw contrast improvement when using optimal, timepredicive controllers; a summary is provided in Sec. 7.

Residual wave-front error in the spatialfrequency domain

The errors present in an adaptive optics system can be separated into different categories according to their origin. Depending on the nature of the error they may be static or impacted by the AO loop. The specific errors considered in this paper are:

1. Fitting error for modes beyond the AO correction region, i.e. spatial frequencies above 1 2d , where d is the deformable mirror pitch.

2. Measurement noise due to photon and detector read noise.

3.

Aliasing due to spurious high-order frequencies which fold into the measurement during the discretisation process. [START_REF] Correia | Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems[END_REF].

4. Aniso-servo-lag errors due to system delays and the angular separation between guidestars and science objects.

We consider two cases -static and dynamic, i.e., with and without temporal filtering by an AO loop, in both open-and closed-loop mode.

The telescope aperture, which would break spatial stationarity is approximated by the general filtering functions for piston-removal [START_REF] Correia | Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems[END_REF][START_REF] Ellerbroek | Linear systems modeling of adaptive optics in the spatial-frequency domain[END_REF].

Therefore the final result is compatible with expressions in the spatial frequency domain using modal decompositions onto functions defined over an infinite plane.

Tilde symbols are used to represent complex-valued variables in the spatial-frequency domain, each of which represent coefficients of harmonic functions whose relationship to spatial domain variables are given by standard Fourier transforms [START_REF] Oppenheim | Signals & Systems[END_REF].

2.A. Limiting static case:

open-loop, τ → 0, T s → 0 We start by providing suitable formulations for evaluating the individual AO error contributions in the highly idealised static case where any temporal aspects are momentarily set aside. This case is rather instructive as the limiting case when the WFS integration time is zero (T s = 0) and the delays are set to null (τ = 0) leading to simplifications when computing the instantaneous AO residual. Moreover, no time-dependence is associated to the wave-front sensor G(κ), spatial reconstruction R(κ) and deformable mirror F(κ) filtering functions. Spatial filters are indexed by the spatial frequency variable κ = {κ x ; κ y } ∈ R 2 .

Figure 1 provides the general-case AO scenario in open-loop operation. Variables therein will be used throughout this document.

The (spatial) error functions, ε(κ) are described by the following relations where || represents the AO controllable region -1/(2d) ≤ κ ≤ 1/(2d) and ⊥ its complement for a DM with regular actuator pitch d matching the SH-WFS sub-aperture widths. ϕ refers to wave-fronts in the spatial-frequency domain. The upper-script ′ cor ′ represents the corrective phase applied by the DM. Note that in general ϕ cor ⊥ (κ) = 0 but we include this term as the shape of the DM actuator functions can extend the controllable region beyond the limits stated above [START_REF] Correia | Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems[END_REF][START_REF] Ellerbroek | Linear systems modeling of adaptive optics in the spatial-frequency domain[END_REF]. In the following we drop the symbol || when implicit and use interchangeably the notation for the powerspectral density (PSD) |v| 2 (κ) = W v (κ).

ε|| (κ) ε⊥ (κ) = ϕ || (κ) ϕ ⊥ (κ) - ϕ cor || (κ) ϕ cor ⊥ (κ) (1) 
Let the piston-removed residual phase PSD be such that

W ′ ϕ (κ) = 1 - 2J 1 (πκD) πκD 2 W ϕ (κ) = PW ϕ (κ)
(2) in which J 1 (•) is a Bessel function of the first kind. P(κ) is the piston-removal filter within square brackets in Eq. (2) for a circular pupil of diameter D.

Using the Parseval theorem, the residual (pistonremoved) phase variance is defined by

σ 2 Tot P | ϕ(κ) -ϕ cor (κ)| 2 ∂κ (3)
which is a function of {d, D, r 0 , L 0 , σ 2 η }, the actuator pitch, the telescope diameter, the atmosphere coherence length, the outer scale and the measurement noise variance.

In the remainder we suppose that the DM corrects entirely for the estimated phase, i.e. ϕ cor (κ) = ϕ(κ) when the anti-folding filter is applied [START_REF] Correia | Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems[END_REF] and implying F(κ) = 1, for |κ| < 1/(2d) and 0 elsewhere. The folding term in §3.D of Correia et al (2014) [START_REF] Correia | Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems[END_REF] is not to be confused with the aliasing term: it is related to the DM capability to correct for frequencies above the cutoff frequency due to the cyclic pattern of the DM actuators and shape of the influence functions [START_REF] Correia | Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems[END_REF][START_REF] Ellerbroek | Linear systems modeling of adaptive optics in the spatial-frequency domain[END_REF].

Equation ( 3) is expanded using ϕ(κ) = R s(κ) (the reconstructed phase) and the general-purpose measurement model in the Fourier domain

s (κ) = G ϕ || (κ) + α (κ) + η (κ) , ( 4 
)
where G is a linear filter relating the wave-front ϕ to the slope measurements s (which may include at a later stage detector integration and delay), α (κ) is the aliasing term (equation 17 from [START_REF] Correia | Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems[END_REF]) acting as a generalised measurement noise term and η (κ) is an additive noise term [START_REF] Correia | Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems[END_REF].

Since the signal and noise processes are independent the cross terms are zero and we can write

P ϕ(κ) -ϕ(κ) 2 = P |ε ⊥ (κ)| 2 + P ε|| (κ) 2 = | ϕ ⊥ | 2 + 1 -R G 2 P ϕ(κ) ϕ(κ) * + W RA + P R η 2 (5)
with | ϕ ⊥ | 2 the PSD of the fitting error (where we approximate P(κ) = 1 for |κ| > 1/(2d)). The term

1 -R G 2 P ϕ(κ) ϕ(κ) * = 1 -R G 2 W ′ ϕ (κ) (6) 
is the PSD of the static phase reconstruction error and

W RA = P m =0 R(κ) G(κ + m/d) 2 W ϕ (κ + m/d) (7)
is the PSD of the static reconstructed aliasing error. Finally

W η = P R η 2 (8)
is the PSD of the propagated noise. of ϕ. Here we introduce the Laplace transform L{•} which provides a convenient treatment of the variables [START_REF] Oppenheim | Signals & Systems[END_REF].

We will explicitly target closed-loop systems but, as will become apparent, the formulation accommodates the open-loop as a special case.

The closed-loop transfer function between the corrective and input phase is given by [START_REF] Madec | Adaptive Optics for Astronomy[END_REF] h cor (κ, s)

Φ cor Φ (κ, s) = h ol (κ, s) 1 + h ol (κ, s) (9) 
where s = 2iπν is the Laplace transform variable, with ν as the temporal frequency in seconds -1 , such that Φ(κ, s) = L{ϕ(κ, t)}, i.e. each spatial mode is temporally-filtered by functions h cor (κ, s) where we explicitly show the dependence on κ to include for instance a mode-by-mode loop gain. In Eq. ( 9), h ol (κ, s) is the open-loop transfer function which includes pure loop time delays, WFS integration time T s and other filtering aspects such as the digital-to-analog conversion and the possible negative-feedback regulator for the closedloop case. The mathematical form of these transfer functions is given in detail in Sec. 2.C. At this point one can easily see that to obtain the open-loop filtering it suffices to replace h cor (κ, s) by h ol (κ, s).

The transfer function of the noise relates the final phase error to the initial noise, and describes the propagation of the noise through the loop

h η (κ, s) Φ ǫ Φ η (κ, s) = h ′ ol (κ, s) 1 + h ol (κ, s) = h cor (κ, s) h wfs (κ, s) (10 
) where h ′ ol (κ, s) is the noise transfer function, obtained from h ol (κ, s) by removing the WFS contribution (see Sec. 2.C).

Therefore in closed-loop the term

P | ϕ(κ) -ϕ cor (κ)| 2 (11) 
is computed using the temporally-filtered wavefronts

ϕ cor (κ) = R GH cor ϕ(κ) (12) 
The spatial transfer function at every spatial frequency is evaluated from the temporal transfer function h cor (κ, s) |s=2iπν

H cor (κ) = h cor (-2πiv • κ) (13) 
where ν = v l •κ and v l = (v x , v y ) l the wind velocity vector for the l -th layer of the atmosphere. The minus sign within the function brackets is due to the transformation from temporal to spatial variables using the frozen flow hypothesis, i.e. ϕ(x, t + τ ) = ϕ(xvτ, t). Thus positive time-delay τ is factored in as exp(-2π(-vτ ) • κ) which has a positive exponent.

For the general case with a stratified atmosphere, we now introduce the functions

H1 (κ) = l r 0,l h cor (-2πiv l • κ) (14) 
and

H2 (κ) = l r 0,l |h cor (-2πiv l • κ)| 2 (15) 
as weighted averages over the atmospheric layers, l = 1 • • • L, each with it's own wind speed (v l ) and fractional strength (r 0,l ), insuring l r 0,l = 1.

Plugging Eq. ( 12) into Eq. ( 11) and further developing the terms yields the following relationships for the expected value of the filtered wave-fronts as

| ϕ | 2 | R G| 2 H2 | ϕ | 2 = | R G| 2 H2 W ϕ (16)
and

ϕ ϕ * R G H1 | ϕ | 2 = R G H1 W ϕ (17) 
the cross-term between the unfiltered wave-front and its filtered version [START_REF] Ellerbroek | Linear systems modeling of adaptive optics in the spatial-frequency domain[END_REF][START_REF] Clare | Adaptive optics sky coverage modeling for extremely large telescopes[END_REF]. With these definitions we now have

| ϕ -ϕ | 2 = 1 + | R G| 2 H2 -R G H1 -( R G H1 ) * W ϕ = 1 + | R G| 2 H2 -2ℜ{ R G H1 } W ϕ (18) 
The aliasing term is modified to account for the recursive filtering of the loop

W RA = P m =0 R(κ) H1 (κ) G(κ + m/d) 2 W ϕ (κ+m/d) (19) 
as well as the noise propagation term:

W η = P R η Hη (κ) 2 = P R 2 σ 2 η d 2 p (20)
where

Hη (κ) = l r 0,l h η (-2πiv l • κ) (21) 
is the noise transfer computed from h η (s) similarly to the calculation for the wave-front; on the righthand side of Eq. ( 20) σ 2 η is the measurement noise variance, the normalisation by d 2 comes from the 2D integration within the correctable band and pis the noise propagation factor

p = 2T s 1/(2Ts) 0 |h η (s)| 2 ds ( 22 
)
which provide amore accurate numerical evaluation accounting for the loop rejection at very low temporal frequencies.

It may be convenient to include some degree of uncertainty on our knowledge of both the windspeed and wind-direction [START_REF] Ellerbroek | Linear systems modeling of adaptive optics in the spatial-frequency domain[END_REF][START_REF] Clare | Adaptive optics sky coverage modeling for extremely large telescopes[END_REF] taking an average over the range of possible values

H1 (κ) = l r 0,l v l +∆v l v l -∆v l θ M θm h cor (-2πiv l • κcos(θ)) dθdv. ( 23 
)
In Eq. ( 23) v l = |v l |, ∆v l is the wind-speed variation during the integration and θ M , θ m are the bounds for the wind direction and

H2 (κ) = l r 0,l v l +∆v l v l -∆v l 2π 0 |h cor (-2πiv l • κcos(θ))| 2 dθdv (24)
to give further flexibility evaluating the final error budgets.

We

further note that computing | ϕ(κ) -ϕ cor (κ)| 2
can also be achieved by computing directly the error functions |ε(κ)| 2 . In such case the residual error is computed as the uncorrected wave-front filtered by the loop's rejection transfer function. The closed-loop case is

h rej Φ ǫ Φ = 1 1 + h ol (s) = 1 -h cor (s) (25) 
leading as expected to a subtraction of a temporally-filtered version of the wave-front from its original value as done repeatedly throughout this presentation.

For off-axis observations, an anisoplanatic filter of the form

O = l r 0,l e 2iπz l κ•ξ (26)
is multiplied out by Eq. ( 14), where ξ is the direction vector of the off-axis star and z l is the altitude of the l th atmospheric layer.

2.C. Transfer-functions

We assume the loop transfer function can be simplified to three components, namely the WFSs, the digital-to-analog converters (DACs) and the controllers [START_REF] Roddier | Adaptive in Astronomy[END_REF]. This by no means precludes the future inclusion of further transfer functions representative of other devices in the AO loop.

The time-delays in the loop relate to the WFS integration and to the RTC reconstruction and control (R&C) . The transfer functions for the WFS and DAC are

h wfs (s) = 1 -e -2iπνTs sT s , h dac (s) = 1 -e -2iπνTs
sT s (27) where T S is the integration time. If we now put together the DAC and WFS TFs, recalling the relationships sinc(x) = sin(πx)/(πx) and (1e -2iπνTs )/(sT s ) = sinc(T s ν)e -2iπνTs/2 . we get

h wfs (s) × h dac (s) = sinc 2 (T s ν)e -2iπνTs (28) 
which effectively introduces a one-step delay. The sinc 2 term is customarily dropped out since at low-frequencies (compared to 1 T S ) its magnitude is roughly equal to 1.

The open-loop transfer function is consequently

h ol (s) = e -2iπqTsν c(s) (29) 
where c(s) is the controller's transfer function for which several options are discussed further below.

A discrete-time model is conveniently expressed in the Z-domain [START_REF] Oppenheim | Signals & Systems[END_REF] 

h ol (z) = z -q c(z), z e 2πνTs (30) 
In a relatively standard case, the delays are taken to be equivalent to 2 frames [START_REF] Roddier | Adaptive in Astronomy[END_REF] for which we set q = 2.

Controller synthesis 3.A. State-space-based LQG controllers

The derivation of the Linear-Quadratic-Gaussian (LQG) controller for AO applications has been presented in detail elsewhere for both the infinitely fast DM response and otherwise [START_REF] Correia | On the optimal reconstruction and control of adaptive optical systems with mirroir dynamics[END_REF]. In this paper we take a shorter path and refer the reader to the bibliographic references on this particular subject for a more in-depth derivation. The discrete-time LQG regulator minimises the cost function

J(u) = lim M →∞ 1 M M -1 k=0 x T Qx + u T Ru + 2x T Su k (31)
where the weighting matrices {Q, R, S} are to be specified by developing an AO-specific Strehloptimal quadratic criterion subject to the statespace model

x k+1 = Ax k + Bu k + Vν k s k = C x k + Du k-d + η k (32)
where x k is the state vector that contains the wavefront coefficients (or any linearly related variables), s k are the noisy measurements provided by the WFS in the guide-star (GS) direction; ν k and η k are spectrally white, Gaussian-distributed state excitation and measurement noise respectively. In the following we assume that Σ ν = νν T , Σ η = ηη T are known and that Σ η,ν = ην T = 0.

The definition of the model parameters {A, B, C, D} is obtained from physical modelling of the system dynamics and response functions [START_REF] Correia | On the optimal reconstruction and control of adaptive optical systems with mirroir dynamics[END_REF].

We also take the case where D is a delay operator that acts upon u k . For instance if D = z -2 , then with abuse of mathematical notation

Du k → D(u k ) = u k-2 .
We next provide a model for a distributed Kalman-filter (DKF) that assumes a basis of complex exponential functions [START_REF] Massioni | Fast computation of an optimal controller for large-scale adaptive optics[END_REF][START_REF] Poyneer | Optimal modal Fourier-transform wavefront control[END_REF], creating oscillatory modes

f κ (ρ) = exp - 2iπρ • κ N ( 33 
)
that when discretised are used to construct a mode-by-mode complex-valued state-space model as shown below. Note that this model is computed on mode-per-mode fashion, leading to many parellel calculations of small-scale, independent controllers (hence the designation distributed)

We define the state as a concatenation of complex-valued variables

x k (κ) =       ϕ 1 k • • • ϕ L k ψ k ψ k-1       (κ) (34) A(κ) =     P(κ) 0 0 diag P(κ) 0 0 0 1 0     (35) 
with P(κ) a diagonal matrix concatenating the L-layers translation coefficients such that

α l (κ) = ξ exp(-2iπν l ) ( 36 
)
where ξ is a real-valued scalar smaller than unity that ensures overall controller stability [START_REF] Correia | On the optimal reconstruction and control of adaptive optical systems with mirroir dynamics[END_REF] and with the temporal frequency vector

ν l = -v l • κ. The operation diag P(κ) = [α 1 , • • • , α L ]
extracts and concatenates in a row-vector the diagonal coefficients of P(κ) , representing the accumulation of wave-fronts at the telescope pupilplane, i.e.

ψ k = l ϕ l k . Matrices B(κ) =   0 0 0   (37) V(κ) =   I L×L 0 0   (38) C(κ) = 0 0 R G(κ) (39) 
D(κ) = -R G(κ) (40) 
are chosen following the disturbance-rejection mode of the AO dynamical control problem [START_REF] Correia | On the optimal reconstruction and control of adaptive optical systems with mirroir dynamics[END_REF].

The choice of model in Eqs. (39) and (40) where the Kalman filter takes into account the spatial filtering provided by R G gives us the possibility to chose spatial reconstructors R to mitigate aliasing [START_REF] Correia | Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems[END_REF].

The treatment of the aliasing term provided here is formulated in its spatial dimension instead of temporal [START_REF] Poyneer | Kalman filtering to suppress spurious signals in adaptive optics control[END_REF]. The filter that is obtained is therefore more compact and lends itself more suitably to real-time implementation (in the discrete version). This choice is different from the one in Poyneer et al [START_REF] Poyneer | Kalman filtering to suppress spurious signals in adaptive optics control[END_REF] where an augmented state is suggested to accommodate the aliasing modes; this would have the downside of increasing the state dimensions considerably, by a factor of 5 if only the direct neighbours whose frequencies foldin to the AO correctable band are considered (i.e. κ+m/d with m = {0, 1}, m = {0, -1}, m = {1, 0}, m = {-1, 0}) and by a factor of 9 if the cross terms where to be considered.

The implementation of the KF involves a realtime state update and prediction equations

x k|k (κ) = x k|k-1 (κ) + H ∞ s k (κ) -C x k|k-1 (κ) + Du k-q (41a) x k+1|k (κ) = A x k|k (κ) (41b)
where H ∞ is the asymptotic Kalman gain computed from the solution of an estimation Riccati equation [START_REF] Correia | On the optimal reconstruction and control of adaptive optical systems with mirroir dynamics[END_REF].

In order to evaluate the AO residuals with the DKF, its transfer function must be developed. This is accomplished next.

Property 3.1 LQG transfer functions.

Let the general controller c(z) be a transfer function such that u(z) = c(z)s(z).

(

) 42 
where u(z) is the output (commands) and s(z) is the inputs (measurements). For an LQG using the estimator version, u k = -K ∞ x k|k the LQG controller transfer function is

c(z) = -{I + K ∞ Λ e z -1 (I -H ∞ C tur )B tur + z -d H ∞ D -1 K ∞ Λ e H ∞ , (43) 
where

Λ e = I -z -1 A tur + z -1 H ∞ C tur A tur -1 . ( 44 
)
Demonstration is provided in Appendix A. △ 

LQG controller rejection transfer functions

Estimator, causal, negative frequencies Estimator, causal, positive frequencies Fig. 3: Distributed Kalman filter transfer functions (positive and negative temporal frequencies shown) for spatial mode κ x = κ y = 2 and a 3-layer atmosphere.

3.B. Integral action controllers

The commonly used integrator can be formulated from the state-space model [START_REF] Kulcsár | Control design and turbulent phase models in adaptive optics: A state-space interpretation[END_REF] but we take a shorter path stating only the more convenient final formulation as follows

c(s) = g 1 -e -2πνTs (45) 
with g the integrator gain chosen to ensure the best performance within the stability bounds.

Shack-Hartmann-based classical and extreme AO

A comprehensive presentation of the treatment that follows can be found in full in [START_REF] Correia | Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems[END_REF]. Here we jump straight to the main result which is the filter formulation of the Shack-Hartmann gradients [START_REF] Rigaut | Analytical model for Shack-Hartmann-based adaptive optics systems[END_REF][START_REF] Roddier | Adaptive in Astronomy[END_REF][START_REF] Hardy | Adaptive Optics for Astronomical Telescopes[END_REF] in the spatial-frequency domain.

Let the SH-WFS measurements s(x, t) be given by the geometrical-optics linear model

s(x, t) = Gϕ(x, t) + η(x, t), (46) 
relating aperture-plane wave-fronts ϕ(x, t) to measurements through G, a phase-to-slopes linear operator over a bi-dimensional space indexed by x = (x, y) at time t; η(x, t) represents white noise due to photon statistics, detector read noise and background photons. Both ϕ and η are zero-mean functions of Gaussian probability distributions and known covariance matrices: Σ φ and Σ η respectively. Additive, Gaussiandistributed noise is assumed both temporally and spatially uncorrelated. Variances are evaluated following formulae in [START_REF] Thomas | Comparison of centroid computation algorithms in a Shack-Hartmann sensor[END_REF] for shot photon and read noise on centre-of-gravity centroiding of SH spots

σ 2 ∆φ,ph = π 2 2ln(2) 1 n ph N T N D 2 (47) σ 2 ∆φ,det = π 2 3 σ 2 ron n 2 ph N 2 S N D 2 (48) 
where

• n ph is the number of photons per sub-aperture and exposure

• σ ron is the standard deviation of the read-out noise per pixel and per exposure

• N T is the spot's FWHM in number of pixels

• N D is the sub-aperture's FWHM in number of pixels

• N S is the linear size of the window where the CoG is computed

The total number of photons is computed from

n ph = N ph × T s × throughput × d 2 ,
where N ph is the number of photons/meter 2 /second emanating from the source with a zero-point of N ph = 8.5 × 10 9 in the R band (λ WFS = 0.64µm). Furthermore we have taken

N S = N D = N T = 2.
Developing the linear operator G, it can be shown that

G = III x d × Π x -1/2 d ⊗ Π x vT s ⊗ ∇ , (49) 
where ⊗ is a 2-dimensional convolution product, × is a point-wise multiplication and Π(•) is the unit rectangle separable function

Π(x) 1 if |x| ≤ 1/2 ∧ |y| ≤ 1/2 0 otherwise . ( 50 
)
III is a comb function that represents the sampling process, i.e. picking sample measurements at the corners of each sub-aperture following the Fried measurement geometry. Using common transform pairs for the individual operations (see e.g. [START_REF] Oppenheim | Signals & Systems[END_REF]), the Fourier representation of the measurement yields

G = TF{G} = III (κd)⊗[ Π (κd)×e iπdκ × ∇× Π (κvT s )], (51) 
where TF{•} represents the continuous Fourier transform, κ = (κ x , κ y ) ∈ R 2 is the frequency vector and i √ -1. In Eq. ( 51) the gradienttaking part is

∇(κ) = 2iπdκ = 2iπd[κ x , κ y ], (52) 
and the spatial averaging process is

Π (κd) = sinc(dκ) (53) 
The temporal integration function reads

Π (κvT s ) = sinc (κvT s ) ( 54 
)
on account of the frozen-flow assumption made earlier. We note that G only acts as a filtering function for functions within the AO correctable band [START_REF] Correia | Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems[END_REF]. The Fourier-domain representation of Eq. ( 46) is then

s (κ) = G ϕ || (κ) + α (κ) + η (κ) , (55) 
where {•} || represents variables within a selection of frequencies |κ x,y | ≤ 1/(2d), thus obtaining

G 2 i π d κ Π (κd) e iπdκ Π (κvT s ) ϕ (κ) (56)
and an aliasing term seen as the folded measurements beyond the AO cut-off frequency over spatial modes within the band

α (κ) = m =0 G (κ + m/d) ϕ (κ + m/d) (57)

Limiting post-coronagraphic contrast under predictive closed-loop control

With the previous developments, we can now investigate the impact of optimal time and spatial filtering when compared to standard least-squares, integrator-based controllers.

Using the Taylor expansion of the point-spread function (PSF) in [START_REF] Perrin | The structure of high strehl ratio point-spread functions[END_REF] but including phase-only effects, for the sake of the discussion we assume that a coronagraph is capable of completely removing the two first terms (the diffraction and pinned-speckles term), leaving a halo term that is essentially the power spectrum of the wave-front aberrations [START_REF] Macintosh | Speckle lifetimes in high-contrast adaptive optics[END_REF].

Under these assumptions, the post-coronagraphic intensity relates to variance by

i PC,κ (ρ) = σ 2 κ [i(ρ -κλ) + i(ρ + κλ)] (58) 
where σ 2 κ is the variance of spatial mode indexed by frequency κ and i PC (ρ) is the post-coronagrahic intensity pattern (image) in the focal plane.

From Eq. ( 58) it can readily be seen that the post-coronagraphic image is proportional to the post-AO residual PSD. A more complete treatment can be found in [START_REF] Herscovici-Schiller | An analytic expression for coronagraphic imaging through turbulence. Application to on-sky coronagraphic phase diversity[END_REF], which provides an analytic expression for long-exposure post-coronagraphic images through turbulence but was not adopted here.

Post-coronagraphic long-exposure contrast is defined as

c(ρ) = i PC (ρ) i(0) (59) 
where i(ρ) is the AO-corrected PSF with i(ρ = 0) = S LE is scaled by the long-exposure Strehl-ratio S LE . It is computed as the ratio of the AO-corrected optical transfer function (OTF) integrated over all frequencies by the diffraction-limited OTF. PSFs are computed from the power-spectral density (PSD), using well-established relationships. First we compute covariance functions from the PSDs, using the Wiener-Khintchine theorem. Computation of the spatial structure function ensues, from which the OTF is determined. The PSF is found from the Fourier transform of the OTF. wave-front error PSD noise aliasing aniso-servo-lag high-frequency Fig. 4: PSD slabs for comparison of error profiles. Calculated for a multilayer atmosphere and a SPHERE-like system (see text for parameters). Left: integrator controller and LS filter; bottom: DKF controller with MV filter. Note the rebalancing of the error terms, with the DKF essentially trading noise propagation for aniso-servo-lag error, with a dramatic decrease in aliasing.
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Figure 4 shows radial slabs of the residual spatial PSDs for the 4 individual error terms considered. One can see the enhanced rejection of errors close to the AO cut-off frequency for both aliasing and noise, leading to overall better performance in terms of wave-front residual and contrast across the AO-corrected field. The case considered is a 8 m telescope with 40 sub-apertures SH-WFS observing a magnitude 12 star in the R-band through a stratified atmosphere with 9 layers with r 0 = 15.5 cm and outer scale L 0 = 25 m with AO cutoff ±1/(2d) = ±2.5m -1 .

In passing, we note that when properly scaling the residual PSDs according to (58) gives the limiting post-coronagraphic for the ideal coronagraph. We add to the work of [START_REF] Guyon | Limits of adaptive optics for highcontrast imaging[END_REF] where the term "C 2 " accounts for the effect of WFS noise and time lag, the filtering of the closed-loop controller and the propagation of aliasing for the case of a stratified atmosphere. Figure 5 shows ratios of constrast obtained from Eq.

(59) for the integrator controller with least-squares phase reconstruction against the DKF with minimum-variance reconstructor, i.e. c DKF (ρ)/c INT (ρ). On the bright star end improvement of 2 orders of magnitude could be attained at 2-5 λ/D for existing high-contrast imagers on a 10 m-class telescope whereas one order of magnitude can still be achieved at separations closer to the AO control radius on a 12th magnitude star, on accound of better aliasing handling by the DKF.

Keck's NIRC2 performance and postcoronagraphic contrast enhancement

In this section we have focused on the W. M. Keck-II NIRC2 AO system as a baseline configuration. Table 1 gathers the main parameters used to produce these results.

In Table 2 the error terms for different control systems are summarised, 3 instances of an integrator controller and a Discrete Kalman Filter (DKF). The use of the DKF results in a significant drop in the aniso-servo-lag error, as expected, becoming negligible compared to the other errors present in the system (under the assumption of perfect knowledge of wind parameters). Figure 6 shows the PSF obtained with a DKF with antialiasing reconstructor. Figure 7 depicts the 2D PSDs for each error term, used here as a 1st-order approximation of an ideal post coronagraph image as per Eq. (58) for the different controllers considered [START_REF] Sauvage | SAXO: the extreme adaptive optics system of SPHERE (I) system overview and global laboratory performance[END_REF]. The fitting PSD depicts the high frequency error, or fitting error, and in all cases is zero within the correctable band and then follows the trend of the turbulent phase PSD, ∝ κ -11/3 . All other errors affect only the correctable band (|κ| ≤ 1 2d ) and only this region is depicted. The noise PSD follows a trend ∝ κ -2 resulting from the spatial integration through R(κ).

The aliasing PSD in Fig. 7 demonstrates the This can be somewhat mitigated by using an antialiasing filter (Fig. 7-right). Finally the servo-lag PSD shows two distinct lobes in the integrator case (Fig. 7-left), the direction of which is correlated with the predominant wind speed and direction weighted by the relative layer strength (typically the elongation will follow the wind at the ground), with the overall scale related to the wind speed compared with the AO system's frame-rate. High wind-speeds or large time delays will incur larger errors here. The final images show the sum of these error as an estimation of the post-coronagraphic PSF.

Comparing the DKF to the integrator, one can readily observe the tremendous reduction in servolag error. With the DKF with perfect knowledge of the system and atmospheric parameters (see entry aniso-servo-lag in Table 2) it is practically reduced to null. The estimated PSF images show the AO-corrected PSF over a field 5 times larger than the AO-corrected field. For this example the strong winds at the lower layers induce a stretching of the PSF with an integrator controller (as seen in Fig. 7). The ideal case when the turbulence layer strengths, speeds and directions are known is shown as a limiting case. The image within the correction-band becomes much sharper when the DFK is utilised.

The improvement in contrast is illustrated in Fig. 8.

This demonstrates the significant improvement of the DKF over an integrator controller, nearly a factor of 10 improvement in contrast close to the halo (see magnitude and noise levels on Table 2). When the DKF is coupled with the anti-aliasing reconstructor, it can still improve contrast in some areas, particularly so where aliasing is stronger at the edges of the AO control region at the expense of lower constrast in other regions.

The anti-aliasing filter used in this example does not include the effect of temporal filtering on the aliasing errors (only the open loop aliasing propagation) and hence does not improve performance over the entire correction band. Optimisation of the aliasing regularisation term would require iterative non-linear minimisation routines to chose the best term on both temporal and spatial frequencies; we leave these developments for a subsequent analysis.

Summary

We provide a general formulation for evaluating AO-related wave-front residuals in the spatialfrequency domain. We start by outlining how the spatio-temporal nature of the wave-front can be integrated on a controller for optimised rejection, Here the DKF provides better contrast over most of the correctable band (contrast ratio < 0). Right: comparison of two DKF methods, one using a least-squares approach, the other applying knowledge of aliasing errors using an anti-aliasing filter. The anti-aliasing method performs better in a cross-shaped region ([±(5 -10) λ D , 0] and [0, ±(5 -10) λ D ]) whilst the least-squares spatial filter coupled with the DKF performs slightly better in the corners.

developing power-spectral density formulae for four main error items: fitting, aliasing, noise and anisoservo-lag. We show how any of these three errors can be rejected optimally using an anti-aliasing Wiener filter coupled to a predictive closed-loop controller.

We provide a suitable formulation for the Distributed-Kalman-Filter (DKF) which is synthesised in parallel, mode-by-mode, under a flexible and convenient state-space framework for the stratified atmosphere case.

Assuming perfect knowledge of the wind at all heights, the DKF with anti-aliasing Wiener filter allows for Strehl-optimal performance, achieving the best trade-off between aliasing, noise and anisoservo-lag errors. Post-facto aliasing rejection may be particularly useful when optical spatial filters are of little practical use and one relies therefore solely on numerical processing of signals.

We show that contrast improvements of up to three orders of magnitude can be achieved on 10 mclass telescopes with a 0-magnitude star at few λ/D separation, typically 1 -5λ/D. For the Keck-II AO system, we show a wave-front error reduction of ∼60 nm rms leading to contrast enhancement of roughly one order of magnitude at separations 1 -5λ/D, by removing the "butterfly"-shaped servolag residual commonly observed in high-contrast imaging.

Finally, the developments herein can be straightforwardly used to obtaining the realtime optimal controller and the power-spectral densities used as filters when reconstructing the AO-corrected PSF from system telemetry.

Software packages

All the simulations and analysis were done with the object-oriented Matlab AO simulator (OOMAO) [START_REF] Conan | Object-oriented Matlab adaptive optics toolbox[END_REF]. The class spatialFrequencyAdaptiveOptics implementing the analytics developed in this paper as well as the results herein is packed with the end-to-end library freely available from https://github.com/cmcorreia/LAM-Public.

If instead we were to compute u k = -K ∞ x k+1|k then U = -K ∞ (I -A tur (I -H ∞ C tur )) -1 × z -d DU + A tur H ∞ S .

(A8)

Grouping terms, one gets

U = -I + K ∞ Λ p z -2 L ∞ D -1 K ∞ Λ p A tur H ∞ S, (A9) 
The controller transfer function is finally written as

C p (z) = -I + K ∞ Λ p z -d L ∞ D -1 K ∞ Λ p A tur H ∞ .
(A10) The general case in predictor form with an arbitrary delay and B tur = 0 one gets

C p (z) = -I + K ∞ Λ p z -d L ∞ D + B tur -1 × ∞ Λ p A tur H ∞ .
(A11)

For a command vector in estimator form u k = -K ∞ x k|k , following an analogous reasoning

X e = I -z -1 A tur + z -1 H ∞ C tur A tur -1 × A tur H ∞ z -d DU + S , (A12) yielding U = -K ∞ I -z -1 A tur + z -1 H ∞ C tur A tur -1 × A tur H ∞ z -d DU + S (A13)
Grouping terms

C e (z) = -I + K ∞ Λ e z -d H ∞ D -1 K ∞ Λ e H ∞ , (A14) with 
Λ e = I -z -1 A tur + z -1 H ∞ C tur A tur -1 . (A15)
The general case when B tur = 0 and arbitrary delay equates to

C e (z) = -I + K ∞ Λ e z -1 (I -H ∞ C tur )B tur + z -d H ∞ D -1 K ∞ Λ e H ∞ , (A16) 

Fig. 1 :

 1 Fig. 1: Block-diagram for open-loop operation. See text for definition of variables.

  2.B. Dynamic case: closed-loop, τ ≥ 0, T s > 0 The dynamic case including loop filtering can now dealt with straightforwardly. The block diagram is depicted in Fig.2. Equation (1) is still valid but now ϕ cor is a temporally-filtered version

Fig. 2 :

 2 Fig. 2: Block-diagram for closed-loop operation. Variable definitions given in the text.

Figure 3

 3 Figure 3 illustrates the rejection transfer function for a DKF controller encompassing a 3-layer atmosphere with v x = [5; 10; 7] m/s, v y = [0; 0; 0] m/s, T s = 1 s, leading to 3 notches at temporal frequencies ν = [-0.3125; -0.6250; -0.4375] Hz.

Frequency

  

Fig. 5 :

 5 Fig. 5: Plots (log scale) illustrating the improvement in contrast using a DKF controller with a MV reconstructor, versus an integrator controller with a LS reconstructor. (Left:) magnitude 0 star, (Right:) magnitude 12 star.

Fig. 6 :

 6 Fig. 6: Face-on PSF for a DKF controller with the Anti-Aliasing reconstruction filter .

Fig. 7 :Fig. 8 :

 78 Fig. 7: Residual PSDs for a multi-layer atmosphere with Keck-II parameters using different controllers. (Top:) the face-on PSDs of the fitting (NW), noise (NE), aliasing (SW) and aniso-servo-lag (SE); (bottom); the ideal post-coronagraphic image of a point-source on account of the AO phase-only errors. (Left:) Integrator with a least-squares filter. (Centre:) DKF controller coupled to a least-squares filter. (Right:) DKF controller coupled to an anti-aliasing filter.

Table 1 :

 1 Keck-II simulation parameters.

	Telescope	
	D	11.25 m
	throughput	50%
	Guide-star	
	zenith angle	0 deg
	magnitude	8
	Atmosphere	
	r 0	16 cm
	L 0	75 m
	Fractional r 0	[0.517, 0.119, 0.063,
		0.061, 0.105, 0.081, 0.054]
	Altitudes	[0,0.5, 1, 2, 4, 8, 16] km
	wind speeds	[6.7, 13.9, 20.8, 29.0,
		29.0, 29.0, 29.0] m/s
	wind direction Wavefront Sensor	[0, π/3, -π/3, -π, -4/3π, -π/6, π/8] rad
	Order	20×20
	RON	4.5 e -
	N pix	12
	f sample	500 Hz
	λ WFS	0.64 µm
	Centroiding algorithm thresholded CoG
	DM	
	Order	21×21
	AO loop	
	pure delay	τ lag =4 ms
	Imaging Wavelength	
	λ IM (H-band)	1.65 µm

Table 2 :

 2 Error budget for Keck-II model in nm rms using the parameters in Table1. The 4 errors terms considered are outlined in §2.

	Error term Int+LS Int+MV Int+AA DKF+LS DKF+Rigaut DKF+AA
	Aliasing	55.4	55.1	43.7	56.0	55.7	44.1
	Aniso-servo-lag 61.0	60.9	66.2	1.1	1.5	32.0
	WFS noise	13.6	13.6	12.9	18.9	18.9	18.1
	Total		83.5	83.3	80.4	59.1	58.8	57.4
	Total + Fitting 141.2	141.0	139.4	128.3	128.2	127.5
	SR @1.65µm 77.2% 77.2% 77.9%	81.1%	81.1 %	81.4%
	Strehl-ratio (H-band): 81.35%				
	Y axis [mas]						
	-500	0	500				
	X axis [mas]					
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Appendix A: LQG transfer functions Example LQG transfer functions.

The state-update and state-estimate equations of the LQG are

The second line of Eq. (A1) can be likewise written, using X p and X e the Z-transforms of x k|k and x k|k-1 respectively.

Let's start by assuming that the state cannot be attained by the controls, i.e. B tur = 0. It is generalized afterwards. Multiplying out by z -1 on both sides, one gets

With this result and the second line in Eq. (A1)

Using a command vector u k = -K ∞ x k|k-1 , i.e. a causal form for the controls, one gets

where

from which the controller transfer function writes )