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Abstract In many engineering optimization problems, the number of func-
tion evaluations is often very limited because of the computational cost to
run one high-fidelity numerical simulation. Using a classic optimization al-
gorithm, such as a derivative-based algorithm or an evolutionary algorithm,
directly on a computational model is not suitable in this case. A common
approach to addressing this challenge is to use black-box surrogate model-
ing techniques. The most popular surrogate-based optimization algorithm
is the Efficient Global Optimization (EGO) algorithm which is an iterative
sampling algorithm that adds one (or many) point(s) per iteration. This algo-
rithm is often based on an infill sampling criterion, called expected improve-
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ment, which represents a trade-off between promising and uncertain zones.
This algorithm was first developed for bound constrained optimization prob-
lems and then extended to constrained optimization problems. Many studies
have shown the efficiency of EGO, particularly when the number of input
variables is relatively low. However, its performance on high-dimensional
problems is still poor since the Kriging models used are time-consuming
to build. Indeed, many minutes, sometimes many hours, are generally re-
quired for constructing the Kriging models. To deal with this issue, this
paper introduces a surrogate-based optimization method that is suited to
high-dimensional problems. For this purpose, we first use the ”locating the re-
gional extreme” criterion, which incorporates minimizing the surrogate model
while also maximizing the expected improvement criterion. We then replace
the Kriging models by the KPLS(+K) models—Kriging combined with the
partial least squares method—which are more suitable for high-dimensional
problems. We finally validate our approach by a comparison with alterna-
tive methods existing in the literature on some analytic functions and on
12-dimensional and 50-dimensional instances of the benchmark automotive
problem “MOPTA08”.
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Symbols and notation

Matrices and vectors are in bold type.

Symbol Meaning

| · | Absolute value
R Set of real numbers
R+ Set of positive real numbers
d Dimension
B ⊂ Rd A hypercube expressed by the product between intervals of each

direction space
n Number of sampling points
h Number of principal components
m The number of constraints in the optimization problem
x, x′ 1× d vector
xj The jth element of a vector x for j = 1, . . . , d
X n× d matrix containing sampling points
y n× 1 vector containing simulation of X
x(i) The ith training point for i = 1, . . . , n (1× d vector)
y(i) The ith evaluated output point for i = 1, . . . , n
xt Superscript t denotes the transpose operation of the vector x
X(0) X
X(l−1) Matrix containing residual of the inner regression of the (l − 1)th

PLS-iteration for l = 1, . . . , h
k(·, ·) A covariance function
rxx′ The spacial correlation function between x and x′

R The covariance matrix
s2(x) The prediction of the Kriging variance
σ2 The process variance
θi The jth parameter of the covariance function for i = 1, . . . , d
Y (x) A Gaussian process
1 An n-vector of ones
tl The lth principal component for l = 1, . . . , h
w The loading vector (PLS)
f The objective function of the optimization problem
gk The kth constraint function

1 Introduction

The field of optimization has become significantly important in engineering
and industrial design. In the literature, many approaches have been used for
finding the global optimum. One of the most popular methods is to run a
gradient-based optimization algorithm with a multi-start procedure (Hicker-
nell and Yuan 1997; Sendin and Banga 2009). For this type of method, the
derivative of the objective function is needed. When the derivative of the ob-
jective function is not available, it can be approximated by finite-difference
methods. However, finite-difference methods are unreliable when the function
to be optimized is non-smooth. For this reason, derivative-free optimization
methods (Conn et al 2009) and heuristic methods such as simulated anneal-
ing (Laarhoven and Aarts 1987), evolutionary algorithms (Simon 2013) and
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particle swarm optimization (Kennedy and Eberhart 1995) became popular
in the last few decades.

One of the most challenging engineering optimization problems is when
the objective and the constraint functions are black-box functions with high
computational CPU time. In many engineering problems, numerical simu-
lations require several hours, sometimes more, to run one simulation repre-
sentative of the physics. Thus, direct optimization methods for such cases
are too expensive and infeasible in practice. In addition, many iterations are
often required when the number of input variables is large. Likewise, to find
the global optimum using a relatively small number of evaluations of the true
function is almost impossible for high-dimensional problems. It is possible to
obtain a reasonably good feasible solution through a good management of
the number of function evaluations.

A suitable optimization approach is to use a surrogate model, also called
metamodel, instead of the true function. The evaluation of new points through
a surrogate model, called predictions, is very cheap since it consists in com-
puting a simple analytical function. Moreover, the surrogate model is a good
tool to indicate promising areas where we should run new high-fidelity simu-
lations. Several approaches for constrained black-box optimization have been
developed recently. For instance, Li et al (2016) developed a Kriging-based
algorithm for constrained black-box optimization that involves two phases.
The first phase finds a feasible point while the second phase obtains a bet-
ter feasible point. This approach is similar to what is done in the COBRA
algorithm (Regis 2014, briefly described in Sec. 4.2.2 in this paper). Liu
et al (2016) proposed a two-phase method that uses a constraint-handling
technique based on the DIRECT algorithm and that uses an adaptive meta-
modeling strategy for the objective and constraints. Gramacy et al (2016)
developed an hybrid approach that uses Kriging with the expected improve-
ment (EI) criterion combined with the augmented Lagrangian framework
for constrained optimization. Moreover, Regis and Wild (2017) developed a
model-based trust-region algorithm for constrained optimization that uses
RBF models. In addition, Kriging-based approaches have been proposed for
constrained multi-objective optimization (e.g., Singh et al (2014); Feliot et al
(2016)). An important application of Kriging in an optimization context is
the Efficient Global Optimization (EGO) algorithm (Jones et al 1998). It uses
both the prediction and error estimation provided by Kriging to guide an in-
fill sampling criterion towards promising areas. To the best of our knowledge,
EGO is used for problems with a relatively small number of input variables
because of the Kriging limitations in high dimension (Haftka et al 2016).
Sasena (2002) has developed a constrained version of EGO, called SuperEGO
(denoted SEGO in this paper), where the optimization of the infill sampling
criterion takes into account the satisfaction of constraint functions.

In this paper, we develop two new methods for solving high-dimensional
constrained optimization problems, both based on SEGO approach: (i) SEGOK-
PLS uses SEGO with the KPLS model (Bouhlel et al 2016b); and (ii) SEGOK-
PLS+K uses SEGO with the KPLS+K model (Bouhlel et al 2016a). Here,
KPLS stands for Kriging with partial least squares (PLS), which involves pro-
jecting input variables onto principal components to implement some form of
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dimension reduction. The SEGOKPLS(+K) algorithms build KPLS(+K) for
each output function at each iteration of optimization. We use either KPLS
or KPLS+K since they are faster to build than the classical Kriging models
while maintaining a good accuracy for high-dimensional problems. Once the
KPLS(+K) models are built, we optimize a specific infill sampling criterion
that adds promising points into the training points to improve the accu-
racy of the metamodels in relevant areas. We use the ”locating the regional
extreme” (WB2) criterion proposed by Watson and Barnes (1995). Sasena
et al (2002) implemented and validated this criterion on several analytic func-
tions. This approach proposes a balance between exploitation and exploration
of the metamodel—herein, exploitation means that the metamodel is mini-
mized and exploration means that points are added where the uncertainty
of the metamodel is high. Moreover, WB2 is more local than the popular
EI criterion. This characteristic is important for expensive high-dimensional
problems, since the number of true function evaluations is limited and the
uncertainty of the metamodel is high. We apply the two proposed optimiza-
tion algorithms to several analytic problems and to an automotive problem
(MOPTA08). In addition, we compare them to several optimization meth-
ods existing in the literature. This comparison has shown that the SEGOK-
PLS+(K) methods outperform the alternative algorithms on most of the test
problems.

There have been other methods that use principal components for high-
dimensional surrogate-based optimization. For example, Kyriacou et al (2014)
used principal components analysis (PCA) in a metamodel-assisted evolu-
tionary algorithm to guide the application of evolution operators and the
training of the metamodel. Moreover, Chen et al (2015) used Karhunen-Loève
expansion, which is similar to PCA, to reduce design-space dimensionality in
metamodel-based shape optimization. Our proposed approach, that is based
on the EGO algorithm, incorporates a Kriging model that uses principal
components in the context of partial least squares to make it suitable for
high-dimensional constrained optimization.

The paper is organized as follows. Section 2 details the proposed opti-
mization algorithms, SEGOKPLS(+K). Sections 3 and 4 apply and validate
the SEGOKPLS(+K) algorithms on the analytic and MOPTA08 problems,
respectively. Finally, the Section 5 concludes the paper.

2 SEGOKPLS(+K) for high-dimensional constrained
optimization problems

Assume that we have evaluated a deterministic cost function at n points x(i)

(i = 1, . . . , n) with x(i) =
[
x
(i)
1 , . . . , x

(i)
d

]
∈ B, with B ⊂ Rd. For simplicity,

we consider B to be a hypercube expressed by the product between intervals

of each direction space, i.e., B =
d∏

j=1

[aj , bj ], where aj , bj ∈ R with aj ≤ bj

for j = 1, . . . , d. We also denote by X the matrix
[(
x(1)

)t
, . . . ,

(
x(n)

)t]t
.
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Evaluating these n inputs gives the outputs y =
[
y(1), . . . , y(n)

]t
with y(i) =

y
(
x(i)
)
, for i = 1, . . . , n.

2.1 The KPLS(+K) models

The KPLS and KPLS+K models are derived by combining the Kriging model
with the PLS technique. Therefore, we start by briefly depicting the theory
of Kriging and PLS before describing the KPLS(+K) models.

2.1.1 The Kriging model

The Kriging model has been developed first in geostatistics (Krige 1951;
Cressie 1988; Goovaerts 1997) before being extended to computer experi-
ments (Sacks et al 1989; Schonlau 1998; Jones et al 1998; Sasena et al 2002;
Forrester et al 2006; Picheny et al 2010; Liem et al 2015). In order to de-
velop the Kriging model, we assume that the deterministic response y(x) is
a realization of a stochastic process Y (x) (Koehler and Owen 1996; Schonlau
1998; Sasena 2002)

Y (x) = β0 + Z(x), (1)

where β0 is an unknown constant and Z(x) is a stochastic term considered
as a realization of a stationary Gaussian process with E[Z(x)] = 0 and a
covariance function, also called a kernel function, given by

Cov(Z(x), Z(x′)) = k(x,x′) = σ2r(x,x′) = σ2rxx′ , ∀x,x′ ∈ B, (2)

where σ2 is the process variance and rxx′ is the correlation function between x
and x′. In the following, we only consider the exponential covariance function
type, in particular the squared Gaussian kernel, given by

k(x,x′) = σ2
d∏

i=1

exp
(
−θi (xi − x′i)

2
)
,∀ θi ∈ R+. (3)

Equation (1) corresponds to a particular case of the Kriging model: the
ordinary Kriging model (Forrester et al 2008). The function k, given by
Equation (3), depends on some hyperparameters θ. To construct the Krig-
ing model, we assume these hyperparameters as known. We also denote the
n × 1 vector as rxX = [rxx(1) , . . . , rxx(n) ]t and the n × n covariance matrix
as R = [rx(1)X, . . . , rx(n)X]. We use ŷ(x) to denote the prediction of the
true function y(x). Under the hypothesis considered above, the best linear
unbiased predictor for y(x), given the observations y, is

ŷ(x) = β̂0 + rtxXR−1
(
y − β̂01

)
, (4)

where 1 denotes an n-vector of ones and

β̂0 =
(
1tR−11

)−1
1tR−1y. (5)
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In addition, the estimation of σ2 is

σ̂2 =
1

n

(
y − 1β̂0

)t
R−1

(
y − 1β̂0

)
. (6)

Moreover, the ordinary Kriging model provides an estimate of the variance
of the prediction given by

s2(x) = σ̂2
(
1− rtxXR−1rxX

)
. (7)

Finally, we estimate the vector of hyperparameters θ = {θi}, for i = 1, . . . , d,
by the maximum likelihood estimation method.

2.1.2 The partial least squares technique

The PLS method is a statistical method that searches out the best multidi-
mensional direction X that explains the characteristics of the output y. More-
over, it finds a linear relationship between input variables and output variable
by projecting input variables onto principal components (Wold 1966). The
PLS technique reveals how inputs depend on the output variable. In the fol-
lowing, we use h to denote the number of principal components retained that
is much lower than d (h� d). We compute the PLS components sequentially.
In fact, we compute the principal component tl by seeking the best direction
w(l) that maximizes the squared covariance between tl = X(l−1)w(l) and
y(l−1)

w(l) =

{
argmax

w(l)
w(l)tX(l−1)ty(l−1)y(l−1)tX(l−1)w(l)

s.t.w(l)tw(l) = 1.
(8)

where X = X(0), y = y(0), and, for l = 1, . . . , h, X(l) and y(l) is the residual
matrix from the local regression of X(l−1) onto the principal component
tl and from the local regression of y(l−1) onto the principal component tl,
respectively, such that

X(l−1) = tlp
(l) + X(l),

y(l−1) = cltl + y(l),
(9)

where p(l) (a 1× d vector) and cl (a coefficient) contain the regression coef-
ficients. For more details of how the PLS method works, please see (Helland
1988; Frank and Friedman 1993; Alberto and González 2012).

The principal components represent the new coordinate system obtained
upon rotating the original system with axes, x1, . . . , xd (Alberto and González
2012). For l = 1, . . . , h, we write tl as

tl = X(l−1)w(l) = Xw
(l)
∗ . (10)

We obtain the following matrix W∗ =
[
w

(1)
∗ , . . . , .w

(h)
∗

]
by (for more details,

see Manne (1987))

W∗ = W
(
PtW

)−1
,
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where W =
[
w(1), . . . ,w(h)

]
and P =

[
p(1)t, . . . ,p(h)t

]
. This important

relationship is mainly used for developing the KPLS model that is described
in the following section.

2.1.3 Construction of the KPLS and KPLS+K models

The hyperparameters θ = {θi}, for i = 1, . . . , d, given by Equation (3) can be
interpreted as measuring how strongly the variables x1, . . . , xd, respectively,
affect the output y. For building KPLS, we consider the coefficients given

by the vectors w
(l)
∗ , for l = 1, . . . , h, as a measure of the influence of input

variables x1, . . . , xd on the output y. By some elementary operations applied
on the kernel functions, we define the KPLS kernel by

k1:h(x,x′) =

h∏
l=1

kl(Fl (x) , Fl (x′)), (11)

where kl : B × B → R is an isotropic (only 1 hyperparameter is used for all
directions) stationary kernel and

Fl : B −→ B

x 7−→
[
w

(l)
∗1x1, . . . , w

(l)
∗dxd

]
.

(12)

More details of such construction are given in Bouhlel et al (2016b). Consid-
ering the example of the squared Gaussian kernel given by Equation (3), we
get

k(x,x′) = σ2

h∏
l=1

d∏
i=1

exp

[
−θl

(
w

(l)
∗i xi − w

(l)
∗i x
′
i

)2]
,∀ θl ∈ R+. (13)

This equation is the new kernel associated to the KPLS model. Since we
retain a small number of principal components, the estimation of the hyper-
parameters θ1, . . . , θl is very fast compared to the hyperparameters θ1, . . . , θd
given by Equation (3), where h << d. Moreover, we can improve the solu-
tion of the maximum likelihood of the KPLS covariance function. For this
purpose, we add a new step, right after the estimation of the θl-parameters,
that is based on the following transition

k1:h(x,x′) = σ2
h∏

l=1

d∏
i=1

exp
(
−θlw(l)

∗i
2
(xi − x′i)2

)
= σ2 exp

(
d∑

i=1

h∑
l=1

−θlw(l)
∗i

2
(xi − x′i)2

)
= σ2 exp

(
d∑

i=1

−ηi(xi − x′i)2
)

= σ2
d∏

i=1

exp
(
−ηi(xi − x′i)2

)
,

(14)
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with ηi =
h∑

l=1

θlw
(l)
∗i

2
, for i = 1, . . . , d. The Equation (14) allows us to ex-

press the hyperparameters’ solution, provided by the KPLS kernel, from the
reduced space (with h dimensions) into the original space (with d dimen-

sions). Thus, we use ηi =
h∑

l=1

θlw
(l)
∗i

2
, for i = 1, . . . , d, as a starting point

for a gradient-based maximization of the likelihood function for a standard
Kriging model. This optimization is done in the complete space where the

vector η = {ηi} ∈ R+d
. Therefore, we improve the maximization of the like-

lihood for the resulting Kriging model, called KPLS+K (KPLS to initialize
the Kriging hyperparameters), at the cost of a slight increase in computa-
tional time. Such construction is similar to the method developed by Ollar
et al (2016), where a gradient-free optimization algorithm is used with an
isotropic Kriging model followed by a gradient-based optimization starting
from the solution given by the first optimization. More details of this model
can be found in Bouhlel et al (2016a).

We denote the two models KPLS and KPLS+K developed for high-
dimensional problems by KPLS(+K) in the following.

2.2 The SEGOKPLS(+K) algorithms

During the last decade, the EGO algorithm (Jones et al 1998) has become one
of the most popular methods for surrogate-based optimization. It is an adap-
tive sampling algorithm that adds one (or more) point per cycle (Chevalier
and Ginsbourger 2013). This algorithm uses the well known expected im-
provement (EI) criterion based on the prediction value and the uncertainty
provided by the Kriging model. In this Section, we adapt this algorithm
to constrained black-box optimization problems in high dimension. For this
end, we define the constrained optimization problem, and describe the two
methods SEGOKPLS(+K) used in this paper.

2.2.1 Definition of the constrained optimization problem

We formalize the optimization problem with constraint functions as follows

min
x∈B

 f(x)
s.t.
gk(x) ≤ 0, k = 1, . . . ,m.

(15)

Through this equation, we note that equality constraints are not considered
in this paper. The functions f, g1, . . . , gm are deterministic black-box func-
tions that are computationally expensive. We assume that the derivatives of
the objective function f and the constraint functions gk (k = 1, . . . ,m) are
unavailable. These assumptions are typical in many engineering applications.
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2.2.2 EGO for constrained optimization problems: SEGO

To construct a surrogate model in an optimization context is a complex task.
Many classifications exist in the literature, mainly based on the type of the
metamodel and the method used to select the search points. For more de-
tails, an interesting article (Jones 2001) gives a taxonomy of surrogate-based
optimization methods. In this paper, we focus on the so-called ’two-stage’
method. The first step consists in fitting the metamodel and estimating the
associated hyperparameters. The second step consists in using this meta-
model instead of the true function and searching promising points following
a chosen infill sampling points. The details of this approach are given in
Figure 1 for bound constrained optimization problems:

1. We evaluate the initial design of experiments: we construct a set of initial
points (X,y) =

(
x(1), . . . ,x(n), y(1), . . . , y(n)

)
. In this paper, we use the

latin hypercube design (Jin et al 2005). Since our approach is designed
to optimize time-consuming engineering design problems, we use a small
number of initial points n. In addition, we set up n = d+1 for comparison
conveniences with Regis (2014).

2. We construct (or update) the metamodel involved in the optimization
problem: we fit the hyperparameters of the metamodel with the initial
(or the enriched) design of experiments.

3. We optimize the infill sampling criterion.
4. We evaluate the new point

(
x(n+1), y(n+1)

)
.

5. We check if the number of iterations is reached: if the number of points
permitted is reached (stopping criterion), we stop the algorithm, other-
wise, we add the new point in the design of experiments and we return
to the step 2.

The simplest way to use a surrogate-based optimization method is to add
sampling points where the surrogate model is minimized. Thus, it allows us
to obtain an accurate metamodel in such region. However, the algorithm can
fail if a global minimum is searched. Thus, it is important to take into account
the uncertainty of the metamodel when we add new points in the design of
experiments. To address this issue, we must sometimes add points where
the uncertainty of the metamodel is high. For this purpose, the EI sampling
criterion is used to make a balance between a local and global search (Jones
et al 1998; Forrester et al 2008). This algorithm performs well when the
number of dimensions is relatively low. However, its cannot effectively deal
with high-dimensional problems, this is mainly due to the uncertainty of the
model which is often high when the number of input variables is large. Indeed,
the EI criterion puts more emphasis on metamodel exploration rather than
on its exploitation, because it is almost impossible to fill all regions of the
domain in this case. For this reason, we have chosen the criterion used by
Sasena (WB2) “to locate the regional extreme” (for more details, see Sasena
(2002)).

The WB2 criterion is essentially the predicted function value added to
the EI function and is, therefore, a slightly more local searching criterion.
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Construction of the initial design of experiments(
X =

[
x(1), . . . ,x(n)

]
,y =

[
y(1), . . . , y(n)

])

Re/building
metamodels

Optimization of
the infill sampling
criterion ⇒ x(n+1)

Computation of the

true value y
(
x(n+1)

)

Number of
iterations
reached?

Stop

Adding(
x(n+1), y(n+1)

)

Yes No

Fig. 1: Using a surrogate-based optimization ’two-stage’ method.

The expression of the WB2 criterion is given by

WB2(x) =


−ŷ(x) +

EI(X)︷ ︸︸ ︷
(fmin − ŷ(x))Φ

(
fmin − ŷ(x)

s(x)

)
+ s(x)φ

(
fmin − ŷ(x)

s(x)

)
, if s < 0

−ŷ(x), if s = 0

(16)

The WB2 is quite similar to the EI and needs to be maximized. The only
difference is about the additional first term (−ŷ(x)) on the right-hand side of
Equation (16). The main advantage of this criterion is that it is smoother than
the EI function since it does not return to zero at the sampled points. After
comparing the WB2 and the EI criteria on several analytic functions, Sasena
(2002) recommends to use the WB2 criterion than the EI criterion. In ad-
dition, the WB2 criterion exploits more the surrogate model than the EI
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criterion. This is more suitable for high-dimensional problems since the bud-
get allocated is usually low and not proportional to the number of dimensions.
Therefore, we need to rapidly converge towards a promising solution while
maintaining an exploration behavior of the algorithm.

On the other hand, the Figure 1 presents the algorithm adapted to bound
constrained optimization problems. To extend the algorithm for constrained
optimization problems, we construct a KPLS(+K) model for each constraint
function, and define the constrained infill sampling criterion

min
x∈B

WB2(x)
s.t.
ĝk(x) ≤ 0, k = 1, . . . ,m,

(17)

where ĝk(x), for k = 1, . . . ,m are the predictions of gk(x) given by Equa-
tion (15). Other techniques to include the constraint functions exist in the
literature. We have chosen the above presented approach following the rec-
ommendation given by Sasena (2002), in Chapter 5, where a comparison
between several approaches has been done.

This approach will be called SEGOKPLS if the KPLS models are used,
otherwise, SEGOKPLS+K when the KPLS+K models are used. Our process
is summarized on Figure 2.

1. Evaluation of the initial design of experiments:
(X,y, g1, . . . , gm) =

(
x(1), . . . ,x(n), y(1), . . . , y(n), g

(1)
1 , . . . , g

(n)
1 , . . . , g(1)

m , . . . , g(n)
m

)
.

2. Construction or update of the KPLS(+K) models: the parameters of the
metamodel are fitted with the initial or the enriched design of experi-
ments.

3. Maximization of Equation (16).
4. Evaluation of the new point: the point solution is evaluated(

x(n+1), y(n+1), g
(n+1)
1 , . . . , g(n+1)

m

)
.

5. Checking if the number of iterations is reached: if the number of points
permitted is reached (stopping criterion), we stop the algorithm, other-
wise, we add the new point in the design of experiments and we return
to the stage 2.

3 Analytic functions

To demonstrate the performance of the SEGOKPLS algorithm, we use 12
well known analytic functions that are defined in Table 1. We compare the
SEGOKPLS algorithm to several optimization methods that have been ap-
plied to these analytic functions in Regis (2014).

We should also note that the original g03 and g05 functions have equality
constraints in their definition. In this paper, we consider the same modified
formulations used by Regis (2014) (noted by G3MOD and G5MOD in Regis
(2014)) where each constraint function is replaced by an inequality (≤) con-
straint.
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Construction of the initial design of experiments(
X =

[
x(1), . . . , x(n)

]
, y =

[
y(1), . . . , y(n)

]
, g1 =

[
g
(1)
1 , . . . , g

(n)
1

]
, . . . , gm =

[
g
(1)
m , . . . , g

(n)
m

])

Re/building the
KPLS(+K) models

Maximization of
Equation (16)
⇒ x(n+1)

Computation of the true value
y
(
x(n+1)

)
, g1

(
x(n+1)

)
, . . . , gm

(
x(n+1)

)

Number of
iterations
reached?

Stop

Adding(
x(n+1), y(n+1), g

(n+1)
1 , . . . , g

(n+1)
m

)

Yes No

Fig. 2: Steps used for the SEGOKPLS(+K) methods.

3.1 Alternative optimization methods

We compare SEGOKPLS with COBRA for constrained optimization by ra-
dial basis function (Regis 2014) and ConstrLMSRBF for constrained local
metric stochastic radial basis function (Regis 2011). Both these methods are
compared with several alternative optimization methods existing in the lit-
erature by Regis (2014):

– SDPEN for sequential penalty Derivative-free method for nonlinear con-
strained optimization (Liuzzi et al 2010),

– NOMAD for nonlinear optimization by mesh adaptive direct search that
uses DACE surrogates (NOMADm-DACE) (Abramson and Audet 2006;
Audet and Jr. 2006),

– GLOBALm algorithm (Sendin and Banga 2009) which is a multistart
clustering algorithm and using two types of local solvers,
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Table 1: Constrained optimization test problems. d is the number of input
variables and m is the number of inequality constraints. The formulations

and references of these functions are given in the appendix A.

Name of the d m Bound constraints True or best
function known minimum

g02 10 2 [0, 10]10 -0.4
g03 20 1 [0, 1]20 -0.69
g04 5 6 [78, 102]× [33, 45]× [27, 45]3 -30655.539
g05 4 5 [0, 1200]2 × [−0.55, 0.55]2 5126.5
g07 10 8 [−10, 10]10 24.3062
g09 7 4 [−10, 10]7 680.6301
g10 8 6 [102, 104]× [103, 104]× [10, 103]5 7049.3307
WB4 4 6 [0.125, 10]× [0.1, 10]3 1.725
GTCD4 4 1 [20, 50]× [1, 10]× [20, 50]× [0.1, 60] 2964893.85
PVD4 4 3 [0.1]2 × [0, 50]× [0, 240] 5804.45
Hesse 6 6 [0, 5]× [0, 4]× [1, 5]× [0, 6]× [1, 5] -310

×[0, 10]
SR7 7 11 [2.6, 3.6]× [0.7, 0.8]× [17, 28] 2994.42

×[7.3, 8.3]2 × [2.9, 3.9]× [5, 5.5]

– OQNLP (Ugray et al 2007), which is implemented as the GlobalSearch
solver in the Matlab Global Optimization toolbox (the Mathworks 2010).

In our case, we use only the best result given by Regis (2014) for the com-
parison with the SEGOKPLS algorithm as detailed in the following Section.

3.2 Experimental setup

We perform the SEGOKPLS computation with the Python toolbox “Scikit-
learn v.014” (Pedregosa et al 2011) using an Intel(R) Core(TM) i7-4500U
CPU @ 1.80 Hz 2.40 GHz. The results of alternative optimization methods
are transcribed from Regis (2014) that they are performed in an Intel(R)
Core(TM) i7 CPU 860 2.8GHZ. To increase the reliability of the compar-
ison between the results of the SEGOKPLS algorithm and the alternative
optimization methods, we get closer to the conditions in which alternative
optimization methods are performed. To achieve these conditions, we per-
form a new latin hypercube design of size d + 1 (since the initial design of
experiments used by Regis (2014) are not available but the same size is used)
and which all points are infeasible. For each experiment, we run the SEGOK-
PLS algorithm 30 times and fix a computation budget of 100 objective and
constraint function evaluations. However, these several runs allow us to re-
duce the influence of the initial design of experiments on the final results and
on the performance of each optimization method involved into the compari-
son. The number of principal components used into the KPLS models for the
SEGOKPLS algorithm is equal to 3. The constraint tolerance used in these
tests is 10−5.

We use five criteria to achieve the comparison: we compute the best so-
lution, the worst solution, the median, the mean and the standard deviation
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error (std) of the 30 trials. To facilitate the comparison of the results for each
case test, we transcribed only the best result of each statistic (e.g., the worst
solution, . . . ) from Table B3 in Regis (2014). These results used at least one
feasible point in the initial design of experiments which is required to perform
the alternative methods. The SEGOKPLS algorithm does not require initial
feasible point. In addition, searching initial feasible point algorithms is out of
the scope of this paper. Therefore, as mentioned above, we have intentionally
chosen to use initial design of experiments free from feasible points which is,
in addition, a common situation in real engineering design.

As mentioned in (Bouhlel et al 2016a), the KPLS+K model is more costly
than the KPLS model; e.g. KPLS is over twice time faster than KPLS+K for
a function with 60 input variables and 300 sampling points. For the analytical
functions, we use 30 trials, so we only compare SEGOKPLS to alternative
methods to reduce the cost of the experimental tests. A comparison is done
between SEGOKPLS and SEGOKPLS+K on the MOPTA08-12D using 5
runs in section 4.1.

3.3 Results of the analytic functions

Table 2 provides statistics for both results of the SEGOKPLS algorithm
(first value written in brackets) and best results of the alternative algorithms
(second value written in brackets) given by Regis (2014). The SEGOKPLS
algorithm yields better results compared with the best algorithm by Regis
(2014) for many test cases. In particular, SEGOKPLS is better than the al-
ternative algorithms for all functions in terms of the worst, the median and
the mean, except for the median of functions g03, g10 and GTCD4. This result
indicates that the SEGOKPLS algorithm is not very sensitive to the quality
of the initial latin hypercube design. Moreover, the SEGOKPLS algorithm
finds a better result than alternative algorithms, in terms of the best solu-
tion, for both g03 and g07 functions. In addition, the SEGOKPLS algorithm
reaches the best-known solution over all statistics used in the comparison for
5 functions (SR7, Hesse, g04, g05 and g07).

For all these test functions, we note that SEGOKPLS returns the best
possible optimum in the worst-case scenario of those 30 trials considered.
Since the initial distribution of the sampling points plays an important role
into an optimization design process that can affect the final solution, the last
result (best of worst cases) shows that SEGOKPLS’ solution is less deterio-
rated than the alternative methods in the worst cases, that is an important
characteristic in real-world engineering design optimization. Indeed, it is al-
most impossible to know in advance the best type and distribution of an
initial design of experiments for a certain engineering problems.

These results show the capability of SEGOKPLS to compete with opti-
mization algorithms from the literature. The application of this algorithm
to more realistic problem is considered in the following Section with the
MOPTA08 test case.
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Table 2: Statistics on the best feasible objective value for 30 repetitions
obtained by optimization algorithms after 100 evaluations. Results in

brackets represent: on the left, the SEGOKPLS results, on the right, best
results given by (Regis 2014). The best results are written in bold.

Name of the function (best known value)

Hesse (−310) PVD4 (5804)

best (-310.00, -310.00 (GlobalSearch)) (5848.66, 5807.79 (GlobalSearch))
worst (-310.00, −261.82 (COBRA-Global)) (6179.71, 7669.36 (ConstrLMSRBF))
median (-310.00, −297.87 (COBRA-Global)) (5959.71, 6303.98 (Cobra-Local))
mean (-310.00, −296.25 (COBRA-Global)) (5960.54, 6492.45 (Cobra-Local))

std error 4.90e−5 75.66

SR7 (2994.42) GTCD4 (2964894)

best (2994.42, 2994.42 (NOMADm-DACE)) (2977393, 2966625 (GlobalSearch))
worst (2994.42, 2994.69 (COBRA-Local)) (3189857, 3336814 (ConstrLMSRBF))
median (2994.42, 2994.66 (COBRA-Global)) (3078724, 3033081 (ConstrLMSRBF))
mean (2994.42, 2994.67 (COBRA-Local)) (3084897, 3087779 (ConstrLMSRBF))

std error 2.69e−4 55865

WB4 (1.725) g02 (−0.40)
best (2.22, 2.22 (NOMADm-DACE)) (−0.30, -0.33 (ConstrLMSRBF))
worst (2.88, 3.25 (ConstrLMSRBF)) (-0.19, −0.16 (GLOBALm-SOLNP))
median (2.22, 2.56 (COBRA-Local)) (-0.23, −0.20 (ConstrLMSRBF))
mean (2.35, 2.61 (ConstrLMSRBF)) (-0.23, −0.21 (NOMADm-DACE))

std error 2.08e−6 0.04

g03 (−0.69) g04 (−30665.54)
best (-0.69, −0.64 (COBRA-Local)) (-30665.54, -30665.54 (NOMADm-DACE))
worst (0.00, 0.00 (COBRA-Local)) (-30665.54, −30664.58 (COBRA-Local))
median (0.00, -0.01 (COBRA-Global)) (-30665.54, −30665.15 (COBRA-Local))
mean (-0.15, −0.12 (COBRA-Global)) (-30665.54, −30665.07 (COBRA-Local))

std error 0.23 5.94e−4

g05 (5126.50) g07 (24.30)

best (5126.50, 5126.50 (COBRA-Local)) (24.30, 24.48 (COBRA-Local))
worst (5126.50, 5126.53 (COBRA-Local)) (24.30, 28.60 (COBRA-Global))
median (5126.50, 5126.50 (GlobalSearch)) (24.30, 25.28 (COBRA-Global))
mean (5126.50, 5126.51 (COBRA-Local)) (24.30, 25.35 (COBRA-Global))

std error 1.11e−5 5.51e−6

g09 (680.63) g10 (7049.33)

best (920.51, 702.04 (ConstrLMSRBF)) (8210.08, 7818.53 (ConstrLMSRBF))
worst (1861.88, 3131.82 (ConstrLMSRBF)) (11285, 13965.60 (ConstrLMSRBF))
median (1198.47, 1308.49 (ConstrLMSRBF)) (9957.84, 9494.06 (ConstrLMSRBF))
mean (1305.15, 1413.85 (ConstrLMSRBF)) (9702.63, 10018.33 (ConstrLMSRBF))
std error 302.2 1647

4 MOPTA08 test problems

MOPTA08 is an automotive problem (Jones 2008) available as a Fortran code
at “http://www.miguelanjos.com/jones-benchmark”. It is an optimization
problem for minimizing the mass of a vehicle (1 objective function) under 68
inequality constraints which are well normalized. One run of a real simulation
of the MOPTA08 problem takes about 1 to 3 days. However, one simulation
with the Fortran code is immediate since it is a “good” approximation of
the real version using the Kriging models. Nevertheless, the type of Kriging
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used is not available. The MOPTA08 problem contains 124 input variables
normalized to [0, 1]. Thus, this problem is considered large-scale in the area
of a surrogate-based expensive black-box optimization.

For this test case, we first applied the SEGOKPLS+K algorithm on the
complete optimization problem, i.e., MOPTA08 problem with 124 input vari-
ables. Despite the good performance of SEGOKPLS+K during the first opti-
mization iterations, we encounter serious numerical problems that the most
important of them are explained in details in Section 4.1. Next, we apply the
SEGOKPLS+K algorithm to two smaller problems: MOPTA08 with 12 and
50 input variables.

4.1 Why reduce the complexity of the MOPTA08 problem?

When applying the SEGOKPLS+K algorithm on the complete MOPTA08
problem, we consider an initial latin hypercube design of size d + 1 (125
points) and 221 iterations. We limit the number of iterations because there
is a system crash after the 221th iteration. In order to understand the reasons
of a such system crash, we are considering, in Figure 3, the mean evolution
concerning both the objective function and the sum of violated constraints
occurring during 10 successive iterations. The objective function value de-
creases during the first 100 iterations as shown in Figure 3a. However, it
starts to oscillate at the 165th iteration. Indeed, the SEGOKPLS+K algo-
rithm focuses its search in a local region. Moreover, it adds several similar
points (i.e., points that are nearly collinear) to the training points. This set
of new points, as a consequence, leads to an ill-conditioned correlation ma-
trix. Therefore, the algorithm crashes after a certain number of iterations,
in particular when the number of dimensions d is very high (>50). In order
to reduce the complexity of the problem, we decided to limit the number
of input variables involved in the optimization problem. To achieve this, we
fix certain of the input variables to the best-known solution found by Regis
(2014), which its objective function is 222.22.

In this paper, two reduction problems are treated: 12 and 50 input vari-
ables given in Sections 4.4.1 and 4.4.2, respectively. The indexes of the vari-
ables used during the optimization are given in the appendix B. Beyond 50
input variables, we encounter the same problems when 124 input variables
are considered.

In addition, we do not include the SEGOKPLS algorithm in the com-
parison. Indeed, the Table 3 shows the results of SEGOKPLS and SEGOK-
PLS+K on the MOPTA08-12D case for 5 trials with a constraint violation of
10−5. The SEGOKPLS+K algorithm outperforms SEGOKPLS, and the best
known solution of the problem is reached with less iterations using SEGOK-
PLS+K. Therefore, we use only SEGOKPLS+K in the following MOPTA08
study.
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(a) Mean of the objective function for
each 10 iterations.

(b) Mean of the sum of violated
constraints for each 10 iterations.

Fig. 3: MOPTA08 test case with 124 input variables. Left panel: Mean of
the best feasible objective occurring for 10 successive iterations. Right

panel: Mean of the sum of violated constraints occurring for 10 successive
iterations.

Table 3: MOPTA08-12D - Total number of calls (value for each of the 5
runs) of the black box function to reach the optimum with SEGOKPLS and

SEGOKPLS+K approaches.

MOPTA08-12D SEGOKPLS SEGOKPLS+K

Trial 1 53 25
Trial 2 52 34
Trial 3 52 28
Trial 4 36 29
Trial 5 38 32

4.2 Alternative optimization methods

4.2.1 Description of the COBYLA algorithm

In this paper, the baseline method used is the so-called COBYLA method
that (Powell 1994) describes in details. COBYLA is a derivative-free trust
region method that uses an approximating linear interpolation models of
the objective and constraint functions. The algorithm is written in Fortran
and iteratively finds a candidate for the optimal solution of an approximat-
ing linear programming problem. Using the original objective and constraint
functions, the candidate solution is evaluated at each iteration of optimiza-
tion, afterward, it is used to improve the approximating linear programming
problem while maintaining a regular shaped simplex over iterations. When
the solution cannot be improved anymore, the step size is reduced until to
become sufficiently small, and then the algorithm finishes.
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4.2.2 Description of the COBRA algorithm

SEGOKPLS+K will be compared with an algorithm called COBRA (Regis
2014) that is designed for constrained black-box optimization when the objec-
tive and constraint functions are computationally expensive. Like SEGOK-
PLS+K, COBRA treats each inequality constraint individually instead of
combining them into one penalty function. However, instead of using Krig-
ing, it uses RBF surrogates to approximate the objective and constraint func-
tions. Moreover, COBRA implements a two-phase approach where Phase I
finds a feasible point while Phase II searches for a better feasible point.

In each iteration of Phase II of COBRA, RBF surrogates for the objective
function and for each of the constraint functions are fit. Then, the iterate is
chosen to be a minimizer of the RBF surrogate of the objective function that
satisfies RBF surrogates of the constraints within some small margin and
that also satisfies a distance requirement from previous iterates. As explained
in (Regis 2014), the margin is useful because it helps maintain feasibility of
the iterates, especially on problems with many inequality constraints. More
precisely, the next sample point xn+1 as a solution to the optimization sub-
problem:

min ŷ(x)
s.t. x ∈ B

ĝi(x) + ε
(i)
n ≤ 0, i = 1, 2, . . . ,m

‖x− x(j)‖ ≥ ρn, j = 1, . . . , n

where x(1), . . . ,x(n) are the previous sample points, ŷ, ĝ1, . . . , ĝm are the
RBF surrogates for the objective function f(x) and constraint functions

g1(x), . . . , gm(x), respectively. Moreover, ε
(i)
n > 0 is the margin for the in-

equality constraints, which varies depending on performance starting with a
value of 0.005`(B), where `(B) is the length of one side of the hypercube B.
Also, ρn is the distance requirement from previous sample points and it is
allowed to cycle to balance local and global search. That is, ρn = γn`(B),
where γn is an element of the cycle of distance requirements Ξ. Here, we
compare SEGOKPLS+K with an implementation of COBRA that empha-
sizes local search since it performed better on the benchmark test problems
used in (Regis 2014). In this implementation of COBRA that focuses on local
search, Ξ = 〈0.01, 0.001, 0.0005〉.

4.3 Experimental setup

The SEGOKPLS+K computations are performed with the Python toolbox
“Scikit-learn v.014” (Pedregosa et al 2011) using an Intel(R) Core(TM) i7-
4500U CPU @ 1.80 Hz 2.40 GHz desktop machine. The alternative optimiza-
tion methods are performed in Matlab 7.11.0 using an Intel(R) Core(TM)
i7 CPU 860 2.8 Ghz desktop machine. This is one of the reason that we
did not investigate the computational cost, in addition to the non-practical
environment for getting a consistent such study. Bouhlel et al (2016a) pro-
vide a comparison of CPU time between KPLS and KPLS+K using different
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Table 4: MOPTA08-12D - Total number of calls, the initial design of
experiments (13 points) + number of iterations, for the 5 runs to reach the
optimum with the COBYLA, COBRA and SEGOKPLS+K methods. The

objective value of the best feasible point is given in brackets.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

COBYLA 362 513 513 424 513
(222.22) (222.26) (223.06) (222.22) (236.96)

COBRA 137 176 194 143 206
(222.22) (222.22) (222.22) (222.22) (222.22)

SEGOKPLS+K 28 42 51 36 52
(222.22) (222.22) (222.22) (222.22) (222.22)

number of sampling points and input variables, that gives an idea about the
total cost of the optimization design. The optimization of the Equation (17)
requires between 10 and 20 minutes per iteration.

For each set of experiments, we run each algorithm 5 times, and each run
corresponds to a different latin hypercube design of size d + 1. In addition,
we do not include any feasible point into the different initial samples. For
the SEGOKPLS+K algorithm, we fix a computational budget of 39 and 63
evaluations for MOPTA08 with 12 and 50 input variables, respectively. Each
evaluation corresponds to 1 objective and constraint functions evaluation. On
the other hand, we fix a computational budget of 500 evaluations for both
COBYLA and COBRA algorithms. Then, we fix 3 principal components
to build the KPLS+K models for all outputs. Finally, we use a constraint
tolerance of 10−5 as for the analytic problems.

4.4 Results of the MOPTA08 problem

4.4.1 Comparison on the MOPTA08 benchmark with 12 dimensions

The objective in this section is to optimize the MOPTA08 problem in 12 di-
mensions and compare the three algorithms (COBYLA, COBRA and SEGOK-
PLS+K), the best-known solution of this weight minimization being 222.23.

Table 4 gives the total number of calls and the objective value of the
best feasible point from the 5 runs performed. Figure 4 gives the different
progress curves of the algorithms performed on the MOPTA08-12D prob-
lem. Each curve shows the results of an optimization design that uses a
different initial latin hypercube design of size 13 points. We associate the
first, second, and third rows of the Figure to, respectively, COBYLA, CO-
BRA, and SEGOKPLS+K methods. The first column shows the evolution
of the best feasible objective value, and we use the second column to de-
pict the evolution of the sum of violated constraints; e.g. Figures 4e and 4f
show the evolution of both the best feasible objective value and the sum of
violated constraints, respectively, for the SEGOKPLS+K algorithm. In this
previous example, only 39 iterations of optimization are sufficient to find the
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Table 5: MOPTA08-50D - Total number of calls, the initial design of
experiments (51 points) + number of iterations, for the 5 runs to reach the
optimum with the COBYLA, COBRA and SEGOKPLS+K methods. The

objective value of the best feasible point is given in brackets.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

COBYLA 551 551 551 551 551
– – – – –

COBRA 551 449 551 551 551
(223.89) (222.22) (222.27) (222.52) (222.96)

SEGOKPLS+K 101 91 114 93 109
(222.22) (222.22) (222.22) (222.22) (222.22)

best-known solution of the problem for all runs. Unlike the SEGOKPLS+K
algorithm, the COBYLA (Figures 4a and 4b) and COBRA (Figures 4c and
4d) algorithms require more than 100 iterations of optimization to get close
to the best-known solution. For this reason, the horizontal lines concerning
the evolution of SEGOKPLS+K is different than the horizontal lines of CO-
BRA and COBYLA. From Figure 4, SEGOKPLS+K is the best algorithm on
MOPTA08-12D followed by the COBRA algorithm. The SEGOKPLS+K is
much better than the alternative algorithms and its progress is very fast. Fig-
ures 4e and 4f show rapid convergence of the SEGOKPLS+K algorithm for
4 runs but 1 run met some difficulties, given by the green curve, and remains
constant until the 30th iteration before converging to the best-known solu-
tion. Nevertheless, these results were still much better than the results given
by the COBRA and COBYLA algorithms. COBRA performs reasonably well
on MOPTA08-12D. In fact, the COBRA algorithm requires 193 iterations in
the worst case for finding the best-known solution, whereas, COBYLA finds
the best-known solution for only two runs after 411 iterations in the worst
case. Moreover, two runs converge to solutions with objective values 223.06
and 222.26. In addition, the COBYLA algorithm fails to find the best-known
solution for 1 run and remains on the objective value 236.96 with a sum of
violated functions equals to 6.77.

Hence, for this relatively low-dimensional case, the SEGOKPLS+K algo-
rithm shows a very good performance and seems to be a very competitive
method among optimization methods existing in the literature.

4.4.2 Comparison on the MOPTA08 benchmark with 50 dimensions

To perform SEGOKPLS+K optimizer on higher dimensional problem, we
consider the same test case with 50 design variables. As for 12D test case,
Table 5 gives the total number of calls and the objective value of the best fea-
sible point from the 5 runs performed. Figure 5 provides the evolution of the
objective function with the associated best feasible point for the MOPTA08-
50D problem. In this case, we use 63 iterations of optimization for SEGOK-
PLS+K whereas 500 iterations are used for both COBYLA and COBRA.
All optimization algorithms search to reach the best-known solution starting
from different latin hypercube design of size 51.
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(a) Evolution of the best objective
function found by COBYLA method.

(b) Evolution of the best sum of
violated constraints found by COBYLA

method.

(c) Evolution of the best objective
function found by COBRA method.

(d) Evolution of the best sum of
violated constraints found by COBRA

method.

(e) Evolution of the best objective
function found by the SEGOKPLS+K

algorithm.

(f) Evolution of the best sum of
violated constraints found by the

SEGOKPLS+K algorithm.

Fig. 4: 5 runs are performed (associated to one color). Left: Evolution of
the objective function corresponding to the best feasible point performed by

COBYLA, COBRA and SEGOKPLS+K optimization methods on
MOPTA08-12D. Right: Evolution of the sum of violated constraints
performed by COBYLA, COBRA and SEGOKPLS+K optimization

methods on MOPTA08-12D. 500 iterations of optimization are used for
both COBYLA and COBRA methods and 39 iterations of optimization are

used for SEGOKPLS+K.
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Figures 5e and 5f show a good performance of the SEGOKPLS+K algo-
rithm. In fact, 4 runs rapidly converge near the best-known solution before
the 23th iteration. Only 1 run remains stable on the objective function value
261.33 during 49 iterations of optimization before converging to the best-
known solution, that costs more iterations before converging. This leads to
fix 63 iterations of optimization for finding the best-known solution that is
222.22. Indeed, the total number of calls to expensive black-box function (size
of the initial design of experiments + number of iterations of optimization)
is equal to 114 that is slightly greater than 2d. To optimize a function of 50
dimensions and 68 constraint functions using that total budget is an impor-
tant improvement in the area of surrogate-based optimization, specially for
high-dimensional and expensive black-box optimization problems.

Figures 5a and 5b provide the evolution of the best objective solution
with the associated sum of violated constraints performed by COBYLA. The
COBYLA algorithm does not perform well on the MOPTA08-50D problem.
In fact, the solutions, found by COBYLA after the 500th iteration from all
runs, do not respect the total number of constraint functions. The sum of
violated constraints of the solution from all runs are equal to 0.007, 0.35,
3.76, 6.76 and 8.72 for an objective values which are equal to 238.15, 247.42,
271.68, 286.67 and 274.74, respectively. Thus, COBYLA is not really designed
for high-dimensional expensive black-box functions.

The numerical results obtained by COBRA are given on Figures 5c and
5d. For all runs, COBRA reaches feasible solutions detailed as follows: after
the 500th iteration, the objective values of 4 runs are equal to 222.52, 222.89,
222.96 and 223.27, and the remaining run finds the best-known solution after
398 iterations.

To summarize the comparison of this test case, the optimization with the
SEGOKPLS+K algorithm can reach the best-known solution for all runs,
that means SEGOKPLS+K is less sensitive to the distribution of sampling
points than the alternative methods. Furthermore, SEGOKPLS+K rapidly
finds the solution using very few calls to the expensive black-box func-
tions. Therefore, SEGOKPLS+K is a very competitive optimization algo-
rithm among existing optimization algorithms.

5 Conclusions

This paper introduced the SEGOKPLS and SEGOKPLS+K algorithms adapted
to high-dimensional constrained surrogate based optimization methods using
expensive black-box functions. Both combine the iterative optimization algo-
rithm SEGO and the KPLS(+K) models. Moreover, SEGOKPLS(+K) aim
to rapidly handle high-dimensional optimization problems through a good
management of the budget available, which is represented by a number of
calls of the expensive true functions. The key improvement of this method
is the use of the KPLS(+K) models and the local infill sampling criterion
WB2, which they are suitable for high-dimensional problems (up to 50 di-
mensions). Furthermore, note that the SEGOKPLS(+K) algorithms treat
each constraint individually instead of gathering them into one penalty func-
tion.
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(a) Evolution of the best objective
function found by COBYLA method.

(b) Evolution of the best sum of
violated constraints found by COBYLA

method.

(c) Evolution of the best objective
function found by COBRA method.

(d) Evolution of the best sum of
violated constraints found by COBRA

method.

(e) Evolution of the best objective
function found by the SEGOKPLS+K

algorithm.

(f) Evolution of the best sum of
violated constraints found by the

SEGOKPLS+K algorithm.

Fig. 5: 5 runs are performed (associated to one color). Left: Evolution of
the objective function corresponding to the best feasible point performed by

COBYLA, COBRA and SEGOKPLS+K optimization methods on
MOPTA08-50D. Right: Evolution of the sum of violated constraints
performed by COBYLA, COBRA and SEGOKPLS+K optimization

methods on MOPTA08-50D. 500 iterations of optimization are used for
both COBYLA and COBRA methods and 63 iterations of optimization are

used for SEGOKPLS+K.
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We used analytic and an automotive test cases for comparing the SEGOK-
PLS(+K) algorithms with many existing optimization methods. SEGOK-
PLS(+K) outperform the alternative methods including COBRA and COBYLA,
in particular on the MOPTA-12D and MOPTA-50D problems. Moreover,
SEGOKPLS+K is able to reach the best-known solution for the MOPTA-
12D and MOPTA-50D problems in much less expensive calls than either
COBYLA or COBRA.

An interesting direction for future work is to use classical preconditioning
methods to handle problems with more than 50 dimensions, or to constraint
SEGOKPLS(+K) to respect some conditions for adding new points into the
design of experiments to avoid a bad conditioning of the covariance matrix.

A Formulation of the analytical test functions

This section describes the analytical test problems used in this study. Some of
the constraint functions are modified by either dividing by a positive constant or
applying a logarithmic transformation without changing the feasible space. The
plog transformation was introduced in (Regis and Shoemaker 2013) and it is given
by

plog(x) =

{
log(1 + x) if 0 ≤ x
−log(1− x) if x ≤ 0 (18)

The function g02 (Michalewicz and Schoenauer 1996)

min −
∣∣∣∣∑d

i=1 cos4(xi)−2
∏d

i=1 cos2(xi)√∑d
i=1 ix2

i

∣∣∣∣
s.t.

g1 =
plog(−

∏d
i=1 xi+0.75)

plog(10d)
≤ 0

g2 =
∑d

i=1 xi−7.5d

2.5d
≤ 0

for i = 1, · · · , d, 0 ≤ xi ≤ 10.

(19)

The function g03 (Michalewicz and Schoenauer 1996)

min −plog
[
(
√
d)d

∏d
i=1 xi

]
s.t.
g1 =

∑d
i=1 x

2
i − 1 ≤ 0

for i = 1, · · · , d, 0 ≤ xi ≤ 1.

(20)

The function g04 (Michalewicz and Schoenauer 1996)
For u = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5,

v = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x23, and
w = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4, we have

min 5.3578547x23 + 0.8356891x1x5 + 37.293239x1 − 40792.141
s.t.
g1 = −u ≤ 0
g2 = u− 92 ≤ 0
g3 = −v + 90 ≤ 0
g4 = v − 110 ≤ 0
g5 = −w + 20 ≤ 0
g6 = w − 25 ≤ 0
78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, for i = 3, 4, 5, 27 ≤ xi ≤ 45.

. (21)
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The function g05 (Michalewicz and Schoenauer 1996)

min 3x1 + e−6x31 + 2x2 + 2e−6

3
x32

s.t.
g1 = x3 − x4 − 0.55 ≤ 0
g2 = x4 − x3 − 0.55 ≤ 0
g3 = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25) + 894.8− x1 ≤ 0
g4 = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.8− x2 ≤ 0
g5 = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8 ≤ 0
0 ≤ x1, x2 ≤ 1200, −0.55 ≤ x3, x4 ≤ 0.55.

(22)

The function g07 (Michalewicz and Schoenauer 1996)

min x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x27 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45
s.t.
g1 = 4x1+5x2−3x7+9x8−105

105
≤ 0

g2 = 10x1−8x2−17x7+2x8
370

≤ 0
g3 = −8x1+2x2+5x9−2x10−12

158
≤ 0

g4 =
3(x1−2)2+4(x2−3)2+2x2

3−7x4−120

1258
≤ 0

g5 =
5x2

1+8x2+(x3−6)2−2x4−40

816
≤ 0

g6 =
0.5(x1−8)2+2(x2−4)2+3x2

5−x6−30

834
≤ 0

g7 =
x2
1+2(x2−2)2−2x1x2+14x5−6x6

788
≤ 0

g8 = −3x1+6x2+12(x9−8)2−7x10
4048

≤ 0
for i = 1, · · · , 10, −10 ≤ xi ≤ 10.

(23)

The function g09 (Michalewicz and Schoenauer 1996)

min (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2 + 10x65 + 7x26 + x47 − 4x6x7
−10x6 − 8x7
s.t.

g1 =
2x2

1+3x4
2+x3+4x2

4+5x5−127

127
≤ 0

g2 =
7x1+3x2+10x2

3+x4−x5−282

282
≤ 0

g3 =
23x1+x2

2+6x2
6−8x7−196

196
≤ 0

g4 = 4x21 + x22 − 3x1x2 + 2x23 + 5x6 − 11x7 ≤ 0
for i = 1, · · · , 7, −10 ≤ xi ≤ 10.

(24)

The function g10 (Michalewicz and Schoenauer 1996)

min x1 + x2 + x3
s.t.
g1 = −1 + 0.0025(x4 + x6) ≤ 0
g2 = −1 + 0.0025(−x4 + x5 + x7) ≤ 0
g3 = −1 + 0.01(−x5 + x8) ≤ 0
g4 = plog(100x1 − x1x6 + 833.33252x4 − 83333.333) ≤ 0
g5 = plog(x2x4 − x2x7 − 1250x4 + 1250x5) ≤ 0
g6 = plog(x3x5 − x3x8 − 2500x5 + 1250000) ≤ 0
102 ≤ x1 ≤ 104, 103 ≤ x2, x3 ≤ 104, for i = 4, 5, 6, 7, 8 10 ≤ xi ≤ 103.

(25)

The welded beam function (WB4) (Kalyanmoy 1998)
For P = 6000, L = 14, E = 30e6, G = 12e6, tmax = 13600, smax = 30000,

xmax = 10, dmax = 0.25, M = P (L + x2
2

), R =
√

0.25(x22 + (x1 + x3)2), J =
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√
2x1x2(

x2
2

12
+ 0.25(x1 + x3)2), Pc = 4.013E

6L2 x3x
3
4(1 − 0.25x3

√
E
G

L
), t1 = P√

2x1x2
,

t2 = M R
J

, t =
√
t21 + t1t2

x2
R

+ t22, s = 6P L
x4x

2
3

et d = 4P L3

Ex4x
3
3
, we have

min 1.10471x12x2 + 0.04811x3x4(14 + x2)
s.t.
g1 = t−tmax

tmax
≤ 0

g2 = s−smax
smax

≤ 0

g3 = x1−x4
xmax

≤ 0

g4 =
0.10471x2

1+0.04811x3x4(14+x2)−5

5
≤ 0

g5 = d−dmax
dmax

≤ 0

g6 = P−Pc
P
≤ 0

0.125 ≤ x1 ≤ 10, for i = 2, 3, 4, 0.1 ≤ xi ≤ 10.

(26)

The gas transmission compressor design (GTCD) (Beightler and Phillips
1976)

min 8.61e5x
1
2
1 x2x

−2
3

3 x
−1
2

4 + 3.69e4x3 + 7.72e8x−1
1 x0.2192 − 765.43e6x−1

1
s.t.
g1 = x4x

−2
2 + x−2

2 − 1 ≤ 0
20 ≤ x1 ≤ 50, 1 ≤ x2 ≤ 10, 20 ≤ x3 ≤ 50, 0.1 ≤ x4 ≤ 60.

(27)

The pressure vessel design function (PVD4) (Carlos and Efrén 2002)

min 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x21x4 + 19.84x21x3

s.t.
g1 = −x1 + 0.0193x3 ≤ 0
g2 = −x2 + 0.00954x3 ≤ 0
g3 = plog(−πx23x4 − 4

3
πx33 + 1296000) ≤ 0

0 ≤ x1, x2 ≤ 1, 0 ≤ x3 ≤ 50, 0 ≤ x4 ≤ 240.

(28)

The Hesse function (Hesse 1973)

min −25(x1 − 2)2 − (x2 − 2)2 − (x3 − 1)2 − (x4 − 4)2 − (x5 − 1)2 − (x6 − 4)2

s.t.
g1 = 2−x1−x2

2
≤ 0

g2 = x1+x2−6
6

≤ 0
g3 = −x1+x2−2

2
≤ 0

g4 = x1−3x2−2
2

≤ 0

g5 = 4−(x3−3)2−x4
4

≤ 0

g6 = 4−(x5−3)2−x6
4

≤ 0
0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 4, 1 ≤ x3 ≤ 5, 0 ≤ x4 ≤ 6, 1 ≤ x5 ≤ 5,
0 ≤ x6 ≤ 10.

(29)

The SR7 function (Floudas and Pardalos 1990)

For A = 3.3333x23 +14.9334x3−43.0934, B = x26 +x27, C = x36 +x37, D = x4x
2
6 +

x5x
2
7, A1 = [(745 x4

x2x3
)2 + 16.91e6]0.5, B1 = 0.1x36, A2 = [(745 x5

x2x3
)2 + 157.5e6]0.5
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et B2 = 0.1x37, we have

min 0.7854x1x
2
2A− 1.508x1B + 7.477C + 0.7854D

s.t.

g1 =
27−x1x

2
2x3

27
≤ 0

g2 =
397.5−x1x

2
2x

2
3

397.5
≤ 0

g3 =
1.93− x2x4

6x3

x3
4

1.93
≤ 0

g4 =
1.93− x2x4

7x3

x3
5

1.93
≤ 0

g5 =
A1
B1
−1100

1100
≤ 0

g6 =
A2
B2
−850

850
≤ 0

g7 = x2x3−40
40

≤ 0

g8 =
5− x1

x2
5
≤ 0

g9 =
x1
x2
−12

12
≤ 0

g10 = 1.9+1.5x6−x4
1.9

≤ 0
g11 = 1.9+1.1x7−x5

1.9
≤ 0

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4, x5 ≤ 8.3,
2.9 ≤ x6 ≤ 3.9, 5 ≤ x7 ≤ 5.5.

(30)

B The indexes of the retained variables for the MOPTA08
problem

The choice of the fixed variables is done in a random way. The indexes of the used
variables during the optimization are:
– 12 dimensions: 2, 42, 45, 46, 49, 51, 60, 66, 72, 78, 82 and 95.
– 50 dimensions: 2, 3, 6, 11, 13, 14, 15, 19, 21, 22, 24, 29, 30, 31, 33, 34, 36, 40,

42, 45, 46, 49, 51, 53, 54, 56, 57, 60, 62, 63, 65, 66, 67, 71, 72, 76, 77, 78, 81,
82, 85, 86, 92, 93, 95, 96, 101, 103, 121 and 124.
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