Mohamed Amine Bouhlel
email: mbouhlel@umich.edu

Nathalie Bartoli
email: nathalie.bartoli@onera.fr

Rommel G Regis
email: rregis@sju.edu

Abdelkader Otsmane
email: abdelkader.otsmane@snecma.fr

Joseph Morlier
email: joseph.morlier@isae-supaero.fr

Efficient Global Optimization for high-dimensional constrained problems by using the Kriging models combined with the Partial Least Squares method

In many engineering optimization problems, the number of function evaluations is often very limited because of the computational cost to run one high-fidelity numerical simulation. Using a classic optimization algorithm, such as a derivative-based algorithm or an evolutionary algorithm, directly on a computational model is not suitable in this case. A common approach to addressing this challenge is to use black-box surrogate modeling techniques. The most popular surrogate-based optimization algorithm is the Efficient Global Optimization (EGO) algorithm which is an iterative sampling algorithm that adds one (or many) point(s) per iteration. This algorithm is often based on an infill sampling criterion, called expected improve-

ment, which represents a trade-off between promising and uncertain zones. This algorithm was first developed for bound constrained optimization problems and then extended to constrained optimization problems. Many studies have shown the efficiency of EGO, particularly when the number of input variables is relatively low. However, its performance on high-dimensional problems is still poor since the Kriging models used are time-consuming to build. Indeed, many minutes, sometimes many hours, are generally required for constructing the Kriging models. To deal with this issue, this paper introduces a surrogate-based optimization method that is suited to high-dimensional problems. For this purpose, we first use the "locating the regional extreme" criterion, which incorporates minimizing the surrogate model while also maximizing the expected improvement criterion. We then replace the Kriging models by the KPLS(+K) models-Kriging combined with the partial least squares method-which are more suitable for high-dimensional problems. We finally validate our approach by a comparison with alternative methods existing in the literature on some analytic functions and on 12-dimensional and 50-dimensional instances of the benchmark automotive problem "MOPTA08".

Symbols and notation

Matrices and vectors are in bold type. The number of constraints in the optimization problem x, x 1 × d vector xj

The j th element of a vector x for j = 1, . . . , d X n × d matrix containing sampling points y n × 1 vector containing simulation of X x (i) The i th training point for i = 1, . . . , n (1 × d vector) y (i) The i th evaluated output point for i = 1, . . . , n x t Superscript t denotes the transpose operation of the vector x X (0) X X (l-1) Matrix containing residual of the inner regression of the (l -1) th PLS-iteration for l = 1, . . . , h k(•, •)

A covariance function r xx

The spacial correlation function between x and x R The covariance matrix s 2 (x)

The prediction of the Kriging variance σ 2

The process variance θi

The j th parameter of the covariance function for i = 1, . . . , d Y (x)

A Gaussian process 1

An n-vector of ones t l

The l th principal component for l = 1, . . . , h w

The loading vector (PLS) f

The objective function of the optimization problem g k

The k th constraint function

Introduction

The field of optimization has become significantly important in engineering and industrial design. In the literature, many approaches have been used for finding the global optimum. One of the most popular methods is to run a gradient-based optimization algorithm with a multi-start procedure [START_REF] Hickernell | An efficient algorithm for constructing optimal design of computer experiments[END_REF][START_REF] Sendin | Extensions of a multistart clustering algorithm for constrained global optimization problems[END_REF]. For this type of method, the derivative of the objective function is needed. When the derivative of the objective function is not available, it can be approximated by finite-difference methods. However, finite-difference methods are unreliable when the function to be optimized is non-smooth. For this reason, derivative-free optimization methods [START_REF] Conn | Introduction to Derivative-Free Optimization[END_REF] and heuristic methods such as simulated annealing (Laarhoven and Aarts 1987), evolutionary algorithms [START_REF] Simon | A constrained multi-objective surrogate-based optimization algorithm[END_REF]) and particle swarm optimization [START_REF] Kennedy | Particle swarm optimization[END_REF] became popular in the last few decades. One of the most challenging engineering optimization problems is when the objective and the constraint functions are black-box functions with high computational CPU time. In many engineering problems, numerical simulations require several hours, sometimes more, to run one simulation representative of the physics. Thus, direct optimization methods for such cases are too expensive and infeasible in practice. In addition, many iterations are often required when the number of input variables is large. Likewise, to find the global optimum using a relatively small number of evaluations of the true function is almost impossible for high-dimensional problems. It is possible to obtain a reasonably good feasible solution through a good management of the number of function evaluations.

A suitable optimization approach is to use a surrogate model, also called metamodel, instead of the true function. The evaluation of new points through a surrogate model, called predictions, is very cheap since it consists in computing a simple analytical function. Moreover, the surrogate model is a good tool to indicate promising areas where we should run new high-fidelity simulations. Several approaches for constrained black-box optimization have been developed recently. For instance, [START_REF] Li | A Kriging-based constrained global optimization algorithm for expensive black-box functions with infeasible initial points[END_REF] developed a Kriging-based algorithm for constrained black-box optimization that involves two phases. The first phase finds a feasible point while the second phase obtains a better feasible point. This approach is similar to what is done in the COBRA algorithm (Regis 2014, briefly described in Sec. 4.2.2 in this paper). [START_REF] Liu | Constrained global optimization via a direct-type constraint-handling technique and an adaptive metamodeling strategy[END_REF] proposed a two-phase method that uses a constraint-handling technique based on the DIRECT algorithm and that uses an adaptive metamodeling strategy for the objective and constraints. [START_REF] Gramacy | Modeling an Augmented Lagrangian for Blackbox Constrained Optimization[END_REF] developed an hybrid approach that uses Kriging with the expected improvement (EI) criterion combined with the augmented Lagrangian framework for constrained optimization. Moreover, [START_REF] Regis | CONORBIT: Constrained optimization by radial basis function interpolation in trust regions[END_REF] developed a model-based trust-region algorithm for constrained optimization that uses RBF models. In addition, Kriging-based approaches have been proposed for constrained multi-objective optimization (e.g., [START_REF] Simon | A constrained multi-objective surrogate-based optimization algorithm[END_REF]; [START_REF] Feliot | A bayesian approach to constrained single-and multi-objective optimization[END_REF]). An important application of Kriging in an optimization context is the Efficient Global Optimization (EGO) algorithm [START_REF] Jones | Efficient Global Optimization of Expensive Black-Box Functions[END_REF]. It uses both the prediction and error estimation provided by Kriging to guide an infill sampling criterion towards promising areas. To the best of our knowledge, EGO is used for problems with a relatively small number of input variables because of the Kriging limitations in high dimension [START_REF] Haftka | Parallel surrogate-assisted global optimization with expensive functions-a survey[END_REF]. [START_REF] Sasena | Flexibility and efficiency enhancements for constrained global design optimization with Kriging approximations[END_REF] has developed a constrained version of EGO, called SuperEGO (denoted SEGO in this paper), where the optimization of the infill sampling criterion takes into account the satisfaction of constraint functions.

In this paper, we develop two new methods for solving high-dimensional constrained optimization problems, both based on SEGO approach: (i) SEGOK-PLS uses SEGO with the KPLS model (Bouhlel et al 2016b); and (ii) SEGOK-PLS+K uses SEGO with the KPLS+K model (Bouhlel et al 2016a). Here, KPLS stands for Kriging with partial least squares (PLS), which involves projecting input variables onto principal components to implement some form of dimension reduction. The SEGOKPLS(+K) algorithms build KPLS(+K) for each output function at each iteration of optimization. We use either KPLS or KPLS+K since they are faster to build than the classical Kriging models while maintaining a good accuracy for high-dimensional problems. Once the KPLS(+K) models are built, we optimize a specific infill sampling criterion that adds promising points into the training points to improve the accuracy of the metamodels in relevant areas. We use the "locating the regional extreme" (WB2) criterion proposed by [START_REF] Watson | Infill sampling criteria to locate extremes[END_REF]. [START_REF] Sasena | Exploration of metamodeling sampling criteria for constrained global optimization[END_REF] implemented and validated this criterion on several analytic functions. This approach proposes a balance between exploitation and exploration of the metamodel-herein, exploitation means that the metamodel is minimized and exploration means that points are added where the uncertainty of the metamodel is high. Moreover, WB2 is more local than the popular EI criterion. This characteristic is important for expensive high-dimensional problems, since the number of true function evaluations is limited and the uncertainty of the metamodel is high. We apply the two proposed optimization algorithms to several analytic problems and to an automotive problem (MOPTA08). In addition, we compare them to several optimization methods existing in the literature. This comparison has shown that the SEGOK-PLS+(K) methods outperform the alternative algorithms on most of the test problems.

There have been other methods that use principal components for highdimensional surrogate-based optimization. For example, [START_REF] Kyriacou | Efficient pca-driven eas and metamodel-assisted eas, with applications in turbomachinery[END_REF] used principal components analysis (PCA) in a metamodel-assisted evolutionary algorithm to guide the application of evolution operators and the training of the metamodel. Moreover, [START_REF] Chen | High-fidelity global optimization of shape design by dimensionality reduction, metamodels and deterministic particle swarm[END_REF] used Karhunen-Loève expansion, which is similar to PCA, to reduce design-space dimensionality in metamodel-based shape optimization. Our proposed approach, that is based on the EGO algorithm, incorporates a Kriging model that uses principal components in the context of partial least squares to make it suitable for high-dimensional constrained optimization.

The paper is organized as follows. Section 2 details the proposed optimization algorithms, SEGOKPLS(+K). Sections 3 and 4 apply and validate the SEGOKPLS(+K) algorithms on the analytic and MOPTA08 problems, respectively. Finally, the Section 5 concludes the paper.

SEGOKPLS(+K) for high-dimensional constrained optimization problems

Assume that we have evaluated a deterministic cost function at n points

x (i) (i = 1, . . . , n) with x (i) = x (i) 1 , . . . , x (i) d ∈ B, with B ⊂ R d .
For simplicity, we consider B to be a hypercube expressed by the product between intervals of each direction space, i.e., B = d j=1 [a j , b j], where a j , b j ∈ R with a j ≤ b j for j = 1, . . . , d. We also denote by X the matrix x (1) t , . . . , x (n) t t .

Evaluating these n inputs gives the outputs y = y (1) , . . . , y (n) t with y (i) = y x (i) , for i = 1, . . . , n.

The KPLS(+K) models

The KPLS and KPLS+K models are derived by combining the Kriging model with the PLS technique. Therefore, we start by briefly depicting the theory of Kriging and PLS before describing the KPLS(+K) models.

The Kriging model

The Kriging model has been developed first in geostatistics [START_REF] Krige | A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand[END_REF][START_REF] Cressie | Spatial Prediction and Ordinary Kriging[END_REF][START_REF] Goovaerts | Geostatistics for Natural Resources Evaluation (Applied Geostatistics)[END_REF]) before being extended to computer experiments [START_REF] Sacks | Design and Analysis of Computer Experiments[END_REF][START_REF] Schonlau | Computer experiments and global optimization[END_REF][START_REF] Jones | Efficient Global Optimization of Expensive Black-Box Functions[END_REF][START_REF] Sasena | Exploration of metamodeling sampling criteria for constrained global optimization[END_REF][START_REF] Forrester | Optimization with missing data[END_REF][START_REF] Picheny | Adaptive Designs of Experiments for Accurate Approximation of a Target Region Powell M (1994) A direct search optimization method that models the objective and constraint functions by linear interpolation[END_REF][START_REF] Liem | Surrogate models and mixtures of experts in aerodynamic performance prediction for aircraft mission analysis[END_REF]. In order to develop the Kriging model, we assume that the deterministic response y(x) is a realization of a stochastic process Y (x) [START_REF] Koehler | Computer experiments[END_REF][START_REF] Schonlau | Computer experiments and global optimization[END_REF][START_REF] Sasena | Flexibility and efficiency enhancements for constrained global design optimization with Kriging approximations[END_REF])

Y (x) = β 0 + Z(x), (1)
where β 0 is an unknown constant and Z(x) is a stochastic term considered as a realization of a stationary Gaussian process with E[Z(x)] = 0 and a covariance function, also called a kernel function, given by

Cov(Z(x), Z(x)) = k(x, x) = σ 2 r(x, x) = σ 2 r xx , ∀x, x ∈ B, (2)
where σ 2 is the process variance and r xx is the correlation function between x and x . In the following, we only consider the exponential covariance function type, in particular the squared Gaussian kernel, given by

k(x, x) = σ 2 d i=1 exp -θ i (x i -x i) 2 , ∀ θ i ∈ R + . (3)
Equation (1) corresponds to a particular case of the Kriging model: the ordinary Kriging model [START_REF] Forrester | Engineering Design via Surrogate Modeling: A Practical Guide[END_REF]. The function k, given by Equation (3), depends on some hyperparameters θ. To construct the Kriging model, we assume these hyperparameters as known. We also denote the n × 1 vector as r xX = [r xx (1) , . . . , r xx (n)] t and the n × n covariance matrix as R = [r x (1) X , . . . , r x (n) X]. We use ŷ(x) to denote the prediction of the true function y(x). Under the hypothesis considered above, the best linear unbiased predictor for y(x), given the observations y, is

ŷ(x) = β0 + r t xX R -1 y -β0 1 , (4)
where 1 denotes an n-vector of ones and

β0 = 1 t R -1 1 -1 1 t R -1 y. (5)
In addition, the estimation of

σ 2 is σ2 = 1 n y -1 β0 t R -1 y -1 β0 . (6)
Moreover, the ordinary Kriging model provides an estimate of the variance of the prediction given by

s 2 (x) = σ2 1 -r t xX R -1 r xX . (7)
Finally, we estimate the vector of hyperparameters θ = {θ i }, for i = 1, . . . , d, by the maximum likelihood estimation method.

The partial least squares technique

The PLS method is a statistical method that searches out the best multidimensional direction X that explains the characteristics of the output y. Moreover, it finds a linear relationship between input variables and output variable by projecting input variables onto principal components [START_REF] Wold | Estimation of Principal Components and Related Models by Iterative Least squares[END_REF]. The PLS technique reveals how inputs depend on the output variable. In the following, we use h to denote the number of principal components retained that is much lower than d (h d). We compute the PLS components sequentially. In fact, we compute the principal component t l by seeking the best direction w (l) that maximizes the squared covariance between t l = X (l-1) w (l) and y (l-1)

w (l) = argmax w (l)
w (l) t X (l-1) t y (l-1) y (l-1) t X (l-1) w (l) s.t.w (l) t w (l) = 1.

(8)

where X = X (0) , y = y (0) , and, for l = 1, . . . , h, X (l) and y (l) is the residual matrix from the local regression of X (l-1) onto the principal component t l and from the local regression of y (l-1) onto the principal component t l , respectively, such that

X (l-1) = t l p (l) + X (l) , y (l-1) = c l t l + y (l) , (9)
where p (l) (a 1 × d vector) and c l (a coefficient) contain the regression coefficients. For more details of how the PLS method works, please see [START_REF] Helland | On Structure of Partial Least Squares Regression[END_REF]Frank and Friedman 1993;[START_REF] Alberto | Partial Least Squares Regression on Symmetric Positive-Definite Matrices[END_REF].

The principal components represent the new coordinate system obtained upon rotating the original system with axes, x 1 , . . . , x d [START_REF] Alberto | Partial Least Squares Regression on Symmetric Positive-Definite Matrices[END_REF]. For l = 1, . . . , h, we write t l as t l = X (l-1) w (l) = Xw (l) * .

(10)

We obtain the following matrix W * = w

(1) * , . . . , .w by (for more details, see [START_REF] Manne | Analysis of two partial-least-squares algorithms for multivariate calibration[END_REF])

W * = W P t W -1 ,
where W = w (1) , . . . , w (h) and P = p (1) t , . . . , p (h) t . This important relationship is mainly used for developing the KPLS model that is described in the following section.

Construction of the KPLS and KPLS+K models

The hyperparameters θ = {θ i }, for i = 1, . . . , d, given by Equation (3) can be interpreted as measuring how strongly the variables x 1 , . . . , x d , respectively, affect the output y. For building KPLS, we consider the coefficients given by the vectors w (l) * , for l = 1, . . . , h, as a measure of the influence of input variables x 1 , . . . , x d on the output y. By some elementary operations applied on the kernel functions, we define the KPLS kernel by

k 1:h (x, x) = h l=1 k l (F l (x) , F l (x)), (11)
where k l : B × B → R is an isotropic (only 1 hyperparameter is used for all directions) stationary kernel and

F l : B -→ B x -→ w (l) * 1 x1, . . . , w (l) * d x d . (12)
More details of such construction are given in Bouhlel et al (2016b). Considering the example of the squared Gaussian kernel given by Equation (3), we get

k(x, x) = σ 2 h l=1 d i=1 exp -θ l w (l) * i x i -w (l) * i x i 2 , ∀ θ l ∈ R + . (13
)
This equation is the new kernel associated to the KPLS model. Since we retain a small number of principal components, the estimation of the hyperparameters θ 1 , . . . , θ l is very fast compared to the hyperparameters θ 1 , . . . , θ d given by Equation (3), where h << d. Moreover, we can improve the solution of the maximum likelihood of the KPLS covariance function. For this purpose, we add a new step, right after the estimation of the θ l -parameters, that is based on the following transition

k 1:h (x, x) = σ 2 h l=1 d i=1 exp -θ l w (l) * i 2 (x i -x i) 2 = σ 2 exp d i=1 h l=1 -θ l w (l) * i 2 (x i -x i) 2 = σ 2 exp d i=1 -η i (x i -x i) 2 = σ 2 d i=1 exp -η i (x i -x i) 2 , (14)
with

η i = h l=1 θ l w (l) * i

2

, for i = 1, . . . , d. The Equation (14) allows us to express the hyperparameters' solution, provided by the KPLS kernel, from the reduced space (with h dimensions) into the original space (with d dimensions). Thus, we use

η i = h l=1 θ l w (l) * i

2

, for i = 1, . . . , d, as a starting point for a gradient-based maximization of the likelihood function for a standard Kriging model. This optimization is done in the complete space where the vector η = {η i } ∈ R + d . Therefore, we improve the maximization of the like- lihood for the resulting Kriging model, called KPLS+K (KPLS to initialize the Kriging hyperparameters), at the cost of a slight increase in computational time. Such construction is similar to the method developed by [START_REF] Ollar | Gradient based hyperparameter optimisation for well conditioned kriging metamodels[END_REF], where a gradient-free optimization algorithm is used with an isotropic Kriging model followed by a gradient-based optimization starting from the solution given by the first optimization. More details of this model can be found in Bouhlel et al (2016a).

We denote the two models KPLS and KPLS+K developed for highdimensional problems by KPLS(+K) in the following.

The SEGOKPLS(+K) algorithms

During the last decade, the EGO algorithm [START_REF] Jones | Efficient Global Optimization of Expensive Black-Box Functions[END_REF] has become one of the most popular methods for surrogate-based optimization. It is an adaptive sampling algorithm that adds one (or more) point per cycle [START_REF] Chevalier | Fast Computation of the Multi-Points Expected Improvement with Applications in Batch Selection[END_REF]. This algorithm uses the well known expected improvement (EI) criterion based on the prediction value and the uncertainty provided by the Kriging model. In this Section, we adapt this algorithm to constrained black-box optimization problems in high dimension. For this end, we define the constrained optimization problem, and describe the two methods SEGOKPLS(+K) used in this paper.

Definition of the constrained optimization problem

We formalize the optimization problem with constraint functions as follows

min x∈B    f (x) s.t. g k (x) ≤ 0, k = 1, . . . , m. (15)
Through this equation, we note that equality constraints are not considered in this paper. The functions f, g 1 , . . . , g m are deterministic black-box functions that are computationally expensive. We assume that the derivatives of the objective function f and the constraint functions g k (k = 1, . . . , m) are unavailable. These assumptions are typical in many engineering applications.

EGO for constrained optimization problems: SEGO

To construct a surrogate model in an optimization context is a complex task. Many classifications exist in the literature, mainly based on the type of the metamodel and the method used to select the search points. For more details, an interesting article [START_REF] Jones | A taxonomy of global optimization methods based on response surfaces[END_REF] gives a taxonomy of surrogate-based optimization methods. In this paper, we focus on the so-called 'two-stage' method. The first step consists in fitting the metamodel and estimating the associated hyperparameters. The second step consists in using this metamodel instead of the true function and searching promising points following a chosen infill sampling points. The details of this approach are given in Figure 1 for bound constrained optimization problems:

1. We evaluate the initial design of experiments: we construct a set of initial points (X, y) = x (1) , . . . , x (n) , y (1) , . . . , y (n) . In this paper, we use the latin hypercube design (Jin et al 2005). Since our approach is designed to optimize time-consuming engineering design problems, we use a small number of initial points n. In addition, we set up n = d+1 for comparison conveniences with Regis (2014). 2. We construct (or update) the metamodel involved in the optimization problem: we fit the hyperparameters of the metamodel with the initial (or the enriched) design of experiments. 3. We optimize the infill sampling criterion. 4. We evaluate the new point x (n+1) , y (n+1) . 5. We check if the number of iterations is reached: if the number of points permitted is reached (stopping criterion), we stop the algorithm, otherwise, we add the new point in the design of experiments and we return to the step 2.

The simplest way to use a surrogate-based optimization method is to add sampling points where the surrogate model is minimized. Thus, it allows us to obtain an accurate metamodel in such region. However, the algorithm can fail if a global minimum is searched. Thus, it is important to take into account the uncertainty of the metamodel when we add new points in the design of experiments. To address this issue, we must sometimes add points where the uncertainty of the metamodel is high. For this purpose, the EI sampling criterion is used to make a balance between a local and global search [START_REF] Jones | Efficient Global Optimization of Expensive Black-Box Functions[END_REF][START_REF] Forrester | Engineering Design via Surrogate Modeling: A Practical Guide[END_REF]. This algorithm performs well when the number of dimensions is relatively low. However, its cannot effectively deal with high-dimensional problems, this is mainly due to the uncertainty of the model which is often high when the number of input variables is large. Indeed, the EI criterion puts more emphasis on metamodel exploration rather than on its exploitation, because it is almost impossible to fill all regions of the domain in this case. For this reason, we have chosen the criterion used by Sasena (WB2) "to locate the regional extreme" (for more details, see [START_REF] Sasena | Flexibility and efficiency enhancements for constrained global design optimization with Kriging approximations[END_REF]).

The WB2 criterion is essentially the predicted function value added to the EI function and is, therefore, a slightly more local searching criterion.

Construction of the initial design of experiments X = x (1) , . . . , x (n) , y = y (1) , . . . , y (n) Re/building metamodels Optimization of the infill sampling criterion ⇒ x The expression of the WB2 criterion is given by

WB2(x) =            -ŷ(x) + EI(X) (fmin -ŷ(x))Φ fmin -ŷ(x) s(x) + s(x)φ fmin -ŷ(x) s(x) , if s < 0 -ŷ(x), if s = 0 (16)
The WB2 is quite similar to the EI and needs to be maximized. The only difference is about the additional first term (-ŷ(x)) on the right-hand side of Equation (16). The main advantage of this criterion is that it is smoother than the EI function since it does not return to zero at the sampled points. After comparing the WB2 and the EI criteria on several analytic functions, [START_REF] Sasena | Flexibility and efficiency enhancements for constrained global design optimization with Kriging approximations[END_REF] recommends to use the WB2 criterion than the EI criterion. In addition, the WB2 criterion exploits more the surrogate model than the EI criterion. This is more suitable for high-dimensional problems since the budget allocated is usually low and not proportional to the number of dimensions. Therefore, we need to rapidly converge towards a promising solution while maintaining an exploration behavior of the algorithm.

On the other hand, the Figure 1 presents the algorithm adapted to bound constrained optimization problems. To extend the algorithm for constrained optimization problems, we construct a KPLS(+K) model for each constraint function, and define the constrained infill sampling criterion

min x∈B    WB2(x) s.t. ĝk (x) ≤ 0, k = 1, . . . , m, (17)
where ĝk (x), for k = 1, . . . , m are the predictions of g k (x) given by Equation (15). Other techniques to include the constraint functions exist in the literature. We have chosen the above presented approach following the recommendation given by [START_REF] Sasena | Flexibility and efficiency enhancements for constrained global design optimization with Kriging approximations[END_REF], in Chapter 5, where a comparison between several approaches has been done. This approach will be called SEGOKPLS if the KPLS models are used, otherwise, SEGOKPLS+K when the KPLS+K models are used. Our process is summarized on Figure 2.

Evaluation of the initial design of experiments:

(X, y, g1, . . . , gm) = x (1) , . . . , x (n) , y (1) , . . . , y (n) , g

1 , . . . , g

(n) 1 , . . . , g (1) m , . . . , g (n)
m . 2. Construction or update of the KPLS(+K) models: the parameters of the metamodel are fitted with the initial or the enriched design of experiments. 3. Maximization of Equation (16). 4. Evaluation of the new point: the point solution is evaluated

x (n+1) , y (n+1) , g (n+1) 1 , . . . , g (n+1) m .
5. Checking if the number of iterations is reached: if the number of points permitted is reached (stopping criterion), we stop the algorithm, otherwise, we add the new point in the design of experiments and we return to the stage 2.

Analytic functions

To demonstrate the performance of the SEGOKPLS algorithm, we use 12 well known analytic functions that are defined in Table 1. We compare the SEGOKPLS algorithm to several optimization methods that have been applied to these analytic functions in [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF].

We should also note that the original g 03 and g 05 functions have equality constraints in their definition. In this paper, we consider the same modified formulations used by [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF] (noted by G3MOD and G5MOD in Regis (2014)) where each constraint function is replaced by an inequality (≤) constraint.

Construction of the initial design of experiments X = x (1) , . . . , x (n) , y = y (1) , . . . , y (n) , g 1 = g

(1) 1 , . . . , g

(n) 1 , . . . , gm = g (1) m , . . . , g (n) m
Re/building the KPLS(+K) models

Maximization of

Equation (16)

⇒ x (n+1)
Computation of the true value

y x (n+1) , g 1 x (n+1) , . . . , gm x (n+1)
Number of iterations reached?

Stop

Adding

x (n+1) , y (n+1) , g (n+1) 1 , . . . , g (n+1)
m

Yes No

Fig. 2: Steps used for the SEGOKPLS(+K) methods.

Alternative optimization methods

We compare SEGOKPLS with COBRA for constrained optimization by radial basis function [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF] and ConstrLMSRBF for constrained local metric stochastic radial basis function [START_REF] Regis | Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions[END_REF]. Both these methods are compared with several alternative optimization methods existing in the literature by Regis (2014):

-SDPEN for sequential penalty Derivative-free method for nonlinear constrained optimization (Liuzzi et -OQNLP [START_REF] Ugray | Scatter search and local nlp solvers: A multistart framework for global optimization[END_REF], which is implemented as the GlobalSearch solver in the Matlab Global Optimization toolbox (the Mathworks 2010).

In our case, we use only the best result given by [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF] for the comparison with the SEGOKPLS algorithm as detailed in the following Section.

Experimental setup

We perform the SEGOKPLS computation with the Python toolbox "Scikitlearn v.014" (Pedregosa et al 2011) using an Intel(R) Core(TM) i7-4500U CPU @ 1.80 Hz 2.40 GHz. The results of alternative optimization methods are transcribed from [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF] that they are performed in an Intel(R) Core(TM) i7 CPU 860 2.8GHZ. To increase the reliability of the comparison between the results of the SEGOKPLS algorithm and the alternative optimization methods, we get closer to the conditions in which alternative optimization methods are performed. To achieve these conditions, we perform a new latin hypercube design of size d + 1 (since the initial design of experiments used by [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF] are not available but the same size is used) and which all points are infeasible. For each experiment, we run the SEGOK-PLS algorithm 30 times and fix a computation budget of 100 objective and constraint function evaluations. However, these several runs allow us to reduce the influence of the initial design of experiments on the final results and on the performance of each optimization method involved into the comparison. The number of principal components used into the KPLS models for the SEGOKPLS algorithm is equal to 3. The constraint tolerance used in these tests is 10 -5 . We use five criteria to achieve the comparison: we compute the best solution, the worst solution, the median, the mean and the standard deviation error (std) of the 30 trials. To facilitate the comparison of the results for each case test, we transcribed only the best result of each statistic (e.g., the worst solution, . . .) from Table B3 in [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF]. These results used at least one feasible point in the initial design of experiments which is required to perform the alternative methods. The SEGOKPLS algorithm does not require initial feasible point. In addition, searching initial feasible point algorithms is out of the scope of this paper. Therefore, as mentioned above, we have intentionally chosen to use initial design of experiments free from feasible points which is, in addition, a common situation in real engineering design.

As mentioned in (Bouhlel et al 2016a), the KPLS+K model is more costly than the KPLS model; e.g. KPLS is over twice time faster than KPLS+K for a function with 60 input variables and 300 sampling points. For the analytical functions, we use 30 trials, so we only compare SEGOKPLS to alternative methods to reduce the cost of the experimental tests. A comparison is done between SEGOKPLS and SEGOKPLS+K on the MOPTA08-12D using 5 runs in section 4.1.

Results of the analytic functions

Table 2 provides statistics for both results of the SEGOKPLS algorithm (first value written in brackets) and best results of the alternative algorithms (second value written in brackets) given by [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF]. The SEGOKPLS algorithm yields better results compared with the best algorithm by [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF] for many test cases. In particular, SEGOKPLS is better than the alternative algorithms for all functions in terms of the worst, the median and the mean, except for the median of functions g 03 , g 10 and GTCD4. This result indicates that the SEGOKPLS algorithm is not very sensitive to the quality of the initial latin hypercube design. Moreover, the SEGOKPLS algorithm finds a better result than alternative algorithms, in terms of the best solution, for both g 03 and g 07 functions. In addition, the SEGOKPLS algorithm reaches the best-known solution over all statistics used in the comparison for 5 functions (SR7, Hesse, g 04 , g 05 and g 07).

For all these test functions, we note that SEGOKPLS returns the best possible optimum in the worst-case scenario of those 30 trials considered. Since the initial distribution of the sampling points plays an important role into an optimization design process that can affect the final solution, the last result (best of worst cases) shows that SEGOKPLS' solution is less deteriorated than the alternative methods in the worst cases, that is an important characteristic in real-world engineering design optimization. Indeed, it is almost impossible to know in advance the best type and distribution of an initial design of experiments for a certain engineering problems.

These results show the capability of SEGOKPLS to compete with optimization algorithms from the literature. The application of this algorithm to more realistic problem is considered in the following Section with the MOPTA08 test case. For this test case, we first applied the SEGOKPLS+K algorithm on the complete optimization problem, i.e., MOPTA08 problem with 124 input variables. Despite the good performance of SEGOKPLS+K during the first optimization iterations, we encounter serious numerical problems that the most important of them are explained in details in Section 4.1. Next, we apply the SEGOKPLS+K algorithm to two smaller problems: MOPTA08 with 12 and 50 input variables.

Why reduce the complexity of the MOPTA08 problem?

When applying the SEGOKPLS+K algorithm on the complete MOPTA08 problem, we consider an initial latin hypercube design of size d + 1 (125 points) and 221 iterations. We limit the number of iterations because there is a system crash after the 221 th iteration. In order to understand the reasons of a such system crash, we are considering, in Figure 3, the mean evolution concerning both the objective function and the sum of violated constraints occurring during 10 successive iterations. The objective function value decreases during the first 100 iterations as shown in Figure 3a. However, it starts to oscillate at the 165 th iteration. Indeed, the SEGOKPLS+K algorithm focuses its search in a local region. Moreover, it adds several similar points (i.e., points that are nearly collinear) to the training points. This set of new points, as a consequence, leads to an ill-conditioned correlation matrix. Therefore, the algorithm crashes after a certain number of iterations, in particular when the number of dimensions d is very high (>50). In order to reduce the complexity of the problem, we decided to limit the number of input variables involved in the optimization problem. To achieve this, we fix certain of the input variables to the best-known solution found by [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF], which its objective function is 222.22.

In this paper, two reduction problems are treated: 12 and 50 input variables given in Sections 4.4.1 and 4.4.2, respectively. The indexes of the variables used during the optimization are given in the appendix B. Beyond 50 input variables, we encounter the same problems when 124 input variables are considered.

In addition, we do not include the SEGOKPLS algorithm in the comparison. Indeed, the Table 3 shows the results of SEGOKPLS and SEGOK-PLS+K on the MOPTA08-12D case for 5 trials with a constraint violation of 10 -5 . The SEGOKPLS+K algorithm outperforms SEGOKPLS, and the best known solution of the problem is reached with less iterations using SEGOK-PLS+K. Therefore, we use only SEGOKPLS+K in the following MOPTA08 study.

Alternative optimization methods

Description of the COBYLA algorithm

In this paper, the baseline method used is the so-called COBYLA method that (Powell 1994) describes in details. COBYLA is a derivative-free trust region method that uses an approximating linear interpolation models of the objective and constraint functions. The algorithm is written in Fortran and iteratively finds a candidate for the optimal solution of an approximating linear programming problem. Using the original objective and constraint functions, the candidate solution is evaluated at each iteration of optimization, afterward, it is used to improve the approximating linear programming problem while maintaining a regular shaped simplex over iterations. When the solution cannot be improved anymore, the step size is reduced until to become sufficiently small, and then the algorithm finishes.

Description of the COBRA algorithm

SEGOKPLS+K will be compared with an algorithm called COBRA [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF]) that is designed for constrained black-box optimization when the objective and constraint functions are computationally expensive. Like SEGOK-PLS+K, COBRA treats each inequality constraint individually instead of combining them into one penalty function. However, instead of using Kriging, it uses RBF surrogates to approximate the objective and constraint functions. Moreover, COBRA implements a two-phase approach where Phase I finds a feasible point while Phase II searches for a better feasible point.

In each iteration of Phase II of COBRA, RBF surrogates for the objective function and for each of the constraint functions are fit. Then, the iterate is chosen to be a minimizer of the RBF surrogate of the objective function that satisfies RBF surrogates of the constraints within some small margin and that also satisfies a distance requirement from previous iterates. As explained in [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF]), the margin is useful because it helps maintain feasibility of the iterates, especially on problems with many inequality constraints. More precisely, the next sample point x n+1 as a solution to the optimization subproblem:

min ŷ(x) s.t. x ∈ B ĝi (x) + (i) n ≤ 0, i = 1, 2, . . . , m x -x (j) ≥ ρ n , j = 1, . . . , n
where x (1) , . . . , x (n) are the previous sample points, ŷ, ĝ1 , . . . , ĝm are the RBF surrogates for the objective function f (x) and constraint functions g 1 (x), . . . , g m (x), respectively. Moreover, (i) n > 0 is the margin for the inequality constraints, which varies depending on performance starting with a value of 0.005 (B), where (B) is the length of one side of the hypercube B. Also, ρ n is the distance requirement from previous sample points and it is allowed to cycle to balance local and global search. That is, ρ n = γ n (B), where γ n is an element of the cycle of distance requirements Ξ. Here, we compare SEGOKPLS+K with an implementation of COBRA that emphasizes local search since it performed better on the benchmark test problems used in [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF]. In this implementation of COBRA that focuses on local search, Ξ = 0.01, 0.001, 0.0005 .

Experimental setup

The SEGOKPLS+K computations are performed with the Python toolbox "Scikit-learn v.014" [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] using an Intel(R) Core(TM) i7-4500U CPU @ 1.80 Hz 2.40 GHz desktop machine. The alternative optimization methods are performed in Matlab 7.11.0 using an Intel(R) Core(TM) i7 CPU 860 2.8 Ghz desktop machine. This is one of the reason that we did not investigate the computational cost, in addition to the non-practical environment for getting a consistent such study. Bouhlel et al (2016a) provide a comparison of CPU time between KPLS and KPLS+K using different Table 4: MOPTA08-12D -Total number of calls, the initial design of experiments (13 points) + number of iterations, for the 5 runs to reach the optimum with the COBYLA, COBRA and SEGOKPLS+K methods. The objective value of the best feasible point is given in brackets. number of sampling points and input variables, that gives an idea about the total cost of the optimization design. The optimization of the Equation (17) requires between 10 and 20 minutes per iteration.

For each set of experiments, we run each algorithm 5 times, and each run corresponds to a different latin hypercube design of size d + 1. In addition, we do not include any feasible point into the different initial samples. For the SEGOKPLS+K algorithm, we fix a computational budget of 39 and 63 evaluations for MOPTA08 with 12 and 50 input variables, respectively. Each evaluation corresponds to 1 objective and constraint functions evaluation. On the other hand, we fix a computational budget of 500 evaluations for both COBYLA and COBRA algorithms. Then, we fix 3 principal components to build the KPLS+K models for all outputs. Finally, we use a constraint tolerance of 10 -5 as for the analytic problems.

Results of the MOPTA08 problem

Comparison on the MOPTA08 benchmark with 12 dimensions

The objective in this section is to optimize the MOPTA08 problem in 12 dimensions and compare the three algorithms (COBYLA, COBRA and SEGOK-PLS+K), the best-known solution of this weight minimization being 222.23.

Table 4 gives the total number of calls and the objective value of the best feasible point from the 5 runs performed. Figure 4 gives the different progress curves of the algorithms performed on the MOPTA08-12D problem. Each curve shows the results of an optimization design that uses a different initial latin hypercube design of size 13 points. We associate the first, second, and third rows of the Figure to, respectively, COBYLA, CO-BRA, and SEGOKPLS+K methods. The first column shows the evolution of the best feasible objective value, and we use the second column to depict the evolution of the sum of violated constraints; e.g. Figures 4e and4f show the evolution of both the best feasible objective value and the sum of violated constraints, respectively, for the SEGOKPLS+K algorithm. In this previous example, only 39 iterations of optimization are sufficient to find the best-known solution of the problem for all runs. Unlike the SEGOKPLS+K algorithm, the COBYLA (Figures 4a and4b) and COBRA (Figures 4c and4d) algorithms require more than 100 iterations of optimization to get close to the best-known solution. For this reason, the horizontal lines concerning the evolution of SEGOKPLS+K is different than the horizontal lines of CO-BRA and COBYLA. From Figure 4, SEGOKPLS+K is the best algorithm on MOPTA08-12D followed by the COBRA algorithm. The SEGOKPLS+K is much better than the alternative algorithms and its progress is very fast. Figures 4e and 4f show rapid convergence of the SEGOKPLS+K algorithm for 4 runs but 1 run met some difficulties, given by the green curve, and remains constant until the 30 th iteration before converging to the best-known solution. Nevertheless, these results were still much better than the results given by the COBRA and COBYLA algorithms. COBRA performs reasonably well on MOPTA08-12D. In fact, the COBRA algorithm requires 193 iterations in the worst case for finding the best-known solution, whereas, COBYLA finds the best-known solution for only two runs after 411 iterations in the worst case. Moreover, two runs converge to solutions with objective values 223.06 and 222.26. In addition, the COBYLA algorithm fails to find the best-known solution for 1 run and remains on the objective value 236.96 with a sum of violated functions equals to 6.77.

Hence, for this relatively low-dimensional case, the SEGOKPLS+K algorithm shows a very good performance and seems to be a very competitive method among optimization methods existing in the literature.

Comparison on the MOPTA08 benchmark with 50 dimensions

To perform SEGOKPLS+K optimizer on higher dimensional problem, we consider the same test case with 50 design variables. As for 12D test case, Table 5 gives the total number of calls and the objective value of the best feasible point from the 5 runs performed. Figure 5 provides the evolution of the objective function with the associated best feasible point for the MOPTA08-50D problem. In this case, we use 63 iterations of optimization for SEGOK-PLS+K whereas 500 iterations are used for both COBYLA and COBRA. All optimization algorithms search to reach the best-known solution starting from different latin hypercube design of size 51. Figures 5e and5f show a good performance of the SEGOKPLS+K algorithm. In fact, 4 runs rapidly converge near the best-known solution before the 23 th iteration. Only 1 run remains stable on the objective function value 261.33 during 49 iterations of optimization before converging to the bestknown solution, that costs more iterations before converging. This leads to fix 63 iterations of optimization for finding the best-known solution that is 222.22. Indeed, the total number of calls to expensive black-box function (size of the initial design of experiments + number of iterations of optimization) is equal to 114 that is slightly greater than 2d. To optimize a function of 50 dimensions and 68 constraint functions using that total budget is an important improvement in the area of surrogate-based optimization, specially for high-dimensional and expensive black-box optimization problems.

Figures 5a and5b provide the evolution of the best objective solution with the associated sum of violated constraints performed by COBYLA. The COBYLA algorithm does not perform well on the MOPTA08-50D problem. In fact, the solutions, found by COBYLA after the 500 th iteration from all runs, do not respect the total number of constraint functions. The sum of violated constraints of the solution from all runs are equal to 0.007, 0.35, 3.76, 6.76 and 8.72 for an objective values which are equal to 238.15, 247.42, 271.68, 286.67 and 274.74, respectively. Thus, COBYLA is not really designed for high-dimensional expensive black-box functions.

The numerical results obtained by COBRA are given on Figures 5c and5d. For all runs, COBRA reaches feasible solutions detailed as follows: after the 500 th iteration, the objective values of 4 runs are equal to 222.52, 222.89, 222.96 and 223.27, and the remaining run finds the best-known solution after 398 iterations.

To summarize the comparison of this test case, the optimization with the SEGOKPLS+K algorithm can reach the best-known solution for all runs, that means SEGOKPLS+K is less sensitive to the distribution of sampling points than the alternative methods. Furthermore, SEGOKPLS+K rapidly finds the solution using very few calls to the expensive black-box functions. Therefore, SEGOKPLS+K is a very competitive optimization algorithm among existing optimization algorithms.

Conclusions

This paper introduced the SEGOKPLS and SEGOKPLS+K algorithms adapted to high-dimensional constrained surrogate based optimization methods using expensive black-box functions. Both combine the iterative optimization algorithm SEGO and the KPLS(+K) models. Moreover, SEGOKPLS(+K) aim to rapidly handle high-dimensional optimization problems through a good management of the budget available, which is represented by a number of calls of the expensive true functions. The key improvement of this method is the use of the KPLS(+K) models and the local infill sampling criterion WB2, which they are suitable for high-dimensional problems (up to 50 dimensions). Furthermore, note that the SEGOKPLS(+K) algorithms treat each constraint individually instead of gathering them into one penalty function. We used analytic and an automotive test cases for comparing the SEGOK-PLS(+K) algorithms with many existing optimization methods. SEGOK-PLS(+K) outperform the alternative methods including COBRA and COBYLA, in particular on the MOPTA-12D and MOPTA-50D problems. Moreover, SEGOKPLS+K is able to reach the best-known solution for the MOPTA-12D and MOPTA-50D problems in much less expensive calls than either COBYLA or COBRA.

An interesting direction for future work is to use classical preconditioning methods to handle problems with more than 50 dimensions, or to constraint SEGOKPLS(+K) to respect some conditions for adding new points into the design of experiments to avoid a bad conditioning of the covariance matrix.

A Formulation of the analytical test functions

This section describes the analytical test problems used in this study. Some of the constraint functions are modified by either dividing by a positive constant or applying a logarithmic transformation without changing the feasible space. The plog transformation was introduced in (Regis and Shoemaker 2013) and it is given by

plog(x) = log(1 + x) if 0 ≤ x -log(1 -x) if x ≤ 0 (18)
The function g02 [START_REF] Michalewicz | Evolutionary Algorithms for Constrained Parameter Optimization Problems[END_REF] min - The function g03 [START_REF] Michalewicz | Evolutionary Algorithms for Constrained Parameter Optimization Problems[END_REF] min -plog

(√ d) d d i=1 xi s.t. g1 = d i=1 x 2 i -1 ≤ 0 for i = 1, • • • , d, 0 ≤ xi ≤ 1. (20
)
The function g04 [START_REF] Michalewicz | Evolutionary Algorithms for Constrained Parameter Optimization Problems[END_REF] For u = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 -0.0022053x3x5, v = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x 2 3 , and w = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4, we have

) 2 -(x2 -2) 2 -(x3 -1) 2 -(x4 -4) 2 -(x5 -1) 2 -(x6 -4) 2 s.t. g1 = 2-x 1 -x 2 2 ≤ 0 g2 = x 1 +x 2 -6 6 ≤ 0 g3 = -x 1 +x 2 -2 2 ≤ 0 g4 = x 1 -3x 2 -2 2 ≤ 0 g5 = 4-(x 3 -3) 2 -x 4 4 ≤ 0 g6 = 4-(x 5 -3) 2 -x 6 4 ≤ 0 0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 4, 1 ≤ x3 ≤ 5, 0 ≤ x4 ≤ 6, 1 ≤ x5 ≤ 5, 0 ≤ x6 ≤ 10. (29
)
The SR7 function [START_REF] Floudas | A Collection of Test Problems for Constrained Global Optimization Algorithms[END_REF] For A = 3.3333x 2 3 + 14.9334x3 -43.0934, B = x 2 6 + x 2 7 , C = x 3 6 + x 3 7 , D = x4x 2 6 + x5x 2 7 , A1 = [(745 x 4 x 2 x 3) 2 + 16.91e 6] 0.5 , B1 = 0.1x 3 6 , A2 = [(745 x 5 x 2 x 3) 2 + 157.5e 6] 0.5 et B2 = 0.1x 3 7 , we have min 0.7854x1x 2 2 A -1.508x1B + 7.477C + 0.7854D s.t. g1 = ≤ 0 g10 = 1.9+1.5x 6 -x 4 1.9 ≤ 0 g11 = 1.9+1.1x 7 -x 5 1.9 ≤ 0 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4, x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5 ≤ x7 ≤ 5.5.

(30)

B The indexes of the retained variables for the MOPTA08 problem

The choice of the fixed variables is done in a random way. The indexes of the used variables during the optimization are: -12 dimensions: 2, 42, 45, 46, 49, 51, 60, 66, 72, 78, 82 and 95. -50 dimensions: 2, 3, 6, 11, 13, 14, 15, 19, 21, 22, 24, 29, 30, 31, 33, 34, 36, 40, 42, 45, 46, 49, 51, 53, 54, 56, 57, 60, 62, 63, 65, 66, 67, 71, 72, 76, 77, 78, 81, 82, 85, 86, 92, 93, 95, 96, 101, 103, 121 and 124.

Fig. 1 :

 1 Fig. 1: Using a surrogate-based optimization 'two-stage' method.

 (a) Mean of the objective function for each 10 iterations. (b) Mean of the sum of violated constraints for each 10 iterations.

Fig. 3 :

 3 Fig. 3: MOPTA08 test case with 124 input variables. Left panel: Mean of the best feasible objective occurring for 10 successive iterations. Right panel: Mean of the sum of violated constraints occurring for 10 successive iterations.

 (a) Evolution of the best objective function found by COBYLA method. (b) Evolution of the best sum of violated constraints found by COBYLA method. (c) Evolution of the best objective function found by COBRA method. (d) Evolution of the best sum of violated constraints found by COBRA method.(e) Evolution of the best objective function found by the SEGOKPLS+K algorithm.(f) Evolution of the best sum of violated constraints found by the SEGOKPLS+K algorithm.

Fig. 4 :

 4 Fig. 4: 5 runs are performed (associated to one color). Left: Evolution of the objective function corresponding to the best feasible point performed by COBYLA, COBRA and SEGOKPLS+K optimization methods on MOPTA08-12D. Right: Evolution of the sum of violated constraints performed by COBYLA, COBRA and SEGOKPLS+K optimization methods on MOPTA08-12D. 500 iterations of optimization are used for both COBYLA and COBRA methods and 39 iterations of optimization are used for SEGOKPLS+K.

 (a) Evolution of the best objective function found by COBYLA method. (b) Evolution of the best sum of violated constraints found by COBYLA method. (c) Evolution of the best objective function found by COBRA method. (d) Evolution of the best sum of violated constraints found by COBRA method.(e) Evolution of the best objective function found by the SEGOKPLS+K algorithm.(f) Evolution of the best sum of violated constraints found by the SEGOKPLS+K algorithm.

Fig. 5 :

 5 Fig. 5: 5 runs are performed (associated to one color). Left: Evolution of the objective function corresponding to the best feasible point performed by COBYLA, COBRA and SEGOKPLS+K optimization methods on MOPTA08-50D. Right: Evolution of the sum of violated constraints performed by COBYLA, COBRA and SEGOKPLS+K optimization methods on MOPTA08-50D. 500 iterations of optimization are used for both COBYLA and COBRA methods and 63 iterations of optimization are used for SEGOKPLS+K.

 i = 1, • • • , d, 0 ≤ xi ≤ 10. (19)

 8356891x1x5 + 37.293239x1 -40792.141 s.t.g1 = -u ≤ 0 g2 = u -92 ≤ 0 g3 = -v + 90 ≤ 0 g4 = v -110 ≤ 0 g5 = -w + 20 ≤ 0 g6 = w -25 ≤ 0 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, for i = 3, 4, 5, 27 ≤ xi ≤ 45. . ≤ x1 ≤ 10, for i = 2, 3, 4, 0.1 ≤ xi ≤ 10. (26)The gas transmission compressor design (GTCD)[START_REF] Beightler | Applied geometric programming[END_REF]≤ 50, 1 ≤ x2 ≤ 10, 20 ≤ x3 ≤ 50, 0.1 ≤ x4 ≤ 60. g1 = -x1 + 0.0193x3 ≤ 0 g2 = -x2 + 0.00954x3 ≤ 0 g3 = plog(-πx 2 3 x4 -4 3 πx 3 3 + 1296000) ≤ 0 0 ≤ x1, x2 ≤ 1, 0 ≤ x3 ≤ 50, 0 ≤ x4 ≤ 240. (28)The Hesse function[START_REF] Hesse | A heuristic search procedure for estimating a global solution of nonconvex programming problems[END_REF] min -25(x1 -2

Table 1 :

 1 al 2010), -NOMAD for nonlinear optimization by mesh adaptive direct search that uses DACE surrogates (NOMADm-DACE)[START_REF] Abramson | Convergence of mesh adaptive direct search to second-order stationary points[END_REF][START_REF] Audet | Mesh adaptive direct search algorithms for constrained optimization[END_REF]), -GLOBALm algorithm[START_REF] Sendin | Extensions of a multistart clustering algorithm for constrained global optimization problems[END_REF] which is a multistart clustering algorithm and using two types of local solvers, Constrained optimization test problems. d is the number of input variables and m is the number of inequality constraints. The formulations and references of these functions are given in the appendix A.

	Name of the d	m Bound constraints	True or best
	function				known minimum
	g02	10 2	[0, 10] 10	-0.4
	g03	20 1	[0, 1] 20	-0.69
	g04	5	6	[78, 102] × [33, 45] × [27, 45] 3	-30655.539
	g05	4	5	[0, 1200] 2 × [-0.55, 0.55] 2	5126.5
	g07	10 8	[-10, 10] 10	24.3062
	g09	7	4	[-10, 10] 7	680.6301
	g10	8	6	[10 2 , 10 4] × [10 3 , 10 4] × [10, 10 3] 5	7049.3307
	WB4	4	6	[0.125, 10] × [0.1, 10] 3	1.725
	GTCD4	4	1	[20, 50] × [1, 10] × [20, 50] × [0.1, 60] 2964893.85
	PVD4	4	3	[0.1] 2 × [0, 50] × [0, 240]	5804.45
	Hesse	6	6	[0, 5] × [0, 4] × [1, 5] × [0, 6] × [1, 5]	-310
				×[0, 10]	
	SR7	7	11 [2.6, 3.6] × [0.7, 0.8] × [17, 28]	2994.42
				×[7.3, 8.3] 2 × [2.9, 3.9] × [5, 5.5]	

Table 2 :

 2 Statistics on the best feasible objective value for 30 repetitions obtained by optimization algorithms after 100 evaluations. Results in brackets represent: on the left, the SEGOKPLS results, on the right, best results given by (Regis 2014). The best results are written in bold. Nevertheless, the type of Kriging used is not available. The MOPTA08 problem contains 124 input variables normalized to [0, 1]. Thus, this problem is considered large-scale in the area of a surrogate-based expensive black-box optimization.

		Name of the function (best known value)
		Hesse (-310)	PVD4 (5804)
	best	(-310.00, -310.00 (GlobalSearch))	(5848.66, 5807.79 (GlobalSearch))
	worst	(-310.00, -261.82 (COBRA-Global))	(6179.71, 7669.36 (ConstrLMSRBF))
	median	(-310.00, -297.87 (COBRA-Global))	(5959.71, 6303.98 (Cobra-Local))
	mean	(-310.00, -296.25 (COBRA-Global))	(5960.54, 6492.45 (Cobra-Local))
	std error	4.90e -5	75.66
		SR7 (2994.42)	GTCD4 (2964894)
	best	(2994.42, 2994.42 (NOMADm-DACE))	(2977393, 2966625 (GlobalSearch))
	worst	(2994.42, 2994.69 (COBRA-Local))	(3189857, 3336814 (ConstrLMSRBF))
	median	(2994.42, 2994.66 (COBRA-Global))	(3078724, 3033081 (ConstrLMSRBF))
	mean	(2994.42, 2994.67 (COBRA-Local))	(3084897, 3087779 (ConstrLMSRBF))
	std error	2.69e -4	55865
		WB4 (1.725)	g02 (-0.40)
	best	(2.22, 2.22 (NOMADm-DACE))	(-0.30, -0.33 (ConstrLMSRBF))
	worst	(2.88, 3.25 (ConstrLMSRBF))	(-0.19, -0.16 (GLOBALm-SOLNP))
	median	(2.22, 2.56 (COBRA-Local))	(-0.23, -0.20 (ConstrLMSRBF))
	mean	(2.35, 2.61 (ConstrLMSRBF))	(-0.23, -0.21 (NOMADm-DACE))
	std error	2.08e -6	0.04
		g03 (-0.69)	g04 (-30665.54)
	best	(-0.69, -0.64 (COBRA-Local))	(-30665.54, -30665.54 (NOMADm-DACE))
	worst	(0.00, 0.00 (COBRA-Local))	(-30665.54, -30664.58 (COBRA-Local))
	median	(0.00, -0.01 (COBRA-Global))	(-30665.54, -30665.15 (COBRA-Local))
	mean	(-0.15, -0.12 (COBRA-Global))	(-30665.54, -30665.07 (COBRA-Local))
	std error	0.23	5.94e -4
		g05 (5126.50)	g07 (24.30)
	best	(5126.50, 5126.50 (COBRA-Local))	(24.30, 24.48 (COBRA-Local))
	worst	(5126.50, 5126.53 (COBRA-Local))	(24.30, 28.60 (COBRA-Global))
	median	(5126.50, 5126.50 (GlobalSearch))	(24.30, 25.28 (COBRA-Global))
	mean	(5126.50, 5126.51 (COBRA-Local))	(24.30, 25.35 (COBRA-Global))
	std error	1.11e -5	5.51e -6
		g09 (680.63)	g10 (7049.33)
	best	(920.51, 702.04 (ConstrLMSRBF))	(8210.08, 7818.53 (ConstrLMSRBF))
	worst	(1861.88, 3131.82 (ConstrLMSRBF))	(11285, 13965.60 (ConstrLMSRBF))
	median	(1198.47, 1308.49 (ConstrLMSRBF))	(9957.84, 9494.06 (ConstrLMSRBF))
	mean	(1305.15, 1413.85 (ConstrLMSRBF))	(9702.63, 10018.33 (ConstrLMSRBF))
	std error	302.2	1647
	4 MOPTA08 test problems	
	MOPTA08 is an automotive problem (Jones 2008) available as a Fortran code
	at "http://www.miguelanjos.com/jones-benchmark". It is an optimization

problem for minimizing the mass of a vehicle (1 objective function) under 68 inequality constraints which are well normalized. One run of a real simulation of the MOPTA08 problem takes about 1 to 3 days. However, one simulation with the Fortran code is immediate since it is a "good" approximation of the real version using the Kriging models.

Table 3 :

 3 MOPTA08-12D -Total number of calls (value for each of the 5 runs) of the black box function to reach the optimum with SEGOKPLS and SEGOKPLS+K approaches.

	MOPTA08-12D SEGOKPLS SEGOKPLS+K
	Trial 1	53	25
	Trial 2	52	34
	Trial 3	52	28
	Trial 4	36	29
	Trial 5	38	32

Table 5 :

 5 MOPTA08-50D -Total number of calls, the initial design of experiments (51 points) + number of iterations, for the 5 runs to reach the optimum with the COBYLA, COBRA and SEGOKPLS+K methods. The objective value of the best feasible point is given in brackets.

		Trial 1	Trial 2	Trial 3	Trial 4	Trial 5
	COBYLA	551	551	551	551	551
		-	-	-	-	-
	COBRA	551	449	551	551	551
		(223.89) (222.22) (222.27) (222.52) (222.96)
	SEGOKPLS+K	101	91	114	93	109
		(222.22) (222.22) (222.22) (222.22) (222.22)

The function g05 [START_REF] Michalewicz | Evolutionary Algorithms for Constrained Parameter Optimization Problems[END_REF] min 3x1 + e -6 x 3 1 + 2x2 + 2e (

The function g07 [START_REF] Michalewicz | Evolutionary Algorithms for Constrained Parameter Optimization Problems[END_REF] min

The function g09 [START_REF] Michalewicz | Evolutionary Algorithms for Constrained Parameter Optimization Problems[END_REF]

The function g10 [START_REF] Michalewicz | Evolutionary Algorithms for Constrained Parameter Optimization Problems[END_REF]

The welded beam function (WB4) [START_REF] Kalyanmoy | An efficient constraint handling method for genetic algorithms[END_REF] For P = 6000, L = 14, E = 30e 6 , G = 12e 6 , tmax = 13600, smax = 30000, xmax = 10, dmax = 0.25, M = P (L + x 2 2), R = 0.25(x 2 2 + (x1 + x3) 2), J =