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Nowadays, Rate-Distortion Optimization (RDO) is commonly used in hybrid video coding to maximize coding efficiency. Usually, the rate distortion tradeoff is explicitly computed in offline encoder implementations whereas R(D) model are used in live encoders to select the best decisions at a lower computational cost. For sake of simplicity, this (mathematical) modelling is often performed for each coding unit (CU) individually and independently, obliterating the spatial or temporal dependency between CUs. In this paper, we provide a new spatio-temporal algorithm to compute local quantizers, based on a theoretical framework able to describe the temporal distortion propagation from an R-D standpoint. In particular, we model the temporal distortion propagation making possible the retro accumulations of any (spatial) psycho-visually weighted distortion onto reference images. Using the R(D) Shannon bound, its high bitrate approximation, and a Lagrange optimization, analytical solutions are obtained for the local quantizers and the Lagrange multiplier. The proposed algorithm shows -4.4% BD-BR SSIM gains in average over state-of-the art algorithm in HEVC, using the same SSIM-based psycho-visual function.

I. INTRODUCTION

Rate-distortion optimization (RDO) [START_REF] Gj Sullivan | Rate-distortion optimization for video compression[END_REF] aims to minimize the distortion D subject to a rate constraint R. Lagrange multiplier method is usually used to remove the constraint on R [START_REF] Gj Sullivan | Rate-distortion optimization for video compression[END_REF], with λ the Lagrange multiplier trading between D and R. RDO ultimately minimizes the R-D cost function 𝐽 defined as:

 𝐽 = 𝐷 + 𝜆 × 𝑅 
Video encoders based on MPEG video compression standards, such as HEVC [2], are block-based video coding systems which involves several processes (prediction, transformation, quantization, entropy coding) applied sequentially for each block of pixels within a sequence of images. These block-wise processes rely on the selection of a set of coding parameters per block. The set of coding parameters 𝑝 𝑖 ⃗⃗⃗ for a given block i is usually optimized to minimize 𝐽, the R-D cost function, where 𝐷 measures the pixel-wise distance (e.g. L2 norm) between source and compressed signals. 𝑅 is the amount of bits from quantized residues and various syntax data entropy coded. For sake of simplicity RDO is commonly performed for each block or CU individually and independently, obliterating the spatial or temporal dependency between CUs. Inter-CU dependencies, such as temporal distortion propagation, are often not considered.

However, several studies have tried to model coding dependencies in order to improve the global coding efficiency. Many of these studies [START_REF] Li | Inter-Dependent rate-distortion modelling for video coding and its application to rate control[END_REF][START_REF] Fiengo | Rate Allocation in Predictive Video Coding Using a Convex Optimization Framework[END_REF] focused on Rate-Control (RC) algorithms. In [START_REF] Li | Inter-Dependent rate-distortion modelling for video coding and its application to rate control[END_REF], authors approximate an Inter-frame dependent R-D model in order to optimize frame quantizers for RC purpose. Frame quantizers and model parameters are updated on-the-fly using a sliding-window at the coding stage. Fiengo et al. [START_REF] Fiengo | Rate Allocation in Predictive Video Coding Using a Convex Optimization Framework[END_REF] express distortion as a convex function of all frame rates. Using multiple-pass encoding to estimate model parameters and solving a convex optimization problem, the solution ends up close to the global optimum, but is intractable for real-time application.

In [START_REF] Li | Lagrangian Multiplier Adaptation for Rate-Distortion Optimization with Inter-Frame Dependency[END_REF], authors assume that distortion of one CU induces a bitrate increase when this unit is used as reference, due to a motion-compensated prediction error increase. By modelling this bitrate increment, authors propose a new RDO formulation, which results in scaling the 𝜆 parameter. However, only the direct dependency between the current CU and its reference (depth 1) is considered. In [START_REF] Gao | Hierarchical Temporal Dependent Rate-Distortion Optimization for Low-Delay Coding[END_REF], a similar approach is extended for multiple-reference motion prediction and compensation, but again it only considers a "one-depth" dependency between blocks. A computationally complex proposal was made by Winken et al. [7]. This solution describes the dependencies between all coefficients levels after DCT/DST transform, for a given set of frames. It relies onto a two passes encoding process. Coefficients levels dependencies result into a multi-frame transform coefficient optimization problem, solved iteratively in order to minimize the global R-D cost over all frames. In intra coding, benefits of inter-block consideration for intra prediction mode optimization are experimented in [START_REF] Bichon | Inter-Block Dependencies Consideration for Intra Coding in H.264/AVC and HEVC standards[END_REF].

Adaptive quantization based on CUs importance within a GOP is introduced and widely discussed in [START_REF] Garrett-Glaser | A novel macroblock-tree algorithm highperformance optimization of dependent video coding in H264/AVC[END_REF]. The base for the propagation of CUs inter dependencies with a non-limited (temporal) depth is laid. A well felt intuitive propagation mechanism is described based on pragmatic considerations. Consequently, the activation of the so-called "MB-Tree" algorithm results in an improvement in compression efficiency. However, the intuitive essence of the MB-Tree (or equivalently CU-Tree) algorithm makes complex any modifications for further improvements and some weaknesses can be pointed out:

 The nature of propagated information is debatable.

 Rate control considerations are nested with the design making R-D gains evaluations difficult.

 Only the "temporal local quantization" is based on the propagation technique: spatial and temporal local quantization contributions are combined as a weighted sum to get a final result.

 The strength of delta quantization, which is a scale factor, is a parameter to be defined by the user.

In this paper, we provide an improved algorithm to compute local quantizers, based on a theoretical framework able to describe the distortion propagation from an R-D standpoint, separated from rate control considerations and not requiring any ad-hoc spatial-temporal mix. The final goal is to get an analytical solution for the local quantizers that can be used in real time. In particular, we model the temporal distortion propagation making possible the retro accumulations of any psycho-visually weighted distortion onto reference images. Using the R(D) Shannon bound, its high bitrate approximation, and a Lagrange optimization, analytical solutions are obtained for local quantizers and the Lagrange multiplier. The proposed algorithm shows -4.4% BD-BR SSIM gains in average over state-of-the art algorithm in HEVC, using the same SSIM-based psycho-visual function.

The paper is organized as follows. In section II, the R-D local quantization optimization problem is stated, along with the particular distortion and rate constraint considered. Section III gives a description of the temporal dependencies between CUs and leads to the introduction of the proposed temporal distortion propagation model. Formulas of the forward temporal distortion and the backward recursive propagation of the distortion derivative are exhibited. The analytical solution to the global minimization is then reported in section IV. Experimental results, demonstrating the benefits of the proposed model and its theoretical framework are exhibited in section V. Finally, conclusions are given in section VI.

II. LOCAL QUANTIZATION OPTIMIZATION PROBLEM

In this paper, the only considered variables to optimize are the local quantizers. In order to introduce a psycho-visual importance to each distortion (typically based on L2 norm), a psycho-visual weighting factor 𝜓 is introduced. The 𝜓 function can be any psycho-visual function that modeled HVS, for instance spatial masking based on local variance, average luminance or contrast [START_REF] Garrett-Glaser | Variance-based adaptive quantization[END_REF][START_REF] Winkler | Digital Video Quality: Vision Models and Metrics[END_REF][START_REF] Rimac-Drlje | Spatial Masking and Perceived Video Quality in Multimedia Applications[END_REF]. The objective is to find the set of local quantizers 𝑞 𝑖 𝑡 of a group of pictures (GOP) able to minimize the psycho-visually weighted distortion 𝐷 𝑇𝑜𝑡 = ∑ ∑ 𝜓 𝑖 𝑡 𝐷 𝑖 𝑡

𝑖 𝑡 𝑡

, where 𝑡 is the temporal index, and 𝑖 the block or coding unit (CU) index in the image. 𝑁 is the total number of CUs within an image, while 𝑇 is the length of the GOP. A constraint over the global rate 𝑅 𝑇𝑜𝑡 = ∑ ∑ 𝑅 𝑖 𝑡 𝑖 𝑡 𝑡 is added to avoid getting a trivial solution with all the quantizers 𝑞 𝑖 𝑡 set to the minimum value.

The minimization problem is set as:

 {𝑞 𝑘 𝜏 } 𝑘 𝜏 ∈ 𝐼𝑑𝑥 = 𝐴𝑅𝐺𝑀𝐼𝑁(𝐷 𝑇𝑜𝑡 ) 𝑠. 𝑡. ∑ ∑ 𝑅 𝑖 𝑡 𝑖 𝑡 𝑡 = 𝑅 𝑇𝑜𝑡  
where 𝐼𝑑𝑥 is the complete set of indexes in the GOP sequence: 𝐼𝑑𝑥 = {𝑘 𝜏 ∖ 𝑘 ∈ {1, 𝑁}, 𝜏 ∈ {0, 𝑇 -1}}.

Thanks to the Lagrange multiplier method, this problem is re-written as follow:

{𝑞 𝑘 𝜏 } 𝑘 𝜏 ∈ 𝐼𝑑𝑥 ∪ {𝜆 * } = 𝐴𝑅𝐺𝑀𝐼𝑁 (𝐷 𝑇𝑜𝑡 + 𝜆 (∑ ∑ 𝑅 𝑖 𝑡 𝑖 𝑡 𝑡 -𝑅 𝑇𝑜𝑡 ) ⏟ 𝐽 𝑇𝑜𝑡 ) 
To solve this problem, the ideal situation would have been to dispose of motion prediction information linking blocks to its references and mode decisions used at the encoding stage, in order to build the tree of dependencies. It would require a complex two passes approach. Besides, motion estimation is an uncertain process, so prediction errors are also uncertain, as well as decided intra/inter/skip blocks and encoding modes. Consequently, instead of a two passes algorithm, a coarse probabilistic model is proposed to emulate the encoder behavior similar to [START_REF] Garrett-Glaser | A novel macroblock-tree algorithm highperformance optimization of dependent video coding in H264/AVC[END_REF].

III. TEMPORAL DISTORTION PROPAGATION MODEL

At a CU level, the encoding can be modeled as the addition of a distortion onto the input signal, as the reconstruction process is not lossless. Of course, a part of this distortion is propagated on spatial CU neighbors and even if not considered in this document for brevity reasons, it can be treated by the same propagation approach. For the temporal propagation, two weights are of major interest:  𝑟 the proportion of absorbed distortion considered as proportional to the surface ratio of CU copied by the motion compensation.

 𝑝 the INTER
Several inter prediction cases (predictive or bi-predictive picture, with or without multiple references) are gathered with a unique propagation formula (𝑟 𝑗 𝑡-1 ,𝑖 𝑡 and 𝑅𝑒𝑓(𝑖 𝑡 )) are adjusted to cover the various possible frame types):

 𝜂 𝑖 𝑡 = 𝑝 𝑖 𝑡 ∑ 𝑟 𝑗 𝑡 𝑟𝑒𝑓 ,𝑖 𝑡 • 𝐷 𝑗 𝑡 𝑟𝑒𝑓 𝑗 𝑡 𝑟𝑒𝑓 𝜖 𝑅𝑒𝑓(𝑖 𝑡 )  
where  𝑡 is the temporal index (frame number), 𝑖 𝑡 is the CU index number 𝑖 in the frame numbered 𝑡.

 𝑅𝑒𝑓(𝑖 𝑡 ) = {𝑗 𝑡 𝑟𝑒𝑓1 , … 𝑗 𝑡 𝑟𝑒𝑓𝑘 } is the set of reference CU covered by the pixels used by the motion compensation.

 𝑗 𝑡 𝑟𝑒𝑓 is one particular index belonging to 𝑅𝑒𝑓(𝑖 𝑡 ).

 𝑝 𝑖 𝑡 is the INTER probability of the CU numbered 𝑖 𝑡 .

 𝑟 𝑗 𝑡 𝑟𝑒𝑓 ,𝑖 𝑡 is the pixel surface ratio involved in the motion compensation to go from pixels of 𝑗 𝑡 𝑟𝑒𝑓 to 𝑖 𝑡 .

 𝐷 𝑖 𝑡 is the CU distortion number 𝑖 in the frame numbered 𝑡.

 𝜂 𝑖 𝑡 is the projected distortion (from the reference CUs) on the 𝑖 𝑡ℎ CU in the frame numbered 𝑡.

The distortion of the 𝑖 𝑡ℎ CU in the frame numbered 𝑡 is then the summation of its own distortion and the projected one:

 𝐷 𝑖 𝑡 = 𝜂 𝑖 𝑡 + 𝑑 𝑖 𝑡  
Where 𝑑 𝑖 𝑡 is the intrinsic distortion of the 𝑖 𝑡ℎ CU in the frame numbered 𝑡. 𝑑 𝑖 𝑡 depends on its quantizer 𝑞 𝑖 𝑡 . The past distortions do not depend on 𝑞 𝑖 𝑡 due to the referencing and the propagation mechanisms. 𝑞 𝑖 𝑡 only impacts future distortions made on next coded CUs. Consequently, in terms of optimization, only the impact on future distortions has to be taken into account, and without loss of generality, we can start from current image and try to minimize the impact of the distortion over a stack of 𝑇 images.

A. Forward temporal distortion

One "next" (in coding order) CU is partially impacted (according to its motion prediction information and its INTER probability) by the distortion produced by the "current" CU. Generalizing the propagation to several images leads to successively accumulate distortions along the GOP, such the total distortion formula 𝐷 𝑇𝑜𝑡 is:

∑ (∑ 𝜓 𝑖 𝑡 𝑖 𝑡 (𝑝 𝑖 𝑡 ∑ 𝑟 𝑖 𝑡-1 ,𝑖 𝑡 𝑖 𝑡-1 𝜖 𝑅𝑒𝑓(𝑖 𝑡 ) (𝑝 𝑖 𝑡-1 ∑ 𝑟 𝑖 𝑡-2 ,𝑖 𝑡-1 … 𝑖 𝑡-2 𝜖 𝑅𝑒𝑓(𝑖 𝑡-1 ) 𝑇-1 𝑡=0 … (… 𝑝 𝑖 1 ∑ 𝑟 𝑖 0 ,𝑖 1 𝑑 𝑖 0 𝑖 0 𝜖 𝑅𝑒𝑓(𝑖 1 ) + 𝑑 𝑖 1 ) + ⋯ ) +𝑑 𝑖 𝑡 ))   
We then introduce the derivative of the total distortion with the hypothesis that the distortion attached to a spatial position only depends on its local quantizer and that the bits produced (rate) only depend on its local quantizer. some mathematical development, we get:

𝜕𝐷 𝑇𝑜𝑡 𝜕𝑞 𝑘 𝜏 = 𝜕𝑑 𝑘 𝜏 𝜕𝑞 𝑘 𝜏 ( 𝜓 𝑘 𝜏 + ∑ ∑ ∑ … ∑ 𝑃 𝑖 𝜏+1 𝜖 𝑅𝑒𝑓(𝑖 𝜏+2 ) 𝑖 𝑡-1 𝜖 𝑅𝑒𝑓(𝑖 𝑡 ) 𝑖 𝑡 𝑇-1 𝑡=𝜏+1 ⏟ 𝑉(𝑘 𝜏 , 𝑇) )    with 𝑃 = 𝜓 𝑖 𝑡 𝑝 𝑖 𝑡 𝑟 𝑖 𝑡-1 ,𝑖 𝑡 𝑝 𝑖 𝑡-1 𝑟 𝑖 𝑡-2 ,𝑖 𝑡-1 … 𝑟 𝑖 𝜏+1 ,𝑖 𝜏+2 𝑝 𝑖 𝑡+1 𝑟 𝑘 𝜏 ,𝑖 𝑡+1 .

B. Backward temporal distortion derivative

The distortion propagation can be described by a particular multi-layer perceptron [START_REF] Rosenblatt | Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms[END_REF], where each image is a layer and each CU is a linear neuron. Probabilities and pixel surface ratios are the weights. It can also be shown that the value of 𝑉(𝑘 0 , 𝑇) can be obtained directly by the backpropagation [START_REF] Ruineihart | Learning Internal Representation by Error Propagation[END_REF] of the 𝜓 𝑘 𝜏 values along the GOP onto the first image 0. The recursion to apply is defined by:

 𝑈 𝑘 𝜏-1 = ∑ 𝑝 𝑖 𝜏 𝜌 𝑖 𝜏-1 ,𝑖 𝜏 𝑈 𝑖 𝜏 𝑖 𝜏 + 𝜓 𝑘 𝜏-1 𝑎𝑛𝑑 𝑈 𝑛 𝑇-1 = 𝜓 𝑛 𝑇-1   with 𝜌 𝑗 𝑡-1 ,𝑖 𝑡 = { 0 𝑖𝑓 𝑗 𝑡 ∉ 𝑅𝑒𝑓(𝑖 𝑡 ) 𝑟 𝑗 𝑡-1 ,𝑖 𝑡 𝑖𝑓 𝑗 𝑡-1 ∈ 𝑅𝑒𝑓(𝑖 𝑡 )
More generally, all along the propagation:

 𝑈 𝑘 𝜏 = 𝑉(𝑘 𝜏 , 𝑇) 
𝑈 𝑘 𝜏 is an accumulation factor that is dependent on neither the distortion nor the rate. It is just a particular value weighting the distortion derivative. 

IV. ANALYTICAL SOLUTON

A. Computation of the Lagrangian

The problem described by (3) consists in finding the minimum of expression 𝐽 𝑇𝑜𝑡 . The necessary condition to find the minimum of 𝐽 𝑇𝑜𝑡 is determined by the condition of all the derivatives equal to zero ∀𝑘 ∈ {1, … , 𝑁}, ∀𝜏 ∈ {0, … , 𝑇 -1}:

 𝜕𝐽 𝑇𝑜𝑡 𝜕𝑞 𝑘𝜏 = 𝜕𝐷 𝑇𝑜𝑡 𝜕𝑞 𝑘𝜏 + 𝜆 𝜕 𝜕𝑞 𝑘𝜏 ∑ ∑ 𝑅 𝑖 𝑡 𝑖 𝑡 𝑇-1 𝑡=0 = 0 
We assume the simplified hypothesis of independence of rates:

 𝜕𝑅 𝑖 𝑗 𝜕𝑞 𝑖 ′ 𝑗 ′ = 𝜕𝑅 𝑖𝑗 𝜕𝑞 𝑖 𝑗 𝛿 (𝑖-𝑖 ′ ,𝑗-𝑗′)  
We consequently obtain the total rate derivative: Then simplifying ( 14) and combining with (5):

 𝜆 * = -𝑈 𝑘 𝜏 ( 𝜕𝑅 𝑘𝜏 𝜕𝑑 𝑘𝜏 ) -1 = -𝑈 𝑘 𝜏 ( 𝜕𝑅 𝑘𝜏 𝜕𝐷 𝑘𝜏 ) -1

 

Introducing the R-D Shannon bound, with 𝜎 𝑘 𝜏 2 the variance of the residual signal for the block 𝑘 𝜏 , 𝑐 a constant depending on the statistical properties of the transformed coefficients [START_REF] Wiegand | Source Coding: Part I of Fundamentals of Source and Video Coding[END_REF]:

 𝑅 𝑘 𝜏 = - 1 2 𝑙𝑜𝑔 2 ( 𝐷 𝑘𝜏 𝑐•𝜎 𝑘𝜏 2 ) 
We deduce the optimal Lagrange multiplier:

 𝜆 * = 2 • 𝑙𝑛(2) • 𝑈 𝑘 𝜏 • 𝐷 𝑘 𝜏  

B. Computation of 𝑹 𝒌 𝝉

To simplify equation writings we define

𝜆 ′ = 𝜆 (2 • 𝑙𝑛(2)) ⁄  𝜆 ′ = 𝑈 𝑘 𝜏 • 𝐷 𝑘 𝜏 ⇒ 𝑙𝑜𝑔 2 (𝜆 ′ ) = 𝑙𝑜𝑔 2 (𝑈 𝑘 𝜏 • 𝐷 𝑘 𝜏 ) 
Summing on both side over all the CU of the GOP:

 𝑙𝑜𝑔 2 (𝜆 ′ ) = ∑ ∑ 𝑙𝑜𝑔 2 𝑖 𝑡 𝑇-1 𝑡=0 (𝑈 𝑖 𝑡 •𝐷 𝑖 𝑡 ) 𝑇•𝑁  
Combining ( 18) and ( 19) and separating the log of products:

 ∑ ∑ 𝑙𝑜𝑔 2 𝑖 𝑡 𝑇-1 𝑡=0 (𝑈 𝑖 𝑡 •𝐷 𝑖 𝑡 ) 𝑇•𝑁 = 𝑙𝑜𝑔 2 (𝑈 𝑘 𝜏 • 𝐷 𝑘 𝜏 ) 
At the other side, we compute the

2 𝑅 𝑇𝑜𝑡 𝑡•𝑁
based on the R-D Shannon bound and mix it with the previous equality:

2 𝑅 𝑇𝑜𝑡 𝑇•𝑁 = 2 𝑇•𝑁 ∑ ∑ 𝑅 𝑖 𝑡 𝑖 𝑡 𝑇-1 𝑡=0 = - ∑ ∑ 𝑙𝑜𝑔 2 (𝐷 𝑖 𝑡 ) 𝑖 𝑡 𝑇-1 𝑡=0 𝑇•𝑁 + ∑ ∑ 𝑙𝑜𝑔 2 (𝑐•𝜎 𝑖 𝑡 2 ) 𝑖 𝑡 𝑇-1 𝑡=0 𝑇•𝑁 ⏟ 𝑆ℎ𝑎𝑛𝑛𝑜𝑛 𝑏𝑜𝑢𝑛𝑑 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = -𝑙𝑜𝑔 2 (𝑈 𝑘 𝜏 • 𝐷 𝑘 𝜏 ) + ∑ ∑ 𝑙𝑜𝑔 2 𝑡 𝑇-1 𝑡=0 (𝑈 𝑖 𝑡 ) 𝑇•𝑁 ⏟ 𝑟𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔 - 1 𝑇•𝑁 ∑ ∑ 𝑙𝑜𝑔 2 (𝐷 𝑖 𝑡 ) 𝑖 𝑡 𝑇-1 𝑡=0  + ∑ ∑ 𝑙𝑜𝑔 2 (𝑐•𝜎 𝑖 𝑡 2 ) 𝑖 𝑡 𝑇-1 𝑡=0 𝑇•𝑁

 

Adding a null contribution 𝑙𝑜𝑔 2 (𝑐 • 𝜎 𝑘 𝜏 2 ) -𝑙𝑜𝑔 2 (𝑐 • 𝜎 𝑘 𝜏 2 ) to ( 21), we can exhibit 𝑅 𝑘 𝜏 :

𝑅 𝑘 𝜏 = 𝑅 𝑇𝑜𝑡 𝑇•𝑁 + 1 2 (𝑙𝑜𝑔 2 (𝑈 𝑘 𝜏 ) + 𝑙𝑜𝑔 2 (𝑐 • 𝜎 𝑘 𝜏 2 )  - ∑ ∑ 𝑙𝑜𝑔 2 𝑖 𝑡 𝑇-1 𝑡=0 (𝑈 𝑖 𝑡 ) 𝑇•𝑁 - ∑ ∑ 𝑙𝑜𝑔 2 (𝑐•𝜎 𝑖 𝑡 2 ) 𝑖 𝑡 𝑇-1 𝑡=0 𝑇•𝑁 ) 

C. Computation of ∆𝒒𝒑 𝒌 𝝉

From [START_REF] Yeo | SSIM-based adaptive quantization in HEVC[END_REF], and re-introducing the R-D Shannon bound in 𝑅 𝑘 𝜏 :

-𝑙𝑜𝑔 2 (𝐷 𝑘 𝜏 ) = 2 𝑅 𝑇𝑜𝑡 𝑇•𝑁 + 𝑙𝑜𝑔 2 (𝑈 𝑘 𝜏 )    - ∑ ∑ 𝑙𝑜𝑔 2 𝑖 𝑡 𝑇-1 𝑡=0 (𝑈 𝑖 𝑡 ) 𝑇•𝑁 - ∑ ∑ 𝑙𝑜𝑔 2 (𝑐•𝜎 𝑖 𝑡 2 ) 𝑖 𝑡 𝑇-1 𝑡=0 𝑇•𝑁  
Utilizing the high bitrate approximation:

𝐷 𝑘 𝜏 = (𝑞 𝑘 𝜏 ) 2 12 
; and the float quantizer to the quantification parameter relation

𝑞 𝑘 𝜏 = 2 𝑞𝑝 𝑘𝜏 -4 6 : 𝑙𝑜𝑔 2 (2 𝑞𝑝 𝑘𝜏 -4 6 ) 2 12 = 𝑞𝑝 𝑘𝜏 -4 3 -𝑙𝑜𝑔 2 (12)  = - 2 𝑅 𝑇𝑜𝑡 𝑇•𝑁 + ∑ ∑ 𝑙𝑜𝑔 2 𝑖 𝑡 𝑇-1 𝑡=0 (𝑈 𝑖 𝑡 ) 𝑇•𝑁  -𝑙𝑜𝑔 2 (𝑈 𝑘 𝜏 ) + ∑ ∑ 𝑙𝑜𝑔 2 (𝑐•𝜎 𝑖 𝑡 2 ) 𝑖 𝑡 𝑇-1 𝑡=0 𝑇•𝑁  
We get:

𝑞𝑝 𝑘 𝜏 = 3 [- 2 𝑅 𝑇𝑜𝑡 𝑇•𝑁 -(𝑙𝑜𝑔 2 (𝑈 𝑘 𝜏 ) - ∑ ∑ 𝑙𝑜𝑔 2 𝑖 𝑡 𝑇-1 𝑡=0 (𝑈 𝑖 𝑡 ) 𝑇•𝑁 - ∑ ∑ 𝑙𝑜𝑔 2 (𝑐•𝜎 𝑖 𝑡 2 ) 𝑖 𝑡 𝑇-1 𝑡=0 𝑇•𝑁 ) + 𝑙𝑜𝑔 2 (12)] + 4 
If we assume that the whole sequence is encoded with a unique quantizer (𝑞 = 2 𝑞𝑝-4 6 ) then the 𝑅 𝑇𝑜𝑡 expression becomes:

2 𝑅 𝑇𝑜𝑡 𝑇•𝑁 = 2 𝑇•𝑁 ∑ ∑ 𝑅 𝑖 𝑡 𝑖 𝑡 𝑇-1 𝑡=0 = - 1 𝑇•𝑁 ∑ ∑ 𝑙𝑜𝑔 2 (𝐷 𝑖 𝑡 ) 𝑖 𝑡 𝑇-1 𝑡=0 + 1 𝑇•𝑁 ∑ ∑ 𝑙𝑜𝑔 2 (𝑐 • 𝜎 𝑖 𝑡 2 ) 𝑖 𝑡 𝑇-1 𝑡=0 = - 1 𝑇•𝑁 ∑ ∑ ( 𝑞𝑝-4 3 -𝑙𝑜𝑔 2 (12)) 𝑖 𝑡 𝑇-1 𝑡=0  + 1 𝑇•𝑁 ∑ ∑ 𝑙𝑜𝑔 2 (𝑐 • 𝜎 𝑖 𝑡 2 ) 𝑖 𝑡 𝑇-1 𝑡=0

 

Combining ( 25) and ( 26), the final equation is then: 27) is a unique formulation for any spatial only (i.e. 𝑇 = 1), temporal only (i.e. 𝜓 = 1) or spatio-temporal optimized local quantizers.

 ∆𝑞𝑝 𝑘 𝜏 = 𝑞𝑝 𝑘 𝜏 -𝑞𝑝 = -3 (𝑙𝑜𝑔 2 (𝑈 𝑘 𝜏 ) - ∑ ∑ 𝑙𝑜𝑔 2 𝑖 𝑡 𝑇-1 𝑡=0 (𝑈 𝑖 𝑡 ) 𝑇•𝑁 )  Equation (

V. EXPERIMENTAL RESULTS

The x265 software [16] was used for experiments due to its low complexity but still R-D efficient encoding process. In particular, we took advantage of the availability of an efficient lookahead estimating inter and intra prediction costs, motion prediction information, etc. prior encoding. Estimations are typically computed on half the input sequence resolution, using 8x8 block size and SATD scores. Further detailed of x265/x264 lookahead design can be found in [START_REF] Garrett-Glaser | A novel macroblock-tree algorithm highperformance optimization of dependent video coding in H264/AVC[END_REF]. Besides, recent comparison of x265 performances against HEVC Reference Model software (HM) [START_REF] Mccann | High Efficiency Video Coding (HEVC) Test Model 16 (HM 16) Encoder Description[END_REF] has been published in [START_REF] Grois | Coding Efficiency Comparison of AV1/VP9, H.265/MPEG-HEVC, and H.264/MPEG-AVC Encoders[END_REF]. The x265 configuration settings are presented in Table I below. --preset slower --psnr --ssim --ipratio 1.1 -bframes 3 --b-adapt 0 --no-open-gop --psy-rd 0 -psy-rdoq 0 --cutree --aq-mode 0

Test conditions follow the recommendations of the Joint Collaborative Team on Video Coding (JCT-VC) [START_REF] Bossen | Common test conditions and software reference configurations[END_REF] in Random Access configurations. Coding efficiency is measured using Bjøntegaard BD-BR [START_REF] Bjøntegaard | Calculation of average PSNR differences between RDcurves[END_REF]. BD-BR reflects the percentage of bit savings to achieve equivalent YUV distortion, measured for both Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) in this paper; with the advantage for SSIM [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF] to better correlate the psycho-visual video quality. Since, BD-BR is the difference of areas between two R-D functions, we choose to add a fifth R-D point at QP = 42 in order to cover a larger bitrate range with the same metric.

The reference is the x265 without adaptive quantization algorithm. Four adaptive quantization methods are compared:

1. CUTree: native temporal model of x265 inherited from x264 [START_REF] Garrett-Glaser | A novel macroblock-tree algorithm highperformance optimization of dependent video coding in H264/AVC[END_REF]; thanks to the mathematical formalism introduced in sections III and IV, the final delta qp equation can be rewritten in a more understandable form similar to (27), with ∀𝑖, 𝑡 𝜓 𝑖 𝑡 = 𝑖𝑛𝑡𝑟𝑎𝐶𝑜𝑠𝑡 𝑖 𝑡 𝑖𝑛𝑡𝑟𝑎𝐶𝑜𝑠𝑡 𝑘 𝜏 ⁄ in the recursion (8) and 𝑖𝑛𝑡𝑟𝑎𝐶𝑜𝑠𝑡 𝑖 𝑡 the estimated intra prediction error for the block 𝑖 𝑡 We inform the readers that in its original form CUTree delta qp equation does not consider the regularization term ∑ ∑ 𝑙𝑜𝑔 2 𝑖 𝑡 𝑇-1 𝑡=0 (𝑈 𝑖 𝑡 ) (𝑇. 𝑁) ⁄ in (27) resulting from the rate constraint. It has been added for fair comparison against proposed model and avoids damaging bitrate drift for CUTree.

RDTQ:

proposed temporal distortion propagation model with retro-accumulation of the distortion without spatial psycho-visual weighting. The final delta qp is given by equation ( 27) with ∀𝑖, 𝑡 𝜓 𝑖 𝑡 = 1 in the recursion [START_REF] Bichon | Inter-Block Dependencies Consideration for Intra Coding in H.264/AVC and HEVC standards[END_REF]; with 𝜓 𝑖 𝑡 = 1, by design, we optimize PSNR-based score.

3.

CUTree+AQmode: native temporal model and spatial model of x265 both activated; the spatial model [START_REF] Garrett-Glaser | Variance-based adaptive quantization[END_REF] (default --aqmode 1) uses the local pixel variances for the spatial psychovisual criteria, such: (∆𝑞𝑝 𝑘 𝜏 ) 𝑠𝑝𝑎 = log 2 ( 𝑀𝐴𝑋(1, 𝑒 𝑘 𝜏 2 )) -𝐶, with 𝐶 a constant, 𝑒 𝑖 𝑡 2 = (𝜎 𝑌 2 + 𝜎 𝑈 2 + 𝜎 𝑉 2 ) 𝑖 𝑡 the cumulative-sum of pixel variances on planes Y, U and V for the block 𝑖 𝑡 . As demonstrated in [START_REF] Garrett-Glaser | Variance-based adaptive quantization[END_REF][START_REF] Yeo | SSIM-based adaptive quantization in HEVC[END_REF], the use of the local pixel variance weighting the MSE specifically optimizes SSIM-based score. Finally, spatial and temporal contributions are combined as a simple weighted sum of spatial and temporal delta qps, such:

(∆𝑞𝑝 𝑘 𝜏 ) 𝑡𝑝𝑙 = 𝑠 𝑠𝑝𝑎 (∆𝑞𝑝 𝑘 𝜏 ) 𝑠𝑝𝑎 + 𝑠 𝑡𝑝𝑙 (∆𝑞𝑝 𝑘 𝜏 ) 𝑡𝑝𝑙 , with(∆𝑞𝑝 𝑘 𝜏 ) 𝑡𝑝𝑙 the CUTree delta qp detailed point 1.

RDSTQ(PSY):

proposed temporal distortion propagation model with retro-accumulation of the distortion with spatial psycho-visual weighting. The weighting is based on the same criteria than point 3, designed for optimizing SSIM. The final delta qp is given by equation ( 27) with ∀𝑖, 𝑡 𝜓 𝑖 𝑡 = 1 𝑀𝐴𝑋(1, 𝑒 𝑖 𝑡 ) ⁄ in recursion [START_REF] Bichon | Inter-Block Dependencies Consideration for Intra Coding in H.264/AVC and HEVC standards[END_REF].

We point out that all models share the same statistics estimated on source signal. Consequently, no complexity overhead is added by the proposed RDTQ or RDSTQ(PSY) models in comparison to CUTree or CUTree+AQmode, respectively. BD-Rate results are presented in Table II. We observe almost systematic bitrate savings against no local quantization for all considered models. BQTerrace sequence suffers from R-D losses in almost all cases. One explanation is that inter probability estimations in the lookahead tend to be close to 0.5. Consequently, the temporal distortion propagation is very uncertain with multiple mismatches between lookahead estimations and final encoder decisions.

The adaptive quantization models RDTQ and CUTree only consider the temporal propagation of the L2 distortion (MSE) expecting to optimize PSNR-based scores. In average, one observes very close behavior between the two models with an average bitrate savings of about -10% based on PSNR (up to -18%) and of about -12.0% based on SSIM (up to -25%). RDTQ has the advantage of a simpler and analytical formulation.

When combining the AQmode with the CUTree, one observes further R-D improvements in term of both BD-BR PSNR (about -1.6%) and BD-BR SSIM (about -3%). While CUTree tends to tremendously improve quality of reference frames versus non-reference frames, the spatial-based quantization AQMode will efficiently balance this trade-off according to the local spatial pixel variance, further optimizing SSIM-based scores.

The last configuration RDSTQ(PSY) is the proposed spatio-temporal local quantization. It shows average savings against reference of -8.0% and -19.4% for PSNR and SSIM, respectively. The spatial propagated criteria being designed for optimizing SSIM, we observes, as expected, efficiency improvements based on SSIM against RDTQ. We also note that despite the average BD-BR PSNR is slightly decreased, the worst BD-BR PSNR result is improved from +3.3% to +0.7% against RDTQ. Besides, RDSTQ(PSY) outperforms CUTree+AQMode of about -4.4% BD-BR SSIM gain using the same SSIM-based spatial psycho-visual weighting. These results exhibit the relevance of the proposed distortion model that may optimize any psycho-visual function. Most notably, worst BD-BR results (for both PSNR and SSIM) are significantly improved against CUTree+AQMode.

VI. CONCLUSION

In this paper, we demonstrate the benefits of considering inter-block dependencies for adaptive quantization. We provide a new spatio-temporal algorithm to compute local quantizers, based on a theoretical framework able to describe the temporal distortion propagation from an R-D standpoint. In particular, we model the temporal distortion propagation making possible the (temporal) retro accumulations of any (spatial) psychovisually weighted distortion onto reference images. Using the R(D) Shannon bound, its high bitrate approximation, and a Lagrange optimization, analytical solutions are obtained for the local quantizers and the Lagrange multiplier. The proposed RDSTQ(PSY) algorithm shows -4.4% BD-BR SSIM gains in average over state-of-the art algorithm CUTree+AQMode in HEVC/x265 encoder, using the same SSIM-based psychovisual function. However, the proposed model can be easily improved in multiple aspects. First, in considering the SKIP mode probability: prediction mode that does not induce any quantization error. Then, most probably in using more accurate Inter probability and R(D) models. 

  probability of a current CU. It is the proportion of the past distortions from the reference areas used for motion compensation and captured by the current CU; INTRA CUs are not temporally impacted by the past distortions.

TABLE I

 I 

		.	X265 CONFIGURATION
	Version	x265 version 2.4+28-f850cdbe381c
	Comm	
	on	
	Setting	
	s	

TABLE II .

 II CODING EFFICIENCY OF ADAPTIVE QUANTIZATION MODELS OVER NO LOCAL QUANTIZATION IN X265

				BD-BR based on PSNR			BD-BR based on SSIM	
		Test sequences	CUTree	RDTQ	CUTree + AQmode	RDSTQ (PSY)	CUTree	RDTQ	CUTree + AQmode	RDSTQ (PSY)
		BasketballDrive	-6.4%	-6.5%	-7.1%	-3.6%	-9.3%	-9.4%	-10.6%	-19.3%
		BQTerrace	+3.5%	+3.3%	+2.5%	+0.7%	+2.6%	+3.2%	+0.7%	-15.8%
	Class B	Cactus Kimono	-9.0% -7.7%	-9.2% -7.6%	-9.4% -8.1%	-8.2% -4.0%	-8.7% -9.8%	-9.2% -9.8%	-9.1% -10.4%	-16.9% -10.6%
		ParkScene	-11.7%	-11.6%	-12.3%	-10.4%	-15.2%	-15.0%	-17.5%	-21.1%
		Average	-6.3%	-6.3%	-6.9%	-5.1%	-8.1%	-8.0%	-9.4%	-16.7%
		BasketballDrill	-17.9%	-18.1%	-19.9%	-16.7%	-21.7%	-21.7%	-28.6%	-30.8%
		BQMall	-12.4%	-12.1%	-13.9%	-11.4%	-15.4%	-14.3%	-19.4%	-20.6%
	Class C	PartyScene	-18.0%	-17.8%	-18.5%	-17.1%	-25.0%	-24.5%	-26.3%	-28.5%
		RaceHorses	-5.0%	-5.1%	-5.2%	-0.7%	-12.6%	-13.0%	-13.1%	-16.5%
		Average	-13.3%	-13.3%	-14.4%	-11.5%	-18.7%	-18.4%	-21.9%	-24.1%
		BasketballPass	-10.6%	-10.6%	-9.2%	-7.4%	-22.1%	-21.6%	-22.5%	-29.1%
		BlowingBubbles	-14.9%	-14.8%	-14.7%	-14.2%	-21.7%	-21.2%	-22.1%	-25.0%
	Class D	BQSquare	-9.5%	-8.9%	-9.9%	-7.3%	-12.1%	-10.7%	-17.0%	-26.8%
		RaceHorses	-7.1%	-7.2%	-7.0%	-3.9%	-14.3%	-14.6%	-14.9%	-21.0%
		Average	-10.5%	-10.4%	-10.2%	-8.2%	-17.5%	-17.0%	-19.1%	-25.5%
		FourPeople	-13.1%	-13.2%	-22.7%	-15.4%	-9.2%	-9.2%	-23.0%	-16.7%
	Class E	Johnny KristenAndSara	-6.8% -14.1%	-7.0% -14.2%	-17.6% -22.3%	-8.2% -12.1%	-3.2% -5.3%	-3.5% -5.5%	-9.6% -12.5%	-10.5% -11.3%
		Average	-11.3%	-11.5%	-20.9%	-11.9%	-5.9%	-6.1%	-15.0%	-12.8%
		basketballDrillText	-16.5%	-16.5%	-18.4%	-15.0%	-19.1%	-18.7%	-26.2%	-29.4%
		chinaspeed	-13.9%	-14.1%	-14.0%	-5.4%	-6.2%	-6.2%	-7.2%	-14.8%
	Class F	slideediting	-0.9%	-1.2%	-1.5%	-0.8%	-1.2%	-1.5%	-1.9%	-4.7%
		slideshow	-9.6%	-11.1%	-4.5%	+0.3%	-10.3%	-12.2%	-9.6%	-18.6%
		Average	-10.2%	-10.7%	-9.6%	-5.3%	-9.2%	-9.6%	-11.2%	-16.8%
		Average	-10.1%	-10.2%	-11.7%	-8.0%	-12.0%	-11.9%	-15.0%	-19.4%
	All	Best	-18.0%	-18.1%	-22.7%	-17.1%	-25.0%	-24.5%	-28.6%	-30.8%
		Worst	+3.5%	+3.3%	+2.5%	+0.7%	+2.6%	+3.2%	+0.7%	-4.7%