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Abstract. The Saladyn software toolbox is the main outcome of the ANR project Saladyn (COSINUS ANR-
08-COSI-014-01), which aims at designing and implementing a new software platform by coupling several
kinds of mechanical models and modeling approaches in a single framework : a) solid bodies (deformable),
mainly through their finite element representation, b) rigid multi-body systems and c) multi-contact systems.
The goal is to obtain a close coupling of these models for the modeling and the simulation in a nonsmooth
dynamical framework, able to deal rigorously with the unilateral contact and Coulomb’s friction. This platform
is composed of the integration of the following components : SALOMÉ, an open–source platform for the pre and
post-processing and the coupling of numerical software codes, CODE_ASTER an open–source Finite Element
Application, which has already been integrated in Salomé, under the name of Salomé-méca, LMGC90 an open–
source software for the modeling and the simulation of multi-contact systems and SICONOS an open–source
software for the modeling, the simulation and the control of nonsmooth dynamical systems. In this article, the
common formalism and numerical methods are delineated. Several general coupling schemes are described and
the interest of the approach is illustrated on several industrial realistic examples.
Mots clés — contact, friction, impact, nonsmooth dynamics, computational contact Mechanics, multiple phy-
sics, DEM, FEM, Open Source software, coupling.

Fig. 1 – Applications of the Saladyn Toolbox

1 Introduction

The Saladyn software toolbox is the main outcome of the ANR project Saladyn (COSINUS ANR-
08-COSI-014-01), which aims at designing and implementing a new software platform by coupling se-
veral kinds of mechanical models and modeling approaches in a single framework : a) solid bodies
(deformable), mainly through their finite element representation, b) rigid multi-body systems and c)
multi-contact systems. The goal is to obtain a close coupling of these models for the modeling and the
simulation in a nonsmooth dynamical framework, able to deal rigorously with the unilateral contact and
Coulomb’s friction. This platform is composed of the integration of the following components : SA-
LOMÉ, an open–source platform for the pre and post-processing and the coupling of numerical software
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codes, CODE_ASTER an open–source Finite Element Application, which has already been integrated
in Salomé, under the name of Salomé-méca, LMGC90 an open–source software for the modeling and
the simulation of multi-contact systems and SICONOS an open–source software for the modeling, the
simulation and the control of nonsmooth dynamical systems.

The Saladyn project was an experimental development project coordinated by INRIA Grenoble-
Rhône Alpes. EDF and Schneider Electric were associated as industrial partners together with two other
laboratories LMGC Montpellier and LAMSID Clamart.

In order to provide mechanical engineering with robust and efficient tools, the aim of the first step of
the project is to accumulate, gather and couple numerous functions of the three codes (CODE_ASTER,
LMGC90, SICONOS) with different ranges of applications in solid mechanics (continuum solid Mecha-
nics, multi-body systems and multi-contact systems) into a single software environment (Salomé). In the
second step, methods have been proposed to dynamically adapt the modeling and simulation strategy.
Once the main issues of coupling several software codes (I/O data and methods exchanges) are fixed,
the designed environment is meant to be sufficiently open such that it allows to developers to integrate
other software. This design attempts to limit the most important bottlenecks : data transfer and memory
consumption. These developments have enabled the simulation of circuit breakers for Schneider Elec-
tric and rock-fill dams for EdF with low development costs (in terms of human and financial resources)
compared to the re-writing ab nihilo new software.

2 Goals, Objectives and Means

Objectives In the framework of the Computational Contact Mechanics, a lot of academic and com-
mercial simulation codes can nowadays model and simulate the quasi-statics and the smooth dynamics
of mechanical systems with unilateral contact, Coulomb’s friction and possibly enriched interfaces laws
such as cohesive zone models. However few of them are able to take into account the non smooth events
occurring in dynamics, when abrupt failures, collapses, frictional paradoxes or impact are encountered.
These physical phenomena can be efficiently modeled and simulated in the framework of the nonsmooth
dynamics mainly initiated and developed in the mechanical community by the pioneering work of J.J.
Moreau and M. Jean [1–5]. Within this framework, the Contact Dynamics (CD) or the NonSmooth
Contact Dynamics (NSCD) has been mainly implemented in the two software codes : LMGC90 and
SICONOS. One of the goal in this project is to bridge the gap between these two codes and the standard
available software in the Contact Mechanics, where high-level FEM implementation can be found with
enhanced and sophisticated bulk mechanical behavior laws.

More specifically, the core of this work is to try to share some specific features of several specialized
pieces of software which are :

– LMGC90 designed for multi-body/multi-contact simulation 1 [6, 7]
– SICONOS designed for the modeling, the simulation and the control of non smooth dynamical

systems, with a special focus on mechanical with contact, impact and friction 2 [8, 9]
– CODE_ASTER designed for finite element simulation in Solid Mechanics.
Although CODE_ASTER is an experienced and specialized code for the simulation of solid bodies

(linear or non-linear mechanical constitutive laws), the simulation of the nonsmooth motion of large
collection of bodies cannot be efficiently performed. Firstly, this is mainly due to the choice in the
architecture of the standard code. The standard architecture of the most FEM simulation software does
not allow to take into account large collections of bodies with possibly floating and rigid body motions.
Secondly, the occurrence of nonsmooth events prevents the use of standard time–stepping schemes. Since
most of FEM codes are based on Newmark–like integration schemes (Newmark, HHT, α-generalized)
which takes into account the unilateral contact at the position level, it is not possible to consistently
integrate in time nonsmooth evolutions.

On the other hand, LMGC90 offers efficient contact detection features relevant for large collection
of objects and a robust implementation of the NSCD method, which treats the nonsmooth laws mainly
at the velocity level with a consistent time integration scheme based on a modified θ-method : The
Moreau–Jean scheme. SICONOS is also dedicated to the nonsmooth dynamics simulation. Besides the

1. https://subver.lmgc.univ-montp2.fr/trac_LMGC90v2
2. http://siconos.gforge.inria.fr
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Moreau–Jean scheme, it additionally offers the possibility to handle a lot of various dynamical systems
formulations (Lagrangian, Newton/Euler, . . . ) and provides several time–stepping schemes alternative
to the NSCD method (nonsmooth Newmark, Schatzman–Paoli scheme) and a collection of solvers for
discrete frictional contact problems.

A summary of the available and missing features is described in Fig. 2.

Fig. 2 – Software features

Goals As we said earlier, the aim is to accumulate, gather and couple numerous functionality of the
three codes (CODE_ASTER, LMGC90, SICONOS) with different ranges of applications in solid mecha-
nics (continuum solid Mechanics, multi-body systems and multi-contact systems) into a single software
environment (Salomé). The main goals are :

– to drive CODE_ASTER with simulation features of SICONOS and to include rigid bodies provided
by LMGC90 in the model,

– to take benefit from SICONOS contact solvers (SICONOS/NUMERICS) and time integration schemes
(SICONOS/KERNEL) into LMGC90 and CODE_ASTER

– to take benefit from the very complete and efficient FE library available within CODE_ASTER for
SICONOS. SICONOS doesn’t provide modeling tool for solid Mechanics, and in this case it would
benefit of all modeling, contact detection and pre/post processing tools available in LMGC90 and
CODE_ASTER.

– to take benefit from the SICONOS/MECHANICS component which provides with a modeling tool
for rigid multibody systems (mechanisms) described by CAD geometries using OpenCascade and
PythonOCC.

Means : strong and weak coupling A common spine must be defined for the communication between
the various engineering software. Python is the obvious solution as the best language/environment for
this goal. Besides its intrinsic features, the existence of automatic wrappers gives us the opportunity to
plug the various existing software programs with the pre/post-processing tools of Salomé-Méca. The
so–called SALADYN TOOLBOX is composed of a set of Python classes defining a common application
programming interface (API) for the several codes involved. The object-oriented design allows further
evolution in terms of integration of new codes as well as the development of new functionality such as
the dynamic adaptability of mechanical models during computation. Another strong coupling that has
also been realized concerns the use of CAD models based on B-Rep representations for the mechanical
simulation of unilateral contact and friction. In most of the standard simulation codes, spatial discretiza-
tions (mesh) are usually used. However, for the mechanical engineers, the contact simulation, especially
with large sliding motions needs to directly deal with CAD geometries. The Saladyn/Multibody toolbox
(written in C++/Python and integrated in SICONOS/MECHANICS) allows us to perform this task for the
contact detection and the solving in order to give more realistic simulations.

These three software codes can be driven by python scripting. The chosen coupling method is based
on a common interface implemented through python classes, the SALADYN TOOLBOX. Each of the
three codes are then plugged to the toolbox

In the developed toolbox, as in SICONOS, a graph structure is used to describe the full model, where
each node of the graph is a dynamical system and each edge an interaction between two systems. Such
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structure allows the simulation tool to drive models easily and offers genericity since any new software
could be plugged-in in the toolbox. Each software needs to split its functionality in components as des-

Fig. 3 – Saladyn Toolbox

cribed on Fig. 3.
The main bottleneck of our approach comes from data structures and memory management which

may imply duplication in modeling tools and some copy of data between them (which is exactly the
same problem with parallel computing). However, due to the power of python, some mechanisms using
references on memory were tested to completely remove copies to ensure efficiency, such approach is
still in progress since it has side effects on the architecture of the software.

Outline The article is organized as follows. In Section 3 and 4, the main theoretical ingredients are
briefly recalled, i.e the common formalism for the equation of the nonsmooth dynamics and the nons-
mooth constitutive and the numerical solution procedure. In Section 5, the main features of the available
software are recalled. The SALADYN TOOLBOX and then coupling strategy is detailed in 6. In Section 7,
the two main applications of the SALADYN TOOLBOX are illustrated : the simulation of clearances in
electrical circuit breakers for Schneider Electric in Section 7.1 and the simulation of rock-fill dams for
EdF in Section 7.2. Section 8 concludes the article.

3 A general mechanical formulation of nonsmooth dynamical systems

In this section, we propose a common formulation for various modeling approaches that we want
to couple in Saladyn. We also briefly review the main ingredients of the nonsmooth dynamical systems
theory. For more details, we refer to [10–13]

As we said above, we want to take into account at least three mechanical modeling approaches in
a single framework : a) solid bodies (deformable), mainly through their finite element representation,
b) rigid multi-body systems (mechanisms with joints) and c) multi-contact systems (granular matter
and divided materials). The goal is to obtain a close coupling of these models for the simulation in
a nonsmooth dynamical framework, able to deal rigorously with the unilateral contact and Coulomb’s
friction and possibly with cohesive zone models. Let us just recall that we only deal with discrete systems.
When applications with solid bodies are addressed, we assume that a preliminary space–discretization
has been performed, for instance, by FEM.

In order to reach this goal, a common formulation of the equations of motion and the constitutive
laws is proposed, which embraces the different modeling approaches :

– continuous solid bodies and Lagrangian systems. In this case, the configuration parameters q(t) ∈
IRnq are usually displacements, or positions, or more generally generalized coordinates. The velo-
city v(t) ∈ IRnv ,nv = nq is given by the time–derivative of these coordinates, i.e. v(t) = q̇(t).

– rigid bodies and multi–body systems. In this latter case, a lot of choices are possible for the confi-
guration parameters. In the standard Newton/Euler setting, the configuration parameters q(t)∈ IRnq
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are usually the position of the center of mass xG and a set of parameters Θ that encodes the ro-
tation of the body (rotation matrix, Euler angles, quaternion, . . . ). The velocity v(t) ∈ IRnv is then
given by the time derivative of the position of the center of mass vG = ẋG and the angular velocity
Ω, described for instance in the inertial frame. Then, the velocity is not the time derivative of the
configuration parameters.

In order to take into account the two previous case, we formally write

q̇ = T (t,q)v, (1)

where the operator T ∈ IRnq×nv links the time derivatives of the coordinates to the velocities. The generic
formulation of the motion equations of a mechanical system can be written as

q̇ = T (t,q)v, (2a)

M(q)v̇ = F(t,q,v,u), (2b)

u̇ = d(t,q,v,u), (2c)

where q(t) ∈ IRnq is a set of coordinates that gives in a unique way the configuration of the system.
The vector v(t) ∈ IRnv ,nv 6 nq describes the velocity. The matrix M ∈ IRnv×nv is a symmetric, positive
and (semi-)definite matrix representing the inertia. The vector of forces F ∈ IRnv is applied to the system
includes the gyroscopic effects, the internal and external forces and the effect of the vector u∈ IRnu which
might be considered as a control input vector. The dynamics of this control can be described by another
first order dynamical system (2c). These system of ordinary differential equations (ODE) is completed
with initial conditions q(t0) = q0, v(t0) = v0 and u(t0) = u0.

3.1 Lagrangian formulation with unilateral constraints

For the sake of simplicity we start with the Lagrangian formulation with unilateral constraints such
as 

q̇ = v, (3a)

M(q)v̇+F(t,q,v,u) = G>(t,q)λ, (3b)

u̇ = d(t,q,v,u,λ), (3c)

gk(t,q) = 0, k ∈ E (3d)

gk(t,q)> 0, λk > 0, λkgk(t,q) = 0 k ∈ I , (3e)

where E ⊂ IN and I ⊂ IN are the index sets of bilateral constraints (E stand for equalities) and of uni-
lateral constraints (I stand for inequalities), respectively. The matrix G(t,q) = ∇>q g(t,q) is the Jacobian
of the constraints. The condition (3e) is called a complementarity condition, or equivalently the Signorini
condition. It can be equivalently written as

0 6 gk(t,q)⊥ λk > 0 ⇐⇒ −λk ∈ NIR+(gk(t,q)), for all k ∈ I . (4)

The mathematical symbol NK is the normal cone to a convex set K (see [14, 15]). If we define the
admissible configuration set Φ(t) as

Φ(t) = {q | gk(t,q) = 0,k ∈ E , gk(t,q)> 0,k ∈ I}, (5)

the whole set of constraints (3d-e) can be written as

−G>(t,q)λ ∈ NΦ(t)(q). (6)

The smooth Lagrangian dynamics (3b-d-e) amounts to solving the following Differential Inclusion (DI)

− [M(q)v̇+F(t,q,v,u)] ∈ NΦ(t)(q). (7)
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3.2 Nonsmooth Lagrangian Formulation

In order to simplify, we focus our presentation to the case of holonomic constraints and we omit
the control input part. The Lagrangian dynamics in (7) is usually not so smooth. If the normal relative
velocity at contact ġk(q) is positive when the bodies hit at time t?, in other words, when an impact occurs,
a velocity jump must occur to satisfy the constraints after t?. From the mathematical point of view, the
velocity v(t) is considered as a function of Bounded Variations (BV) and the acceleration becomes a
differential measure denoted by dv, associated to v [16]. The Lagrange multiplier are also measures
including some Dirac atoms when the jumps occur ; therefore we consider an impulse measure di rather
than λdt to express the reaction due to the constraints.

The dynamics is written as a Measure Differential Inclusion (MDI) [17–19] :

−
[
M(q)dv+F(t,q,v+)dt

]
=−G>(q)di, (8)

where v+ (respectively v−) is the right limit (left limit) of the BV function v and dt is the Lebesgue
measure. The unilateral constraints is written as a measure inclusion as

−G>(q)di ∈ NΦ(q). (9)

When a jump occur in a discrete mechanical system, an impact law must be added to uniquely define the
post impact velocity v+(t). Let us simply choose the Newton impact law

v+(t) =−ev−(t), for all t such that g(q) = 0. (10)

where e is the coefficient of restitution. A compact form of the inclusion (9) together with the Newton
impact law (10) was designed by J.J. Moreau in [1]

−G>(q)di ∈ NTΦ(q)(v
++ ev−), (11)

where TK is the tangent cone to K. It yields the second order Moreau sweeping process :

−
[
M(q)dv+F(t,q,v+)dt

]
∈ NTΦ(q)(v

++ ev−). (12)

This MDI (12) can be recast into a complementarity form rather than inclusions into cone as
−
[
M(q)dv+F(t,q,v+)dt

]
=−G>(q)di, (13a)

U = G(q)v, (13b)

if g(q)6 0, then 0 6U++ eU− ⊥ di > 0. (13c)

Remarque 1 – The positivity constraint on the measure di in (13c) can be roughly interpreted as
follows. Let us consider that the measure can be decomposed as di = λ(t)dt + pδ, where λ is the
standard Lagrange multiplier assumed to be a smooth function of time and p is the magnitude of
the Dirac atom. The inequality di > 0 amounts to constraining λ(t) > 0 almost everywhere and
p > 0 at the impact time

– The writing of the inclusion (11) can be interpreted as the formulation of the unilateral constraints
at the velocity level. It appears to be similar to the index reduction procedure for Differential
Algebraic Equations (DAE) (see [20]).

3.3 Time–decomposition of the nonsmooth dynamics

If we neglect the singular measures, the differential measure dv and the impulse measure di can be
decomposed as follows

dv = γdt +(v+− v−)dν,
di = λdt + pdν,

(14)

where γ(t) id the standard acceleration given by q̈(t) almost everywhere and dν = ∑i δti is the sum
of Dirac measures supported at the instants of impact ti. In the sequel, we write pdν = ∑i piδti . By
substituting the decomposition (14) into the dynamics (13), we obtain
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– the impact equations at the instants of impact ti
M(q(ti))(v+(ti)− v−(ti)) = G>(q(ti))pi,

U+(ti) = G(q(ti))v+(ti), U−(ti) = G(q(ti))v−(ti),

0 6U+(ti)+ eU−(ti)⊥ pi > 0,

(15)

– and the non–impulsive equations of motion for t ∈]ti, ti+1[
M(q)γ+F(t,q,v) = G>(q)λ,

U = G(q)v,

if g(q)6 0, then 0 6U ⊥ λ > 0.
(16)

3.4 Other settings

With great cares with the formulation of unilateral constraints on parameters for more general than
standard Lagrange generalized coordinates, the unilateral contact can be included for various formu-
lations of the equations of motion. In [11], the Newton/Euler case is treated with details. In a general
manner, the formulation (7) with unilateral constraints yields a similar smooth DI as

q̇ = T (t,q)v, (17a)

− [M(q)v̇+F(t,q,v,u)] ∈ T>(t,q)NΦ(t)(q), (17b)

u̇ = d(t,q,v,u,λ). (17c)

The formulation of the second–order Moreau sweeping process equivalent to (12) can be extended as
well.

3.5 Coulomb’s friction

The introduction of more sophisticated interface force laws than the simplest unilateral constraints is
not straightforward in a pure Lagrangian setting. In order to give a mechanical meaning to the description
of the contact, a local frame at contact denoted by (C,n,s, t) is generally introduced. In the same way, the
Lagrange multipliers are replaced by reaction forces, or contact forces which are decomposed in the local
frame as R = RNn+RT with RT = RSs+RTt. The local relative velocity at contact is also decomposed
as U = UNn+UT. Usual kinematic relations between the local variables at contact and the generalized
variables give

U = G(t,q)q̇+ j(t) = G(t,q)T (t,q)v+ j(t), (18)

and, by duality, the generalized forces due to contact forces

r = T>(t,q)G>(t,q)R. (19)

The dynamical equations can be then written as

M(q)v̇+F(t,q,v,u) = T>(t,q)r = T>(t,q)G>(t,q)R. (20)

By formulating the unilateral contact in terms of local variables at contact we get

0 6 gN
∆
= g(q)⊥ RN > 0, (21)

and with the impact law at the velocity level

if gN 6 0 then 0 6U+
N + eU−N ⊥ dIN > 0, (22)

where dIN is the normal impulse measure in the local frame.
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Coulomb’s friction can be expressed in a disjunctive form as

if gN 6 0,

{
if UT = 0 then R ∈ C

if UT 6= 0 then R ∈ ∂C and it exists a > 0 such that RT =−aUT

(23)

where C is the Coulomb friction cone, C = {R, | ‖RT‖ 6 µRN} with µ, the coefficient of friction. Cou-
lomb’s friction can also be formulated compactly as a complementarity condition on second–order cones
as [11, 21–23]

−Û ∆
=−

[
UN +µ‖UT‖
UT

]
∈ NC(R)⇐⇒ C∗ 3 Û ⊥ R ∈ C⇐⇒−R ∈ NC∗(Û) (24)

where C∗ is the dual cone of C [15].
For one contact, the smooth contact dynamics is given by

M(q)v̇+F(t,q,v) = T>(t,q)G>(t,q)R

U = G(t,q)T (t,q)v+ j(t)

if g(q)6 0 then −R ∈ NC∗(Û) otherwise R = 0

(25)

By following the work previously carried out for the unilateral constraints with the newton impact law,
the MDI is extended for the Coulomb friction as

M(q)dv+F(t,q,v+)dt = T>(t,q)G>(t,q)dI

U+ = G(t,q)T (t,q)v++ j(t), U− = G(t,q)T (t,q)v−+ j(t)

Si g(q)6 0 alors −dI ∈ NC∗(Û++ eU−N n) sinon dI = 0

(26)

Remarque 2 A more generic formulation with multiple contact points can be found in [11] as well as
a discussion on the friction models that we can find the mechanical and control literature. Modeling of
cohesive zone interfaces in theis framework can also be found in [24] and [11, Sect 3.9.4].

4 Numerical methods

In this section, we give some insights on the numerical solution procedures for nonsmooth dynamical
systems. We start with the introduction of the two main families of time-stepping schemes in section 4.1,
and then we focus on the Moreau–Jean event–capturing scheme in section 4.2. We end the section with a
brief overview of numerical methods for discrete frictional contact problems. For more details, we refer
to [11, 12].

4.1 Two main families of time–stepping schemes

Two main families of time–stepping schemes can be used for solving initial value problems of nons-
mooth dynamical systems : a) the event–detecting schemes (also termed event-driven schemes) and b)
the event–capturing schemes (or shortly time–stepping schemes). By events, one must understand the
time-instant when the solution lose its smoothness ; jumps in control law or in external applied forces,
impacts, transitions between sticking and sliding are the main instances of nonsmooth events.

Event-detecting schemes These schemes are based on the hypothesis that the events are well–separated
in time (at least at the machine precision) and that we can detect them with accuracy. The principle of
integration is simple. The non–impulsive dynamics (16) is solved with any efficient solvers for DAE
between two events. Over such a smooth period of time, the index sets of active constraints is assumed
to be constant. The constraints are therefore treated as bilateral constraints. At an event, we solve the
impact equations (15) and we reinitialize the DAE solver with new Cauchy conditions.

The advantages (denoted by ⊕) and the weaknesses (denoted by 	) of the event–detecting schemes
are summarized below :
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⊕ higher order integration over smooth period of evolution
	 No general proof of convergence
	 Extreme sensitivity to the numerical thresholds used for the event detection and the computation

of the contact status (sticking, sliding, imminent take–off, . . . )
	 Index reduction of the constraints sometimes difficult especially for the 3D contact with Cou-

lomb’s friction.
	 Not able to deal with accumulation of impacts in finite time.

In summary, these schemes are well–suited for systems where the density of events is low and with well-
separated events. Although the principle is straightforward but the efficiency and the robustness of codes
are very difficult to ensure in practice. In [10,25] and [11, Chapter 8], some examples of implementation
of these schemes are detailed mainly on the 2D case.

Event-capturing schemes On the contrary, these schemes are based on the direct integration of the
MDI (12) or equivalent formulations. The time-step length is not chosen with respect to the events, but
depends on the local error of accuracy as in standard integration of smooth systems. The advantages and
the weaknesses of the event–capturing schemes are summarized as follows :
⊕ several convergence proofs [26–29].
⊕ robustness and stability on large–scale problems
⊕ integration of problems with finite accumulation of impacts
	 low order of global accuracy (6 1)

These schemes are really efficient for systems where the density of events is large. Although the or-
der is low, their robustness and their stability enable complex applications like granular matter [30],
kinematic chains with clearances [31] and flexible multi–body systems that mix solid and rigid bodies.
The two main instances of such schemes are the Moreau–Jean time–stepping scheme [1, 2, 4, 5] and the
Schatzman–Paoli scheme [27, 28].

4.2 Moreau–Jean event–capturing scheme

In order to specify the main ideas on the implementation of the Moreau–Jean event–capturing scheme,
we provide the reader with its formulation with unilateral contact in the Lagrangian setting. Let us consi-
der a time–discretization {tk} ∈ [to,T ],k ∈ {1 . . .N}, The scheme can be written for one time–step of
length h = tk+1− tk and a set of contact points I = {1 . . .m} as

M(qk+θ)(vk+1− vk)−hF̃k+θ = G>(qk+θ)Pk+1, (27a)

qk+1 = qk +hvk+θ, (27b)

Uk+1 = G(qk+θ)vk+1 (27c)

−Pk+1 ∈ NTIRm
+
(g̃N,k+γ)(Uk+1 + eUk), (27d)

g̃N,k+γ = g(qk)+hγUk, γ ∈ [0,1]. (27e)

where θ ∈ [0,1],γ > 0 and xk+θ = (1−θ)xk+1 +θxk. The value g̃N,k+γ is a forecast of the possible active
constraints in the time–step. The term F̃k+θ represent a consistent discretization of the applied forces for
which details can be found in [11, Chap. 10]. The basic ingredients which makes the efficiency of the
scheme, are i) the fully implicit treatment of the constraints at the velocity level and ii) the formulation
with impulses and velocities as primary unknowns. Indeed, the variable Pk+1 is not homogeneous to a
force but to an impulse over the time–step that is to say :

Pk+1 ≈
∫
]tk,tk+1]

dI. (28)

This feature makes the scheme consistent and stable even when (a large number of) impacts occur. This
scheme has proved his efficiency on numerous applications. To cite of few of them, we refer to [2, 24,
32–41].
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4.3 Solving the discrete frictional contact problem

In order to further simplify, let us consider the linearized problem associated to (27) by assuming the
dynamics is linear (or linearized) as follows

Mdv+(Cv++Kq)dt = Fext(t)+G>dI,

U = Gv,

if g(q)6 0 then −dI ∈ NC∗(Û++ eU−N n) otherwise dI = 0.

(29)

The Moreau–Jean scheme (27) for a set of contacts α ∈ I reads

M̂(vk+1− vfree) = pk+1 = ∑
α

pα

k+1

Uα

k+1 = Gα vk+1; pα

k+1 = Gα,> Pα

k+1

Ûα

k+1 =
[
Uα

N,k+1 + eUα

N,k +µα ||Uα

T,k+1||,Uα

T,k+1

]T

for all α ∈ Ia,k+1

Cα,∗ 3 Ûα

k+1 ⊥ Pα

k+1 ∈ Cα

for all α /∈ Ia,k+1

Pα

k+1 = 0

(30)

where Ia,k+1 = {α | yk+γ 6 0} ⊂ I denotes the set of forecast possible active constraints and M̂ =[
M+hθC+h2θ2K

]
denotes the iteration matrix and vfree the free–flight velocity given by

vfree = vk + M̂−1
[
−hCvk−hKqk−h2θKvk +h [θ(Fext)k+1)+(1−θ)(Fext)k]] . (31)

The problem appears as a Second-Order Cone Complementarity Problem (SOCCP) which can be gene-
rically defined as {

w =Wz+q
K∗ 3 w⊥ z ∈K (SOCCP). (32)

Without friction (µ = 0), the Coulomb cone is reduced to IR+ and the SOCCP reduced to a Linear Com-
plementarity Problem (LCP), defined as{

w =Wz+q
0 6 w⊥ z > 0

(LCP). (33)

If additionally, the matrix W is semi–definite positive and symmetric, it amounts to solving the following
standard convex Quadratic Programming (QP){

minz
1
2 z>Wz+ z>q

such that z > 0
(QP). (34)

The latter problems (32), (33) and (34) are very well–studied problems in numerical optimization. Most
of the numerical methods for the unilateral contact and friction are extensions of standard algorithms of
optimization. The case of friction is nevertheless not straightforward, since it implies nonsmoothness and
non convexity, which remains a major challenge for the numerical algorithms. Furthermore, in most of
the applications, the constraints are linearly independent which introduces indeterminacy and redundancy
in the multipliers. Indeterminacy renders the numerical solving difficult and destroys most of the time
the conditioning of the problem.

To conclude with, we give a list of the most–well know algorithms to solve discrete frictional contact
problems that can be found in SICONOS/NUMERICS.

– Generalized Newton methods [42, 43]
– Projection/splitting methods for variational inequalities [44–47]
– Fixed point methods on the friction threshold (Tresca’s friction approach) [48–50]
– Iterative convex minimization problems [21–23]

Reviews of these methods can be found in [11, 51, 52] and [12].
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5 Software codes

A given piece of software is usually dedicated to a single type of computation. The computation step
is to be clearly distinguished from the preparation of the data, and from the exploitation of the results,
even if these three steps are closely related. Indeed, the pre-processing formats the input data for the
software, and the post-processing parses the output data of the software to provide the desired results to
the user.

Furthermore, for a better understanding of what a simulation software does, the computation phase
is also divided into several components :

– modelization, i.e. the kind of modelizations the software can handle (linear/non-linear, rigid/deformable)
– simulation, i.e. the kind of simulation (linear/non-linear, quasi-static/(non-)smooth dynamic) the

software can handle, and the time integrators available for each of them.
– contact features :

– contact detection, i.e. the way interactions between the modelizations are generated on the fly
– contact laws, i.e. the list of behaviors that are available (friction, newton impact, cohesive, etc.)
– contact solvers, i.e. the resolution algorithms that are available (Gauss-Seidel, Jacobi, Alart-

Curnier, etc)
Finally, an important feature of research software (and especially in the coupling matter) is the way

the user can interact with the software during simulation and how he can access its database of objects,
models, parameters, etc.... Thus in the following the possibilities of each software codes is detailed.

5.1 Code_Aster

The Code_Aster software is a Finite Element Software dedicated to the simulation of mechanical or
thermal bodies. It is developed by EDF R&D as a standalone program, and also as an integrated module
in the Salomé suite of software.

The Salomé platform provides an unified graphical framework for the pre-processing, execution and
post-processing of heavy duty Code_Aster computations. The pre-processing tools of Salomé can be used
for the definition of geometries and meshes, and for the association the desired materials and models to
(groups of) elements. The preferred output of the software is usually a file in the MED open source
format. This file can be read within the graphical interface of Salomé. Code_Aster is acknowledged as
a powerful and complete tool for FEM simulation. About 360 finite elements are availabe and over 95
constitutive material laws are defined.

The numerical methods available are static, quasi-static or smooth dynamic, each one being either
linear or non-linear. The set of possible time integrators is : HHT, θ-scheme in displacement or velocity
and Krenk’s scheme.

There is a possibility of contact resolution within Code_Aster : groups of elements may be tagged so
that they cannot cross each other and contact with friction can be taken into account during computation
using active stresses, Lagrange multipliers or augmented Lagrangian method.

Code_Aster is written in Fortran77 but this ’Core’ part is completely hidden from the user. The
user has access to a set of commands which are run in a python interpreter. This set of commands
provides access to high level functionality of the software. Accessing low level functionality or accessing
the database directly from Python is not straightforward, but has been proven to dramatically reduce
overhead, acknowledging the fact that the Aster Python setter/getter on the database lack efficiency due
to memory copy.

5.2 Siconos

SICONOS is an Open Source scientific software primarily targeted at modeling and simulating nons-
mooth dynamical systems in the most generic sense :

– Mechanical systems (Rigid body or solid) with Unilateral contact and Coulomb friction as we find
in Non-smooth mechanics, Contact dynamics or Granular material.

– Switched Electrical Circuit such as electrical circuits with ideal and piecewise linear components
Power converter, Rectifier, Phase-locked loop (PLL) or Analog-to-digital converter

– Sliding mode control systems
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– Other applications are found in Systems and Control (hybrid systems, differential inclusions, op-
timal control with state constraints), Optimization (Complementarity systems and Variational in-
equalities), Biology (Gene regulatory network), Fluid Mechanics and Computer graphics. . .

The software is based on 4 main components :
– SICONOS/NUMERICS (C API). Collection of low-level algorithms for solving basic Algebra and

optimization problem arising in the simulation of nonsmooth dynamical systems : Linear com-
plementarity problem (LCP) Mixed linear complementarity problem (MLCP) Nonlinear comple-
mentarity problem (NCP) Quadratic programming problems (QP) Friction-contact problems (2D
or 3D) (Second-order cone programming (SOCP)) Primal or Dual Relay problems

– SICONOS/KERNEL. C++ API that allows one to model and simulate the NonSmooth dynamical
systems. it contains : Dynamical systems classes (first order one, Lagrangian systems, Newton-
Euler systems) and Nonsmooth laws (complementarity, Relay, FrictionContact, impact)

– SICONOS/MECHANICS This component is a modeling toolbox for multi-body systems based on
external collision and geometry libraries.

– SICONOS/FRONT-END generated python bindings for Numerics, Kernel and Mechanics, with a
special support for Siconos data structures.

The development team focused on the development of the simulation and modeling tools which are
as most as possible reusable for different scientific context.

Any specific pre/post-processing tools has not been developed. Dynamical systems and interactions
(unilateral constraints) classes provided by Siconos/Kernel may be configured with the help of plugins
or by class derivation. For high–level applications SICONOS relies on external software and provide with
an efficient computational engine. Concerning the mechanical modeling, it is possible to simulate linear
or non-linear rigid or deformable bodies.

The numerical simulation strategies available in Siconos/Kernel are quasi-statics, smooth dynamics,
non-smooth dynamics, each one being either linear or non-linear and simulated with event–capturing
or event–detecting schemes. Available time integration schemes are Moreau–Jean scheme, Schatzman–
Paoli scheme, Nonsmooth Newmark scheme [53, 54], Odepack suite and DAE solvers developed by E.
Hairer [55].

Inside SICONOS/KERNEL, the description of the user model relies internally on a primary graph
with dynamical systems as nodes and interactions as edges. During time evolution, the determination of
active constraints corresponds to the building of sub-graphs of the primary graph. In the case of problems
formulated in local coordinates an adjoin graph transformation is dynamically applied to sub graphs in
order to drive the computation of the components of the optimization problem given to Numerics solver.

The primary graph structure may be entirely specified once by the user, or it may also be rebuilt
during the simulation, as, for example, the result of a contact detection broad-phase. Links with pre/post
processing software for collision detection (Bullet contact detection [56]) and CAD libraries (OpenCas-
casde [57] and PythonOCC [58]) has been set–up. The latter link enables the contact detection between
bodies defined by B-Rep (splines, nurbs, ...) and then to compute gaps and local frame at contact. Such
a geometrical representation of the data allows to use realistic modeling of surfaces with large sliding.
The possible impact laws for mechanics are complementary condition, impact with or without friction.
Finally, the available contact solvers are those listed in Section 4.3.

SICONOS is written in C++ and has an object oriented architecture, there is no graphical user interface
(GUI). A simulation is run through a C++ or Python script in which are gathered the objects creations
and the method calls on these object that make up the computation. Furthermore, unlike CODE_ASTER,
not only the coarse level of command driving is available, but the time loop can be exploded in every step
to allow for an interactive simulation. In the same way the whole database is accessible through copy or
reference, allowing for a efficient access and aimed at designing any post-processing functions.

More details can be found at http://siconos.gforge.inria.fr.

5.3 LMGC90

The LMGC90 software is dedicated to the simulation of multi-contact systems. It first aimed at
the simulation of granular materials and thus focused its main features on the simulation with a dynamic
contact network. This lead to other domains of application like masonry structure simulation, rock failure
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simulation. It also provides features for multi-physics coupling (fluid-grains, or thermo-mechanics simu-
lations). The software provides a Python pre-processor allowing to efficiently generate data set dedicated
to the different application fields : granular, masonry, meshes. Concerning post-processing, paraview
files are generated. The software has no graphical interface and works as a list of Python commands.
This allows to finely tune the simulation since the time loop or the iteration loops of the solver can be
exploded within the Python script.

In term of functionality LMGC90 can :
– model linear rigid bodies (2/3D), linear or non-linear deformable bodies using a Finite Element

discretization.
– use time stepping schemes for both linear or non-linear quasi-static, smooth dynamic, non-smooth

dynamic simulation.
– use θ-scheme in velocity, gear and verlet time integrators.
– use Non-Linear Gauss Seidel, Jacobi and conjugated projected gradient contact solvers.
A large effort in the development of the software was put in contact detection features. A wide range

of primitive geometries is available and can be combined to define complex boundaries. It is important
to note that these geometries are always discretized in space. The software also provide contact detection
for most pair of these primitive contact geometries and generates the corresponding interactions in form
independent of the involved shapes. Furthermore the main contact solver used is the Non-Linear Gauss-
Seidel, which is very robust. This allows to have a large set of contact laws available, including dynamic
friction, cohesive laws, and various laws with internal parameters.

As already stated above, LMGC90 software is designed as a Python module providing a set of
functions allowing fine tuning of the simulations steps. There are also a whole set of accessors to the
database using copy in most case and references on some occasion for efficiency’s sake. This Python
layer hides the core of the software which is written in Fortran 90/95. The structure of the software
uses extensively the concept of module allowing to have an architecture very close to an object oriented
program. Concerning the resolution of linear systems, a mechanism of bindings is available to allow the
use of efficient solver libraries (like MUMPs or LAPACK).

6 Software coupling

The previous section which presented different software applications gave some insights on the
strong points of each :

– CODE_ASTER : efficient FEM computation with extended set of behavior laws integrated in a
whole pre/post-processing suite.

– SICONOS : large modeling of dynamical systems and lots of integrator and contact solvers.
– LMGC90 : wide set of contact detection algorithms and many contact laws and a pre-processing

tool dedicated to domains of applications.
Again the point of this work is to unify these complementary features in a single environment. To do
so, two possible levels of coupling are considered : point to point (or strong) couplings, i.e. using the
commands of each software in a common environment (see figure 4) ; or a higher level (or weak) coupling
using a designed API (see figure 5). The first solution is the easiest one to develop but imposes to write
a simulation case for each combination of software applications and sometimes some code dedicated to
the specific coupling. Thus, the addition of a new software in the coupling environment would incur an
exponential growth of the code to be written, since the combinatorial increases with each new software.
The second level of coupling is more generic, and consists in defining an API that is generic enough,
but can still be accommodated by every software codes. Our hope is that the three pieces of software
presented here be representative enough of the field, so that any new software just has to plug into the
API to be coupled with any of the other software application.

Eventually, each software application is used through a script gathering a list of commands. An
important design decision is the environment in which the coupling will be written. The Code_Aster
software is basically a Python interpreter enriched with Code_Aster commands, and there is little choice
but to run this interpreter and write Python functions for the coupling. The SICONOS main API is in C++,
but there is a possibility to generate a Python interface. The LMGC90 main API is in Python, but there
is a possibility to generate a C++ interface... So in case of coupling between SICONOS and LMGC90
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Fig. 4 – Point to point coupling
Fig. 5 – High level coupling

using either C++ or Python scripts is possible.

6.1 Strong coupling

The point-to-point coupling, in spite of their lack of genericity, as stated above, have been tried out
as a prototype to help with the design of the generic API of the higher level coupling.

When coupling with SICONOS, the main issue was to initialize the database from the other piece of
software, and regularly update the state of the corresponding data in the software. But this was simple
enough thanks to its flexible architecture which allows to initialize the database within the running script.
On the contrary, CODE_ASTER and LMGC90 must read some input files to initialize their database,
each using a different format. In this case, the main issue for the pre-processing phase is the consistency
of geometries and meshes between the two software applications. Then, during a simulation, consistency
must also be enforced at each field transfer (ordering of nodes, cells, layouts of degrees of freedom).

After that, only a choice of accessors were to be smartly called (or implemented if they did not
exist) in order to allow the transfer of data between the two software applications. In this case copy was
always used, the first reason being that Code_Aster has no choice but to copy to (or from) its database.
SICONOS extensively uses reference and pointers. Since some data may be referenced through pointers
in LMGC90, it could be desired to make the software share memory. Although this may be possible on
some vectors, this solution is not feasible when matrices are involved : first of all, since Fortran and C++
do not order their matrices in the same way by default (Fortran in column major whereas C/C++ is row
major), the exchange implies a transposition when passing from one to the other ; furthermore, they are
always some small differences in the formalisms used to described the problem to be solved. In the end
a slight transformation on the data is often needed anyway, forbiding the direct use of references and
pointers.

Finally SICONOS/LMGC90 and LMGC90/CODE_ASTER couplings have been implemented using
this strong coupling method.

6.2 Weak coupling

This high level coupling is done through the definition of a common API. Python naturally arose as
the language of choice for writing this intermediate layer, since all three software applications have a py-
thon interface. This layer will be referred to as the SALADYN toolbox from now on. Python allows object
oriented programming, which is used within the toolbox to define the different components of a com-
putation in a anonymous form, where the specificity of each underlying software application is hidden
using the inheritance mechanism. This method introduces more genericity since a coupled computation
uses only SALADYN classes/methods/functions and not a heavy mix of commands coming from different
software applications assorted with blocks of code to reshape the data. Any new software application just
has to inherit the SALADYN classes and fulfill the API requirement to be coupled with other software.

To be able to couple the different software applications the first step in the design of the SALADYN

toolbox was to split the different components of the software. Each software code is split in term of
modeling and simulation. While modeling defines how to compute the physics (mass, rigidity, external
forces, etc) and the interactions (contact laws, contact points, etc), simulation will gather all time integra-
tion and solving features. SALADYN must access these two different parts of each software applications
in an independent manner. The general organization of the toolbox is described on figures 3 and 6.

There is always only one simulation object. At the best in case of CODE_ASTER/LMGC90 coupling
an InteractionSolver object is aggregated to the Simulation one, but the features they rely on are different.
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Fig. 6 – Saladyn toolbox

The CollisionHandler object allows to generate the list of interactions within the SALADYN’s graph. The
detail of all relevant classes on the design of the toolbox are given figure 7.

Fig. 7 – Saladyn classes

Using the SALADYN toolbox it is possible to couple the three software applications in a single com-
putation where CODE_ASTER defines the deformable bodies, LMGC90 defines rigid bodies and per-
forms the contact detection and SICONOS is in charge of the time integration and the contact solving.

The main drawback of this coupling method is that, to ensure the data transfers in the software,
some specific functions must be designed. A possible way would be to explicitly state the source and
destination software for each data transfer. This seems simple but the set of functions doing the transfer
would be completely dedicated to one pair of software code, thus the main drawback of combinatorial
mentioned in the point to point coupling section would still be present.

The method chosen, which ensures genericity, is to use an intermediate data structure as a buffer, and
having functions to retrieve data from a given software code and load it into SALADYN, and functions that
push data from SALADYN to the different software applications. This method is more in agreement with
the philosophy of a weak coupling scheme, even if it adds an intermediate data structure and increases the
number of copies at each computation step. This is particularly true when CODE_ASTER is involved. It
has already been stated that references and pointers are usable with SICONOS and LMGC90, but cannot
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be plugged directly from one to another, because of differences in the data structures and formulations.
To reduce this loss of efficiency due to the large number of copies, the memory could be shared between
Saladyn components and one of the software. This could be used as a mean to reduce the number of
copies of one level and use the data structure of SALADYN to do the shapeshift of data. The differences
in architecture brings another difficulty, usually the different functions of LMGC90 and CODE_ASTER

apply to the whole set of bodies initialized in the software. But SICONOS preferably uses methods of
its objects, thus work body by body. That is why a class of Modeler has been designed and help with
unifying this difference.

Furthermore, the dynamic modeling adaptability has been studied within the ANR project. Some
dedicated classes were designed within the coupling environment to help with this new feature without
modifying the underlying software applications. These classes are the PhysicalObject and Mechanical-
Model. Where the first one must represent the real object without taking into account the modeling used,
the later does represent the object for a modeling type (rigid, deformable, etc). The PhysicalObject class
would provide a set of method allowing to perform the modeling switch.

6.3 Coupling through binding

A third coupling method, at a complete different scale, has also been tested. It is, as a matter of fact, a
binding. As stated in section 5.2 SICONOS is divided in four parts, the NUMERICS one which gathers low
level algorithms is independent of the modeling of the problem to solve and is designed as a stand-alone
library. It would be a great benefit to LMGC90 if it could call the SICONOS/NUMERICS library. Using
some recent features of Fortran, it is now easy to bind C code in Fortran. Thus the only work was to add
the possibility to call external contact solver within LMGC90.

The main point of this binding is that only little data transfer is needed and it can be designed to be
efficient. In this way LMGC90 can benefit from the development of contact solvers made by the INRIA.
This also allows to have a real comparison of the different layers of the software applications.

7 Examples

7.1 Simulation of clearances in electrical circuit breakers

In this final section, we give an insight of the usefulness of the proposed approaches for the virtual
prototyping of electrical circuit breakers designed by the company Schneider Electric. The model that we
considered in a C60 circuit breaker, which is a domestic low voltage circuit breaker depicted on Figure 8.
The mechanism is only composed of 7 moving bodies, but 12 contacts come into play when the breaker
switches off. Furthermore, when the mechanism is in closed position, the equilibrium is guaranteed by
means of Coulomb’s friction in the contact of the two bodies described in Figure 8(c). When the breaker
opens the circuit, a lot of events (impacts, stick-slip transitions, . . . ) are observed in experimental setups.
A rather complete description of its behavior and its nonsmooth modeling in 2D can be found in [25].
The study in 3D with clearances that is performed with the projected event-capturing scheme [31] allows
us to accurately study the effect of the clearances in joints on the out-of-plane motion of the breaker.
Furthermore, it helps to state on the stability and the robustness of the fundamental properties of the
circuit breaker with respect to the size of the clearances. Such studies are not possible with standard
event-driven schemes which have a lot of difficulties to deal with 3D frictional contacts and a bunch of
events. Indeed, the presence of clearances in joints generates a lot of finite accumulation of impacts and
numerous stick-slip transitions. Such studies are also difficult with standard event-capturing schemes for
which the violation of constraints come into play with the characteristic lengths of the clearances. In
THE SALADYN TOOLBOX, a extension of an event–capturing with projection onto the constraints [31]
has been implemented to efficiently this problem.

7.2 Simulation of rockfill dams

The toolbox has been successfully used to simulate rock dam where each deformable body is mo-
deled by Code_Aster, and rigid ones by LMGC90. Contact detection and simulation are performed by
LMGC90.
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(a) CAD view of the mechanism

NewtonEulerDS(q01,v01,OCCm,OCCI1);

PivotJointR(Part1,Part2,P2,A2);

 NewtonImpactNSL(e);

 PrismaticJointR(beam3,axe1);

OCCRelation // Geometrical computation from the CAD model

(b) Modeling as a multibody system

(c) Contact and joints with clearance (d) An illustration of contact forces.

Fig. 8 – C60 electrical circuit breaker mechanism. Courtesy of Schneider Electric

We briefly describe the characteristics and results of the computation. For an extensive description
and results, the reader is refered to [59] and [60].

Fig. 9 – Rock dam simulation

The overall geometry is as in Fig. 9. Continuous media are modeled using linear elastic behaviors,
while the bulk of rigid bodies is modeled by a pile of 10000 disks with randomized diameters between
0.1 and 0.8 m. The interaction laws are unilateral contact-friction laws, with friction coefficient 0.5.

Three phases have been modeled :
– layer by layer construction of the dam : in order to simulate the real construction process, ensure

the correct compaction of the rock pile, and avoid dynamics effects in these computations, we
computed the compaction of ten layers of bulk elements, one after the other ;

– flooding of the dam, in which the time scale of the flooding is much greater than the dynamic
reactions of the dam ;

– and finally the effect of the sismic load has been computed, the seism being imposed on the boun-
dary of the domain (see references [59], [60] for details).

For the two first phases, quasi-static computations have been used, while for the third phase a fully
dynamic simulation has been carried out, imposing a 11 sec. sismic signal (lower parts in Fig. 10) on the
boundaries.
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As a summary of the results obtained, we present the temporal evolution of the total number of
contacts, and of the total kinetic energy in the rock pile in Fig. 10 during the seism, and a close up on the
top of the dam, after seism, in Fig. 11.

The results presented here, although the materials follow a linear elastic law, show that the non-
linearity introduced by the contact-friction laws play an important role in the overall behavior of the
rock pile. Previous purely FEM simulations of the rock pile (see [61]) could not represent these non-
linearities : irreversible displacements appear, as well as a settlement of the pile due to the special beha-
vior of discrete elements (Fig. 11).

Fig. 10 – Total number of contacts in the rock pile during seism

Fig. 11 – Rearrangement at top of dam after seism

8 Conclusion

Main results The main results are given by the industrial applications : efficient simulation tools and
realistic simulations. On the EDF side, the simulations of rock-fill dams have been carried out with a
better modeling of the core of the dam where the contact between blocks is solved with an implicit
time-discretization method. On the Schneider Electric side, 3D simulations of circuit breakers have been
performed using the CAD model. These simulations make possible the study of the influence of fabrica-
tion clearances on the behavior of complex mechanisms. This results yield a new PhD Thesis granted by
Schneider Electric on this subject and a CIFRE PhD with the ANSYS Corporation.

Additional informations on : http://saladyn.gforge.inria.fr/
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