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Résumé— The Bending-Gradient theory for thick plates is the extension to heterogeneous plates of
Reissner-Mindlin theory originally designed for homogeneous plates. The Bending-Gradient theory was
extended to in-plane periodic structures made of connected beams (space frames) which can be con-
sidered macroscopically as a plate in [1]. Its application to a square beam lattice reveals that classical
Reissner-Mindlin theory cannot properly model such microstructures. Comparisons with exact solutions
show that only the Bending-Gradient theory captures second order effects in both deflection and local
stress fields.

1 Introduction

The classical theory of plates, known also as Kirchhoff-Love plate theory is based on the assumption
that the normal to the mid-plane of the plate remains normal after transformation. It enables to have a
first order estimate of the macroscopic deflection as well as local stress fields. In most applications the
first order deflection is accurate enough. However, this theory does not capture the local effect of shear
forces on the microstructure because shear forces are one higher-order derivative of the bending moment
in equilibrium equations (Qα = Mαβ,β).

Because shear forces are part of the macroscopic equilibrium of the plate, their effect is also of
great interest for engineers when designing structures. However, modeling properly the action of shear
forces is still a controversial issue. Reissner [2] suggested a model for homogeneous plates based on a
parabolic distribution of transverse shear stress through the thickness (Reissner-Mindlin theory). This
model performs well for homogeneous plates and gives more natural boundary conditions than those
of Kirchhoff-Love theory. Thus, it is appreciated by engineers and broadly used in applied mechanics.
However, the direct extension of this model to more complex microstructures raised many difficulties.
Many suggestions were made for laminated plates [3, 4] as well as in-plane periodic plates [5, 6], leading
to more complex models.

Revisiting the approach from Reissner [2] directly with laminated plates, Lebée and Sab [7, 8]
showed that the transverse shear static variables which come out when the plate is heterogeneous are
not shear forcesQα but the full gradient of the bending momentRαβγ = Mαβ,γ. Using conventional varia-
tional tools, they derived a new plate theory – called Bending-Gradient theory – which is actually turned
into Reissner-Mindlin theory when the plate is homogeneous. This new plate theory is seen by the au-
thors as an extension of Reissner’s theory to heterogeneous plates which preserves most of its simplicity.
Originally designed for laminated plates, it was also extended to in-plane periodic plates using averaging
considerations such as Hill-Mandel principle and successfully applied to sandwich panels [9, 10].

In order to give a more comprehensive illustration of the features of this new theory, its homogeniza-
tion scheme was extended to space frames in [1]. Space frames are large roofings made of many identical
unit-cells. Numerous illustration are given in Buckminster Fuller’s achievements. In this work, a space
frame is a unit-cell made of connected beams periodically reproduced in a plane and which “from far”
can be considered as a plate. Many devices fall into this category : space trusses [11], tensegrity, nexorade
[12], gridshells [13], lattices, expanded metal, gratings,etc.

In Section 2 we recall briefly the main features of the Bending-Gradient theory and some key point
related to space frame homogenization. Then, in Section 3 we consider a square beam lattice (Figure 1)
and apply both Bending-Gradient and Cecchi and Sab [6] Reissner-Mindlin homogenization scheme.
This very simple pattern will enable the derivation of closed-form solutions of the auxiliary problems
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which are easy to interpret.

Fig. 1 – A square beam lattice

In order to check this prediction, a comparison with exact solutions of the cylindrical bending of
the lattice is performed in Section 4. It reveals that only the Bending-Gradient theory is able to capture
second order effects both in terms of deflection and local stress fields.

2 Homogenization of a periodic space frame as a thick plate

Full details about the Bending-Gradient plate theory are provided in [7, 8, 9]. In this section we
recall shortly its main features and gives the main steps of the homogenization scheme dedicated to
space frames.

We consider a linear elastic plate which mid-plane is the 2D domainω ⊂R2. Cartesian coordinates
(x1,x2,x3) in the reference frame(e−1,e−2,e−3) are used to describe macroscopic fields. At this stage, the
microstructure of the plate is not specified.

The membrane stressNαβ, the bending momentMαβ, and shear forcesQα (α,β,γ... = 1,2) are the
usual generalized stresses for plates. Moreover, the main feature of the Bending-Gradient theory is the
introduction of an additional static unknown : the gradient of the bending momentRαβγ = Mαβ,γ. The 2D
third-order1 tensorR

⌢
complies with the following symmetry :Rαβγ = Rβαγ. It is possible to derive shear

forcesQ
−

from R
⌢

with : Qα = Rαββ.
The full bending gradientR

⌢
has six components (taking into account symmetries of indices) whereas

Q
−

has two components. Thus, using the full bending gradient as static unknown introduces four addi-
tional static unknowns. More precisely :R111 andR222 are respectively the cylindrical bending part of
shear forcesQ1 andQ2, R121 andR122 are respectively the torsion part of these shear forces andR112 and
R221are linked to strictly self-equilibrated stresses. Equilibrium equations and stress boundary conditions
are very similar to those of Reissner-Mindlin theory whereQα = Mαβ,β is replaced byRαβγ = Mαβ,γ.

The main difference between Reissner-Mindlin and Bending-Gradient plate theories is that the latter
enables the distinction between each component of the gradient of the bending moment whereas they are
mixed into shear forces with Reissner-Mindlin theory. Consequently, in addition to the usual Kirchhoff-
Love stiffness tensorsA

∼∼
, B

∼∼
, D

∼∼
, a generalized shear compliance tensor is introduced :f

⌢⌢
. This six order

tensor generalizes the usual Reissner-Mindlin constitutive law.
When the plate is laminated, closed-form expression forA

∼∼
, B

∼∼
, D

∼∼
andf

⌢⌢
where derived in [7]. When

the plate is periodic these tensors must be derived using an homogenization procedure. This procedure
relies on the fundamental assumption that loadings as well as macroscopic variables (M

∼
,M

∼
,R

⌢
) varies

slowly compared to the size of the microstructure (the unit-cell). This means that at the scale of the
unit-cell the macroscopic fields can be considered as uniform. Hence, it is possible to define auxiliary
problems which enable the derivation of the actual microscopic fields as a linear superposition of macro-
scopic fields. Once this is done, it is straightforward to take the average of the elastic energy stored inside
the unit-cell and equate it to the macroscopic elastic energy density (namely the macroscopic constitutive

1. Vectors and higher-order tensors are boldfaced and different underlinings are used for each order : vectors are straight
underlined,u− . Second order tensors are underlined with a tilde :M

∼
. Third order tensors are underlined with a parenthesis :R

⌢
.

Fourth order tensors are are doubly underlined with a tilde :D∼∼
. Sixth order tensors are doubly underlined with a parenthesis :

f
⌢⌢

.
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equation). This analogy between micro and macroscopic energyis usually called Hill-Mandel principle.
When the plate microstructure is constituted of a 3D continuum, the auxiliary problems were introduced
in [9]. In the present case, we consider periodic plates which unit-cell is constituted of connected beams.
This necessitates the adaptation of the homogenization scheme for 3D continuum which is detailed in [1].
Basically, in addition to the translation displacement fieldu− we must also take into account the rotation
field θ− of the beams.

The homogenization procedure is done as follows. First the unit-cell is defined and the Kirchhoff-
Love auxiliary problem is solved. This enables the derivation of the beam stress inside the unit-cell as
function of the macroscopic bending momentM

∼
and membrane stressN

∼
. Then a second auxiliary

problem is solved for deriving the beam stress related to the bending-gradientR
⌢

. Since the localization
of stress is known it is possible to compute the plates constitutive tensorsA

∼∼
, B

∼∼
, D

∼∼
andf

⌢⌢
equating the

microscopic energy stored in the unit-cell with the plate energy density.

3 Homogenization of a square lattice as a Bending-Gradient plate

In order to illustrate the homogenization scheme, we consider a very simple structure : a square beam
lattice (Figure 1). In this section, we detail the homogenized behavior of the lattice as a Bending-Gradient
plate and also as a Reissner-Mindlin plate.

3.1 The unit-cell

Fig. 2 – The beam lattice unit-cell

Figure 2 shows the unit-cell of the lattice idealization. It is constituted of two beams (“h” : horizontal,
“v” : vertical) which lie in the(e−1,e−2) plane. Hence their local reference frames write as(e−1,e−2,e−3) for
beam “h” and(e−2,−e−1,e−3) for beam “v”. Both beams are identical with lengthb. We assume the beam
section has two orthogonal axis of symmetry. One axis ise−3.

3.2 Kirchhoff-Love auxiliary problem

We give directly the generalized stress field localization as function ofN
∼

andM
∼

in the local refer-
ence frame of each beam :

hr−
KL =





bN11

bN12

0





h

and hm−
KL =





−bM12

bM11

bN12
(

s1−
b
2

)





h

(1a)

vr−
KL =





bN22

−bN12

0





v

and vm−
KL =





bM12

bM22

−bN12
(

s1−
b
2

)





v

(1b)
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Wherer− is the beam resultant (traction and shear forces) andm− is the bending moment (torsion and
bending moments). This result is rather intuitive : membrane traction in Direction 1 generates only uni-
form traction of beam "h“, as well asN22 generates traction in beam ”v“. In plane shearN12 puts both
beams in non-uniform in-plane bending. Similarly, pure bending in Direction 1 generates pure out-of-
plane bending of beam ”h“ as well asM22 generates pure out-of-plane bending in beam ”v“. Finally,
plate torsionM12 generates pure torsion in both beams.

The corresponding Kirchhoff-Love stiffness tensors are :

[

A
∼∼

]

=







ES
b 0 0
0 ES

b 0

0 0
(

b
GSs,2

+ b3

12EI3

)−1






,

[

B
∼∼

]

= 0 and
[

D
∼∼

]

=





EI2
b 0 0
0 EI2

b 0
0 0 GJ

b



 (2)

where we introduced Voigt notation
[

A
∼∼

]

for fourth order tensorsA
∼∼

as :

[

A
∼∼

]

=





A1111 A2211
√

2A1211

A2211 A2222
√

2A1222√
2A1211

√
2A1222 2A1212



 (3)

There is no coupling betweenN
∼

andM
∼

(B
∼∼
= 0) and there is no Poisson’s effect (A1122=D1122= 0).

3.3 Bending-Gradient and Reissner-Mindlin auxiliary problems

The generalized stress localization related toR
⌢

in the local reference frame of each beam is :

hr−
(R) =





0
0

b(R111+R122)





h

and hm−
(R) =





bR121
(

s1−
b
2

)

bR122
(

s1−
b
2

)

0





h

(4a)

vr−
(R) =





0
0

b(R121+R222)





v

and vm−
(R) =





−bR122
(

s1−
b
2

)

bR121
(

s1−
b
2

)

0





v

(4b)

Let us recall thatQ1 = R111+R122 andQ2 = R121+R222. Thus the resultantshr−
(R) andvr−

(R) are directly
function of the shear forces. However, the torsion part of shear forces (R122 andR121) generates additional
torsion and bending inhm−

(R) andvm−
(R). Thus, shear forces related to cylindrical bending and torsion do

not generate the same local stress field.
In order to compare in details the Bending-Gradient theory with Reissner-Mindlin theory, we also

considered a Reissner-Mindlin homogenization scheme. We chose Cecchi and Sab [6] method for de-
riving a Reissner-Mindlin constitutive equation. Following the work from Whitney [3], Cecchi and Sab
[6] assume the plate is under cylindrical bending for deriving local stress fields and a Reissner-Mindlin
constitutive equation. The related Reissner-Mindlin field localization writes as follows :

hr−
(Q) =





0
0

bQ1





h

and hm−
(Q) = 0− (5a)

vr−
(Q) =





0
0

bQ2





v

and vm−
(Q) = 0− (5b)

Thus, there is no more correction ofm− .
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4 Cylindrical bending of a square beam lattice

In order to give a clear demonstration of the additional warping effects included in the Bending-
Gradient theory we compare Kirchhoff-Love, Reissner-Mindlin and Bending-Gradient models to the
exact solution in cylindrical bending configuration where the lattice direction is rotated by 45° with
respect to the bending direction.

Figure 3 shows the lattice configuration. It is bent in Directionx1 along 2n diamond shaped unit-cells
and is infinitely periodic in directionx2. The beams are transversely loaded with the sine shaped load
k− =−k0 sinκx1e−3. The span is :L = 2

√
2nb (Figure 4).

Fig. 3 – Beam lattice configuration at 45° in cylindrical bending configuration

Fig. 4 – Top view of the beam lattice at 45° and detailed parameters (only half a span is shown)

There are two sets of beams. The first set “+” is numbered 1..2n and is rotated by+π/4 in (e−1,e−2)
plane and the second set “−” is rotated by−π/4. It is symmetric to set+ with respect to any(A j ,e−1,e−3)
plane. Hence the focus is on set+ in the following.

Beams are perfectly connected at nodesA j located atx1 = x j = jb/
√

2. Simple support condition
occurs at nodeA0 andA4n : both beams are perfectly connected together, however the node is free to
rotate with respect to the support.

The derivation of the exact solution of this problem, though cumbersome, does not raise any diffi-
culty. The homogenized plate surrogate for the configuration in Figure 3 is a simply supported plate under
cylindrical bending where the distributed load isp

−
= 2k0

b sinκx1e−3 in order to have the same loading per
unit surface.

In order to compare the models, the bending momentm2 and the torsionm1 along beams “+” are plot-
ted respectively in Figures 5 and 6 for the exact solution and homogenization approximations. Kirchhoff-
Love and Reissner-Mindlin solutions are identical and plotted as the same continuous curve which fol-
lows the exact solution on average. By contrast, the Bending-Gradient approximation follows closely the
exact solution. Especially, it captures the change of sign of the bending momentm2 close to the support.
In case the lattice is made of concrete, this kind detail is useful for an efficient design. This is not included
in the other approximations. The errorsm1−mex

1
m∗ and m2−mex

2
m∗ are also plotted in Figures 7 and 8. It shows

that the maximum error is 1% for the Bending-Gradient and 9% for the other approaches.
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Fig. 5 – Bending momentm2 along Beams “+” for
a 4 unit-cell lattice (only half the span is plotted)
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Fig. 6 – Torsionm1 along Beams “+” for a 4 unit-
cell lattice (only half the span is plotted)
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Fig. 7 – Bending moment error along Beams “+”
for a 4 unit-cell lattice (only half the span is plot-
ted)
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Fig. 8 – Torsion error along Beams “+” f or a 4
unit-cell lattice (only half the span is plotted)

5 Discussion

In the previous section, three homogenization approximations of the cylindrical bending of a beam
lattice were derived. The first one, leading to a Kirchhoff-Love plate model is also known to be the
first order of the asymptotic expansion [14]. This approach enables to have a first order estimate of the
macroscopic deflection as well as local stress fields. Except with sandwich panels and laminated plates,
in most application the first order deflection is accurate enough. However, this approach does not capture
the local effect of shear forces on the microstructure and the common practice for deriving the actual
effect of transverse shear appears clearly as not reliable in more general configurations.

The Reissner-Mindlin homogenization approach used in this paper clearly misses some part of their
effect. This is because of the assumption of cylindrical bending which is made in most approach for de-
riving a Reissner-Mindlin-like constitutive equation. This assumption enforcesQ1 =M11,1 and precludes
any possible effect of the other derivatives of the bending moment on the local stress on the microstruc-
ture.

In the present case, the Bending-Gradient approximation captures all second order effects and gives
a very satisfying description of both the deflection and the local stress fields.

Our approach still presents some limitations. First, in the present case, we chose supports conditions
for the lattice so that edge effects remain limited. It is well known in homogenization that these effects
might be not negligible in some configurations. This point is far out of the scope of this paper and raises
the question – common to all models – regarding the mechanical meaning of plate boundary conditions.
Second, the local load distribution on the microstructure was arbitrarily chosen. At first order, this choice
does not affect the fields localization (Kirchhoff-Love case). However, different load distributions could
generate different localization of stress fields when looking for a higher order approximation (see [15]
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for instance).

6 Conclusion

In this paper, the Bending-Gradient homogenization scheme was extended to space frames. Its appli-
cation to a square beam lattice led to closed form solutions of the auxiliary problems. It also revealed that
this microstructure cannot be properly modeled with Reissner-Mindlin theory. This observation was con-
firmed when comparing homogenization approaches with the exact solution of the cylindrical bending of
the lattice. Only the Bending-Gradient theory is able to capture second order effects both in macroscopic
deflection and in local fields.

Many other periodic structures might not be correctly modeled with Reissner-Mindlin theory such
as concrete waffle slabs, orthotropic decks or composite floor systems and requires more accurate ap-
proaches such as the Bending-Gradient model.

Finally, provided the limitations pointed out in Section 5 are kept in mind, the Bending-Gradient
plate theory is considered by the authors as a sound extension of the Reissner-Mindlin theory to the case
of heterogeneous plates. More precisely, it is an attempt to concentrate most of the results given by the
second order of the asymptotic expansion [5] into a model which keeps most aspects of Reissner-Mindlin
model, well understood by engineers.
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