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Introduction

To say that a constitutive model has to verify the principle of material objectivity to ensure its frameindifference is presented as common wisdom in the area of continuum mechanics. This problematic has been extensively studied, detailed and discussed. Among the points that have been subjected to debates are the principle itself [START_REF] Rougée | Kinematics of finite deformations[END_REF], a (re)definition of the change of observers [START_REF] Rougée | Kinematics of finite deformations[END_REF][START_REF] Garrigues | Fondements de la Mécanique des Milieux Continus[END_REF] with inertial/non inertial consideration [START_REF] Murdoch | On material frame-indifference, intrinsic spin, and certain constitutive relations motivated by the kinetic theory of gases[END_REF] or its link with the superposition of a rigid body motion [START_REF] Murdoch | Some primitive concepts in continuum mechanics regarded in terms of objective space-time molecular averaging : The key role played by inertial observers[END_REF][START_REF] Muschik | Systematic remarks on objectivity and frame-indifference, liquid crystal theory as an example[END_REF][START_REF] Truesdell | The Non-Linear Field Theories of Mechanics[END_REF]. An important issue concerns the definition of material frame-indifferent time derivatives to represent, objectively, the variations of a tensor with respect to time. These derivatives appear in incremental forms of constitutive models when the invariance under superposed rigid body motions is indeed observed. But the time derivative of an objective tensor is in general not objective. To work out this problem, 3D objective transport operators are defined ; they are also referred to as "objective rates" or "invariant time fluxes". They are applied in particular to the Cauchy stress tensor. The result of each of these transports is proven to be invariant with respect to superposition of rigid body motions [START_REF] Marsden | Mathematical foundation of elasticity[END_REF][START_REF] Nemat-Nasser | Plasticity, A Treatise on Finite Deformation of Heterogeneous Inelastic Materials[END_REF][START_REF] Truesdell | The Non-Linear Field Theories of Mechanics[END_REF]. The difficulty resides in the fact that there are "infinitely many possible objective time fluxes that may be used" [START_REF] Truesdell | The Non-Linear Field Theories of Mechanics[END_REF].

In the end, the validity of such an "objective" approach, and the restriction that it imposes on the constitutive models are often questioned and reconsidered ; see for example [START_REF] Besson | Non-Linear Mechanics of Materials[END_REF][START_REF] Duszek | The localization of plastic deformation in thermoplastic solids[END_REF][START_REF] Fiala | Time derivative obtained by applying the riemannian manifold of riemannian metrics to kinematics of continua[END_REF][START_REF] Garrigues | Fondements de la Mécanique des Milieux Continus[END_REF][START_REF] Meyers | Some comments on objectivity rates of symmetric eulerian tensors with application to eulerian strain rates[END_REF][START_REF] Murdoch | On material frame-indifference, intrinsic spin, and certain constitutive relations motivated by the kinetic theory of gases[END_REF][START_REF] Muschik | Systematic remarks on objectivity and frame-indifference, liquid crystal theory as an example[END_REF][START_REF] Muschik | Is the heat flux density really non-objective ? a glance back, 40 years later[END_REF][START_REF] Rougée | Kinematics of finite deformations[END_REF][START_REF] Schieck | Deformation analysis for finite elastic-plastic strains in a lagrangean-type description[END_REF][START_REF] Simo | A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations[END_REF][START_REF] Stumpf | The application of tensor algebra on manifolds to nonlinear continuum mechanics -invited survey article[END_REF][START_REF] Svendsen | On frame-indifference and form-invariance in constitutive theory[END_REF][START_REF] Valanis | Elasticity of space-time : basis of newton's 2nd law of motion[END_REF]. Thus, if everyone agrees on the necessity to define frame-indifferent entities and equations, the usage, applications and consequences of the notion of objectivity still constitute an open subject of debate.

Differential geometry, also known as Ricci-calculus, [START_REF] Levi-Civita | The absolute differential calculus[END_REF][START_REF] Schouten | Ricci-calculus : An Introduction to Tensor Analysis and Its Geometrical Applications[END_REF], offers a convenient framework to model the finite transformations of a material continuum. It proposes a mathematical formalism for the use of tensors expressed in arbitrary coordinate systems within a differentiable manifold. The physical entities are then represented with tensor fields of the considered manifold. It is recognized as a formalism of choice to describe the straining motion of material continua within a classical three-dimensional (3D) context. Within such a formalism, tensors are independent of any arbitrary change of coordinate systems and it is possible to define derivative operators that are tensors of the considered space. Within its fourdimensional (4D) context, differential geometry has found a major and essential application in physics with the theory of General Relativity, which has shown its ability to deal properly with space-time transformations. The covariance principle guarantees the proper expression of all physical relations in any kind of systems of reference, as developed and reviewed by Landau and Lifshitz [START_REF] Landau | The Classical Theory of Fields[END_REF]. Indeed, as written by Eringen [START_REF] Eringen | Nonlinear Theory of Continuous Media[END_REF] : "Attempts to secure the invariance of the physical relations of motion from the observer have produced one of the great triumphs of twentieth-century physics. (...) Attempts to free the principles of classical mechanics from the motion of an observer were resolved by Einstein in his general theory of relativity...". The only appropriate way to define frame independence is thus to consider four-dimensional quantities, i.e. to construct physics and material mechanics within the scope of 4D physics. The present work thus proposes to use the covariance principle to describe a continuum, in order to guaranty the frame-indifference of tensors, equations and models. A major interest consists in using such a method to construct material constitutive relations. The objective of the present paper is to illustrate the method and use the 4D formalism to construct models for elastic transformations.

Material objectivity

In three dimensions, a rigid frame of reference is classically associated with an observer and offers the possibility to parametrize the position and instant of an occurring event. The frame of reference is constituted by a 3D Cartesian coordinate system to specify any positions, to which an origin for time and a Galilean chronology are associated. If the same event is now described by two observers with the respective coordinates and time (x i ,t) and ( x i ,t), then an orthogonal matrix Q and a vector δ can always be found such that :

x i = Q i j (t)x j + δ i (t) (1) 
where Q and δ correspond respectively to the instantaneous rotation and to the instantaneous translation of one frame with respect to the other. Then a second rank tensor T is said to be frame-indifferent or objective if it verifies the transformation rule :

T i j = Q i k (t)Q j l (t)T kl (2) 
for any changes of observers. Similar equations may be written for other component types and tensor ranks.

Truesdell and Noll [START_REF] Truesdell | The Non-Linear Field Theories of Mechanics[END_REF] define the principle of objectivity as : "it is a fundamental principle of classical physics that material properties are indifferent, i.e., independent of the frame of reference or observer". Nemat Nasser [START_REF] Nemat-Nasser | Plasticity, A Treatise on Finite Deformation of Heterogeneous Inelastic Materials[END_REF] defines it as : "Constitutive relations must remain invariant under any rigid-body rotation of the reference coordinate system. This is called objectivity or the material frame indifference." As stated by Liu [START_REF] Liu | On euclidean objectivity and the principle of material frame-indifference[END_REF], "the principle of material frame indifference plays an important role in the development of continuum mechanics, by delivering restrictions on the formulation of the constitutive functions of material bodies. It is embedded in the idea that material properties should be independent of observations made by different observers. Since different observers are related by a time-dependent rigid transformation, known as a Euclidean transformation, material frame-indifference is sometimes interpreted as invariance under superposed rigid body motions". The two following physical notions could be distinguished indeed :

-On one hand, the invariance under superposed rigid body motions. For instance, when an unstrained body is animated with a rigid body motion, no stress is generated in the material. This property is related to the material and the observed mechanical quantities. It concerns most materials and mechanical phenomena. -On the other hand, the independence with respect to the change of observers. For instance, when an observer moves around an unstrained material, no stress is generated in the material. This is a fundamental principle of classical physics. Within a classical three-dimensional formalism, as stated by Liu, both properties result in the same mathematical condition described by Eq. 1 such that the term "objective" represents, ambiguously, both characteristics. It is further important to note that the 3D classical definition of observer-independence refers to invariance over Euclidian transformations and this is not verified by all 3D tensors.

The 4D formalism and the principle of covariance

As opposed to classical mechanics, the space is four-dimensional (4D) ; the fourth dimension references time as a coordinate. A curvilinear coordinate system x µ references events such that :

x µ = (x 1 , x 2 , x 3 , x 4 ) = (x i , ct) (3) 
Here, the indices µ varies from 1 to 4, while the indices i varies from 1 to 3. Note that x i corresponds to the classical 3D coordinates. Greek indices refer to 4D entities while Latin indices refer only to their spatial parts. The fourth coordinate x 4 is the time t multiplied by reference speed c to be homogeneous with a length dimension as the other three spatial coordinates. Let z µ represent the 4D Cartesian inertial coordinates. This coordinate system is said to be Galilean/Minkowskian. An interval ds is then defined in the 4D space-time such that :

(ds) 2 = (dz 4 ) 2 -(dz 1 ) 2 -(dz 2 ) 2 -(dz 3 ) 2 = g µν dx µ dx ν (4) 
where g µν are the covariant components of the metric tensor of the coordinate system x µ . In this space-time, physical entities are represented by 4D tensors. Consider now the same event parametrized with two different curvilinear coordinates x µ and x µ . Tensors are indifferent to arbitrary changes of coordinate systems. Thus, the components of the second rank tensor α always transform through a change of coordinates from x µ to x µ as [START_REF] Eringen | Nonlinear Theory of Continuous Media[END_REF][START_REF] Levi-Civita | The absolute differential calculus[END_REF][START_REF] Oldroyd | On the formulation of rheological equations of state[END_REF][START_REF]Tensor density[END_REF] :

α µν = ∂ x µ ∂x λ ∂ x ν ∂x κ α λκ (5) 
It is possible to write similar equations for the components of tensors of any rank and for any components types : covariant, contravariant or mixed. The objective of this work is to describe the finite transformations of a material body as it is traditionally studied in continuum mechanics. Consider an observer who measures the physical entities characterizing the state of the material body for each instant of time and for each point of space. In any case, the absolute velocity is always small with respect to the speed of light anywhere in the matter. Further, Newtonian mechanics is embedded in General Relativity, as a limiting theory concerning phenomena for which the absolute speed of each material point is negligible compared to the speed of light [START_REF] Havas | Four-dimensional formulations of newtonian mechanics and their relation to the special and the general theory of relativity[END_REF][START_REF] Weinberg | Gravitation and Cosmology : Principles and Applications of the General Theory of Relativity[END_REF][START_REF] Boratav | Relativité. Ellipses[END_REF]. The physical hypotheses that are retained correspond to the classical hypotheses of Newtonian physics. It is thus supposed through out this work that the observed transformation is a classical continuum transformation encountered in mechanics : in particular, the speed of any point is negligible compared to the speed of light and the transformation does not change the definition of time. This is why we choose to always define time with respect to its absolute value in any frames of reference. It should be stressed however, that introducing the 4D-formalism means automatically passing to the realm of Relativity and introducing the Lorentz invariance. The velocity c serves in our case, uniquely as useful dimensional constant unifying space and time units.

Physical observations lead to the conclusion that the presence, nature and number of the observers do not change the physical phenomena undergone by the matter. Observers should thus agree on the evaluation of these physical phenomena. This corresponds to the principle of general covariance first formulated by A. Einstein [START_REF] Havas | Four-dimensional formulations of newtonian mechanics and their relation to the special and the general theory of relativity[END_REF]. It states that a physical equation must be expressed using a mathematical form that is strictly the same for each observer : the model should be independent of any arbitrary change of observers. This is possible with a 4D covariant description of physics. Within this formalism, all tensors are by construction independent of arbitrary changes of (possibly accelerated and deformed) observers. Because the fourth coordinate represents time, the observers are completely defined once the 4D coordinate system is chosen and 4D coordinate transformations describe changes of observers. We thus propose to describe the finite transformations of materials with a 4D covariant formalism.

Covariance and invariance under superposition of rigid body motion

We now propose to write the 3D change of observers defined by Eq. 1 using the 4D formalism to see the implications of the covariance principle. Such a change of observer is described with :

x i = Q i j x j + δ i x 4 = x 4 = ct (6) 
This corresponds to a change of coordinates (from x µ to x µ ) of the 4D space-time. The 4D change of coordinates of Eq. 11 is then equivalent to the 3D change of frame represented by Eq. 1. Because the mapping of the events with the 4D coordinate system includes time, there is thus no mathematical difference between a change of 4D coordinate systems and a change of frame of reference (as opposed to the 3D approach). In other words, any change of 3D observers can be represented by a 4D change of coordinates. The Jacobian matrix of this change of coordinates is then :

∂ x µ ∂x ν = Q i j 1 c
δi + Qi j x j 0, 0, 0

where δi ≡ dδ i dt and Qi j ≡ dQ i j dt . The factor 1/c comes from the differentiation with respect to x 4 = ct. It should be noted that x µ is a curvilinear coordinate system. Then, with T µν and T µν the contravariant components of the second rank 4D tensor T in the respective coordinate systems, it can be written (applying Eq. ?? with Eq. 7) :

             T i j = Q i k Q j l T kl + 1 c δi + Qi m x m Q j l T 4l + 1 c δ j + Q j m x m Q i k T k4 + 1 c 2 δi + Qi m x m δ j + Q j m x m T 44 T 4i = Q i j T 4 j + 1 c δi + Qi j x j T 44 T 44 = T 44 (8)
In any cases, 4D tensors verify equations such as Eq. 8 because they are frame-indifferent. This equation is equivalent to Eq. 2 only if :

1 c δi + Qi m x m Q j l T 4l + 1 c δ j + Q j m x m Q i k T k4 + 1 c 2 δi + Qi m x m δ j + Q j m x m T 44 → 0 (9)
This is possible, letting c tend to infinity in our non-relativistic context and provided T 4i , T j4 and T 44 are small compared to c. It is thus demonstrated that if an entity is a tensor of the 4D space-time and if its fourth components have an adapted limit when c tends to infinity such that Eq. 9 is verified, then this quantity is invariant with respect to the superposition of rigid body motions. But the terms of Eq 9 do not always vanish, mainly because the fourth components of a tensor could be proportional to c (see the example of the four-velocity in the following Section), such that a 4D tensor is frame-indifferent in any case but may or may not be invariant under rigid body motion superposition. We thus have shown that the 4D formulation enables to make a clear distinction between -the property of frame indifference : by construction verified by a all 4D tensors with Eq. 5, -the property of invariance under rigid body motion superposition : a tensor has to verify Eq. 9. Because these properties are now clearly distinguished, it is necessary to clarify what is meant by "objective" : to prevent possible ambiguities, in this work we use the expressions "frame-indifference" and "invariance under rigid body motion superposition". Using the 4D formalism, a law, and thus a constitutive model, is frame-indifferent as soon as 4D tensors are used. It is a principle a physics that has to be verified. It is nevertheless possible to construct a model that depends on the superposition of rigid body motion.

Material transformations within a 4D context

Consider the finite transformation of a material body. A particle of matter is defined as an elementary 3D volume of matter. Similarly to the 3D case, we define configurations of the matter corresponding in the space-time formulation to space-like hyper-surfaces (3D volumes) of the space-time manifold. The motion of the particles corresponds to a set of worldlines (trajectories) that spans a connected open domain of the 4D manifold. The coordinates of the events undergone by a given particle are described with the specification of bijective and differentiable functions noted ζ µ within the inertial system z µ and ξ µ within a coordinate system x µ . The four-velocity of a particle of matter, within the hypotheses of this work may be defined as :

u µ = dξ µ dt = dξ i dt , c (10) 
The definition of the four-velocity can be understood as relative to the chosen coordinate system. General definitions for 4D deformation and strain tensors have been proposed by Lamoureux-Brousse [START_REF] Lamoureux-Brousse | Infinitesimal deformations of finite conjugacies in non-linear classical or general relativistic theory of elasticity[END_REF] for General Relativity applications. They are applied here to the 4D non-relativistic limit. To take a full advantage of the 4D formalism, this author has proposed to compare two different motions ξ i and ξ i of the same material body. These two motions are described within two different coordinate systems respectively x µ and x µ , associated to the two respective covariant components of the metric tensor g µν and g µν . To quantify the difference between one motion and the other, a 4D generalization of the deformation gradient is proposed such that :

F µ ν (ξ µ , ξ ν ) ≡ ∂ξ µ ∂ξ ν (11) 
The 4D generalization of the Cauchy's deformation tensor is defined as

b µν ≡ F α µ F β ν g αβ (12) 
The second rank energy-momentum four-tensor of the matter corresponds to the 4D generalization of the 3D Cauchy stress tensor ; it is possible to show that its spatial components reduce to the 3D Cauchy stress components in the non-relativistic limit [START_REF] Landau | The Classical Theory of Fields[END_REF][START_REF] Williams | The elastic energy momentum tensor in special relativity[END_REF][START_REF] Misner | Gravitation[END_REF]. This tensor is a second rank tensor density and can be shown to have a weight equal to one [START_REF] Misner | Gravitation[END_REF][START_REF] Oldroyd | On the formulation of rheological equations of state[END_REF]. The use of a tensor density to describe the stress tensor is not common in continuum mechanics, although it is mentioned in [START_REF] Eringen | Nonlinear Theory of Continuous Media[END_REF][START_REF] Oldroyd | On the formulation of rheological equations of state[END_REF]. It is necessary to take the weight of the tensor into account because it appears in the definitions of the derivative operators below.

Derivatives in a 4D context

The 4D formalism offers the possibility to define derivatives and time derivative operators that are 4D tensors, in other words that are frame-indifferent. The covariant derivative operator is first defined such that :

dα µν = ∇ λ α µν dx λ = ∂α µν ∂x λ + Γ µ κλ α κν + Γ ν κλ α µκ dx λ (13) 
for a second rank tensor and where the Γ ν κλ are the coefficients of the affine connection. A covariant rate corresponding to an increment of the tensor as seen by a point of the manifold and following the direction of the motion may be defined. It is a tensor of the 4D space-time [START_REF] Landau | The Classical Theory of Fields[END_REF]. Within the hypotheses of this work, it becomes the operator noted D Dt in this work, such that :

lim t →t α(ξ i ,t ) -α(ξ i ,t) t -t = dξ λ dt ∇ λ α = Dα Dt (14) 
The Lie derivative, 4D operator corresponding to the variation of the tensor as seen by the particle within its motion is then defined as :

lim t →t α ξ µ + dξ µ dt (t -t) -α(ξ µ ) t -t = L u (α) (15) 
For a second rank tensor of weight W , one has L u (α) µν = u λ ∂α µν ∂x λα λν ∂u µ ∂x λα µλ ∂u ν ∂x λ +W α µν ∂u λ ∂x λ

Both, the covariant rate and the Lie derivative are frame-indifferent. The Lie derivative can be shown to be invariant under rigid body motion superposition. The Lie derivative of the Cauchy stress tensor within an inertial 3D Cartesian frame corresponds to Truesdell's transport. Truesdell's rate is thus the only objective transport that corresponds to a time derivative of the stress tensor. Using the derivatives above it is possible to evaluate the four acceleration as the variation of the fourvelocity as seen by a point of the manifold following the direction of the motion. The covariant derivative can be applied to the velocity to define the 4D rate of deformation d as :

d µ ν = 1 2 (∇ ν u µ + ∇ µ u ν ) (17) 
It is also possible to define a spin tensor. It can be shown that d, the spin tensor and the four acceleration are 4D tensors and are thus frame-indifferent [START_REF] Bressan | Relativistic Theories of Materials[END_REF][START_REF] Grot | Relativistic continuum mechanics part i mechanics and thermodynamics[END_REF][START_REF] Boratav | Relativité. Ellipses[END_REF][START_REF] Landau | The Classical Theory of Fields[END_REF].

Construction of hyperelastic and hypoelastic models

Using the tensor definitions given in the previous sections it is possible to construct isotropic hyperelastic models such that [START_REF] Panicaud | A frame-indifferent model for a thermo-elastic material -beyond the threedimensional eulerian and lagrangean descriptions[END_REF] :

σ µν = |b α β | a 1 b κλ (g κλ -b κλ ) + a 0 ∆T b µν + |b α β | a 2 b µ κ (b κν -b κ λ b λν ) (18) 
where the a i are scalar constants. It is possible to further detail the different terms :

a 0 ∆T b µν is the thermal expansion due to a non-isothermal transformation ; -a 1 b κλ (g κλb κλ )b µν corresponds to the "linear", homogeneous and isotropic elastic behaviour ; -a 2 b µ κ (b κνb κ λ b λν ) are non-linear quadratic and cubic terms due to elastic behaviour. Hypo-elastic models may also be constructed, like for example : L u (σ) µν = 2µd µν + λd κλ g κλ g µν [START_REF] Stumpf | The application of tensor algebra on manifolds to nonlinear continuum mechanics -invited survey article[END_REF] where the constants are here chosen to be the classical Lamé elastic constants.

We consider now a particular kinematics to illustrate how finite transformations can be handled with the chosen formalism and we compare this 4D approach with the classical 3D relations. When necessary, formal computations have been performed using the software Mathematica c . The following simple isothermal and pure shear transformation is considered

    ζ 1 = Z 1 + γ(t)Z 2 ζ 2 = Z 2 ζ 3 = Z 3 ζ 4 = ct     (20) 
where γ depends on the fourth coordinate. To respect the hypotheses of this work, the geometry and shear speed of the considered motion are such that the velocities for all the events are negligible compared to the speed of light. The results are given in Figure 1 for the hyperelastic model and Figure 2 for the hypoelastic model. In the second case, the 4D model is compared with solutions that would be obtained using classical 3D objective stress transports instead of the Lie derivative. 

Conclusion

The application of the covariance principle within the 4D differential geometry formalism ensures the frame-indifference of any physical relations. The present approach enables to obtain constitutive equations that have not necessarily a direct matching with a 3D classical relation. We have proposed a four-dimensional formulation for hyper and hypoelastic models corresponding. The general 4D differential geometry formalism thus appears to be a promising tool to compute other kind of material constitutive relations.
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 1 Fig. 1 -Hyper-elastic model. Shear stress σ 12 versus slip γ, for different sets of parameters. Lamé constant a 2 is 75GPa. The ratio r describe a kinematics non-linearity (r ≡ 1 + a 1 a 2 ) and takes the different values listed in the caption.

Fig. 2 -

 2 Fig. 2 -Hypo-elastic model. Shear stress σ 12 versus time, for different stress transports.