
HAL Id: hal-01717075
https://hal.science/hal-01717075v1

Submitted on 27 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Proper Generalized Decomposition and Variational
Theory of Complex Rays: an alliance to consider

uncertainties over mid and high broad frequency bands
Andrea Barbarulo, Pierre Ladevèze, Hervé Riou, Matthieu Graveleau

To cite this version:
Andrea Barbarulo, Pierre Ladevèze, Hervé Riou, Matthieu Graveleau. Proper Generalized Decompo-
sition and Variational Theory of Complex Rays: an alliance to consider uncertainties over mid and
high broad frequency bands. 11e colloque national en calcul des structures, CSMA, May 2013, Giens,
France. �hal-01717075�

https://hal.science/hal-01717075v1
https://hal.archives-ouvertes.fr


CSMA 2013
11e Colloque National en Calcul des Structures

13-17 Mai 2013

Proper Generalized Decomposition and Variational Theory of Com-
plex Rays: an alliance to to consider uncertainties over mid and high
broad frequency bands

Andrea BARBARULO 1,2, Pierre LADÈVEZE 3, Hervé RIOU 4, Matthieu GRAVELEAU 5

1 ENS-Cachan,LMT,barbarulo@lmt.ens-cachan.fr
2 University of Cambridge,Engineering Department-Dynamics and Vibration Research Group,ab2105@cam.ac.uk
3 ENS-Cachan,LMT,pierre.ladeveze@lmt.ens-cachan.fr
4 ENS-Cachan,LMT,riou@lmt.ens-cachan.fr
5 Ecole centrale de Nantes,Institut GeM,matthieu.graveleau@ec-nantes.fr

Résumé — In this paper an innovative model reduction technique is applied to the Variational Theory
of Complex Rays (VTCR) in order to take account of uncertainties over a mid/high frequency band.
Several methods have been developed to solve mid frequency problems, one of them is the VTCR, in
order to solve noise and vibration problems in the medium-frequency range. The principal features of
VTCR approach are the use of a weak formulation of the vibration problem, which allows to consider
automatically boundary condition between sub-domains, without using any auxiliary equation such as
Lagrange coefficients, and the use of Herglotz wave functions to represents the vibrational field ; those
functions are an integral repartition of plane waves in all the direction, the unknowns of the problem
are their amplitudes. In order to improve its performances over a frequencies range, Proper Generalized
Decomposition (PGD) has been successfully applied in past works. The PGD is a model reduction tech-
nique that leads to construction of separated variables representations of the solution of models defined
in tensor product spaces. Thanks to PGD, it is possible to write an approximation of wave amplitude on a
reduced base, separating the polar contribution “θ” from the frequency dependent contribution “ω” lea-
ding to inexpensive broad band calculation. The main idea of this paper is to extend this model reduction
to take into account parametric uncertainty. Being VTCR a pure deterministic method the easiest way
to tackle stochastic problems would be to apply non-intrusive techniques, like Monte-Carlo simulation.
The advantage of this technique is that it only requires to do several times the deterministic problem.
Despite its simplicity, this method leads to important computational costs if considering complex cases
and in particular broad bands. For that reason in this paper, the Proper Generalized Decomposition is
proposed to consider uncertain parameters over a model order reduction, in addiction to the previous
space/frequency decomposition on the reduced space. An iterative algorithm, based on residue minimi-
zation, is proposed in order to find the triplets (space, frequency and stochastic parameter) witch compose
the solution over a reduced space. Finally an example is provided to show method efficacy on a stochastic
mid-frequency broad bands and to show its potentialities to tackle high frequency.
Mots clés — Model Order Reduction, Proper Generalized Decomposition, Uncertainties, Monte Carlo

1 Introduction

Different frequency bands show a different sensibility to uncertainty parameters. This affirmation lies
on some experimental evidence. An example of this phenomena in shown in Figure 1. These experiments,
published in [1], are conducted on 98 nominally identical cars. The model and the production line is the
same for every of the 98 cars. Experiments shows that low frequency dependency from the presence of
little variation is little. This means that if a low frequency analysis is conducted deterministic models
like FEM are effective and meaningful. The situation changes at higher frequencies. The effect of uncer-
tainties are very strong in mid-frequency band and decisive in high-frequency. From this experimental
evidence borns the consideration that a mid-frequency method should keep in account uncertainty. This
is particularly true if an extension of these methods to large-frequency band is desired.
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Example systems – response variability

Figure 2 Fonction de réponse en fréquence de 98 voitures issues de la même ligne
de production [Kompella et Bernhard, 1993].

un ensemble de véhicules d’une même ligne de production.

Il y a eu des progrès récents dans l’extension de la SEA à la prévision de la variance des
énergies du sous-système [Langley et Brown, 2004, Cotoni et al., 2005]. La prédiction de la
variance est basée sur l’ergodicité des problèmes de vibrations hautes fréquences. C’est-à-
dire que la moyenne et la variance de l’énergie d’un sous-système, peuvent être retrouvées
en faisant varier soit les paramètres structuraux, soit les conditions aux limites.

La SEA constitue une approche globale dans la mesure où elle ne fournit que des esti-
mations des énergies vibratoires moyennes par sous-systèmes. La difficulté principale de la
méthode est la détermination des paramètres physiques qui interviennent dans sa formula-
tion : facteurs de perte par dissipation, facteurs de perte par couplage entre sous-systèmes,
densités modales, puissances injectées.

Le monde de la recherche est toujours très productif dans ce domaine. La question des
HF reste encore largement ouverte.

La gamme de fréquences intermédiaires est appelée la gamme moyennes fréquences (MF).
Ce domaine est caractérisé par une densification modale importante, et une hypersensibilité
du champ vibratoire par rapport aux conditions sur le bord. En effet, une petite perturbation
de la géométrie ou du chargement peut induire un changement important de la réponse locale
du système.

Dans ce domaine, la méthode des éléments finis se heurte à une détérioration de la qualité
de la solution numérique. De nombreuses recherches [Babuška et Sauter, 1997, Deraemaeker
et al., 1999] ont en effet montré que les solutions éléments finis des problèmes de propagation
d’ondes présentent un phénomène spécifique appelé pollution (numérique) : la vitesse de
propagation de l’onde dans le milieu discrétisé est différente de la vitesse dans le milieu
continu. Ce phénomène rend la FEM peu robuste quand le nombre d’onde augmente. En
effet, pour les grands nombres d’onde, la résolution du maillage nécessaire pour maintenir
l’erreur de pollution raisonnablement petite conduit à des modèles à très grand nombre de
noeuds. Ceci rend les problèmes MF trop coûteux pour la FEM standard.

Pour pallier à ce problème, les modifications de la FEM standard ont donné naissance
à de nombreuses techniques, comme par exemple la Galerkin least-square FEM [Harari et
Hugues, 1992b], la quasi-stabilized finite element method [Babuška et al., 1995], ou encore
la residual-free bubbles [Franca et al., 1997]... Comparées à la FEM standard, ces techniques
réduisent les coûts de calcul. Toutefois, la gamme de fréquences traitées reste en deçà des
moyennes fréquences.

Quant aux méthodes issues des HF, elles ne peuvent généralement pas rendre compte

La théorie variationnelle des rayons complexes version Fourier 3

Fig. 1 – Frequency response of 98 “identical" cars from the same production line (courtesy of Toyota)
[1]

Mid-frequency is a complex frequency range. Classical tools suited for the low or the high frequen-
cies are generally not sufficiently accurate to give a reliable prevision in mid-frequency range. Indeed, on
one hand the FEM techniques [2], established tools for low frequency, suffer from pollution errors and
computational costs become prohibitive. On the other hand, the SEA technique [3], established tool for
high frequency, remains too global and not optimal in this range of frequencies. It is a great challenge
for modern computational dynamics, to account for all of these provisions while preserving a stochastic
element .

The aim of this paper is to extend the Variational Theory of Complex Rays, a powerful mid-frequency
technique, to broad frequency bands including the influence of a stochastic parameter.

The VTCR was introduced in [4] and belongs to the Trefftz family of methods which uses exact
solutions of the governing differential equations for the expansion of the field variables. The decisive
advantage of all Trefftz methods is that since they use exact solutions of the governing equations no refi-
ned discretization is necessary. Therefore, the model’s size and the computational effort are considerably
less than with element-based methods. The VTCR differs from other Trefftz methods in the choice of
transmission conditions at the inter-element boundaries and in the types of shape functions utilized. It has
already been shown to be capable of finding accurate solutions of vibration problems involving 3D plate
assemblies [5], plates with heterogeneities [6] and shell structures [7] as well as solutions of acoustic
problems [8].

Despite its efficacy VTCR presents two main disadvantage : the resulting formulation is totally fre-
quency dependent and being a deterministic method extension to uncertainty is not straight forward. In
other to overcome these limitations, a model order reduction through a separated representation, called
Proper Generalized Decomposition, is applied over frequency and space .

Such a technique was proposed many years ago by Ladevèze for the resolution of complex nonlinear
thermomechanical problems [9]

Today, the common name used for techniques involving a separated representation of the variables
is Proper Generalized Decomposition (PGD). PGD belongs to the family of Reduced-Order Modeling
(ROM) techniques, along with the ROM-POD method [10] and the reduced-basis element method [11],
but in the case of PGD the construction of the representation takes into account the nature of the pro-
blem directly. The general form of a PGD separated representation of a function u of N variables is

u(x1, ...,xN)' uM(x1, ...,xN) =
M

∑
m=1

u1
m(x1)× ...×uN

m(xN), M being the order of the approximation. Many

applications of PGD, covering several domains, have already been presented : for example advanced
nonlinear solvers using separated space-time representations ; multidimensional models ; the separation
of physical spaces ; parametric models ; real-time simulations ; the quantification of uncertainties and
stochastic parametric analysis. Reviews of recent works on PGD can be found in [12] and [13].

An application to acoustic mid frequency broad bands can be found in [14] and in this paper, using
the same technique, an extension to a simple case with uncertain parameter is provided.
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2 Reference problem and VTCR formulation

Let Ωa be a 2-D dimensional acoustic bounded domain partitioned into nel non-overlapping elements
ΩaE with intersection boundaries ΓEE ′ . The acoustic reference problem to solve is : find p in H1(Ωa)
such that :

∆pE + k2
a pE = 0 in ΩaE (1)

pE = pdE on ∂pΩaE (a)
Lv[pE ] = vdE on ∂vΩaE (b)
pE −ZELv[pE ] = hdE on ∂ZΩaE (c)

(2)

pE − pE ′ = 0 on ΓEE ′

Lv[pE ]+Lv[pE ′ ] = 0 on ΓEE ′
(3)

where pE is the restriction of p to ΩE , ka is the acoustic wave vector, Lv[pE ] =
i

ρ0ω

∂pE

∂n
is the velocity

operator with the density ρ0, the frequency ω and the outward normal n, ZE an impedance coefficient
and i the imaginary unit. Boundary conditions on the exterior boundaries of Ωa are related to prescribed
pressures pdE (2-a), prescribed velocities vdE (2-b), hdE Robin equations (2-c) and interface continuity
between the acoustic sub-cavities (3). VTCR formulation is obtained from the boundary value problem
(1-2-3) by rewriting it in a weak form. After defining the following functional space :

AE
ad =

{
pE | ∆pE + k2 pE = 0,∀x ∈ΩaE

}
(4)

it can be shown (see [8]) that the boundary value problem (1-2-3) is equivalent to the following variational
problem : find (p1, ...pnel ) ∈ A1

ad× ...×Anel
ad , such as :

∑
ΩaE

ℜ

{∫
∂pΩE

(pE − pdE)Lv[δpE ]ds+
∫

∂vΩE

(
Lv[pE ]− vdE

)
δpEds

+
1
2

∫
∂ZΩE

[(
(1−ZELv) [pE ]−hdE

)
Lv[δpE ]

+
(
(Lv−1/ZE) [pE ]+hdE/ZE

)
δpE

]
ds

+ ∑
ΓEE′

ℜ

{
1
2

∫
ΓEE′

(
(pE − pE ′)Lv[δpE −δpE ′ ]

+Lv[pE + pE ′ ] (δpE +δpE ′)
)

ds

}
= 0

∀(δp1, ...δpnel ) ∈ A1
ad× ...×Anel

ad

(5)

The principle of the VTCR is to search an approximated solution ph
E ∈ AE,h

ad ⊂ AE
ad of the variational

problem (5). It is possible to find different subspaces of AE
ad , but the classic one used in the VTCR

defines ph
E as a sum of propagating waves :

ph
E(x) =

∫
π

−π

Xh
E(θ)e

−ik(θ)xdθ (6)

where Xh
E(θ) describes the amplitudes of the plane waves propagating in the θ direction. The unknown

is Xh
E(θ), which can be expressed as a Fourier series on the 2N +1 first terms (see [15]) :

Xh
E(θ) =

N

∑
n=−N

Xh
E,n

∫
π

−π

einθdθ (7)

Once (6) and (7) are injected into the formulation (5), a resolution of a discretized finite dimension matrix
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is required in order to find the unknowns Xh
E,n : K1,1 . . . K1,nel

...
. . .

...
Knel ,1 . . . Knel ,nel


 Xh

1
...

Xh
nel

=

 F1
...

Fnel

 (8)

or in a synthetic form

KX = F (9)

where K
i, j

and F i are respectively the matrices of the bilinear forms and the vectors of the linear form of

the variational formulation (5) and Xh
j is the vector of the amplitudes of the shape functions used in Ωa j.

3 Proper Generalized Decomposition applied to broad band calculation
with uncertainty

As it is clear from sections above, VTCR differs from other mid-frequency techniques (like [16], [17]
and [18]) for being a deterministic formulation. Introducing uncertainty, without passing trough expen-
sive techniques like Monte Carlo simulation [19], is hence a complex problem. The proposed solution
is to extend the results found in [14] to uncertainty parameters as in [20]. The basic concept is to find
a separate representation of the solution over frequency space and uncertainty with only few tests point
arbitrarily chosen over the concerned spaces. If considering a system response over a wave band and a
stochastic parameter s ∈ S the final VTCR equation can be written as :

K(ω;s)X(ω;s) = F(ω;s) (10)

the objective is to find an approximation of X such as :

X(ω;s)≈ Xm(ω;s) =
m

∑
i=1

X̂iλ̂i(ω)σ̂i(s) (11)

where X̂i is a space dependent vector, λ̂i is a frequency dependent function and σ̂i(s) is a function
representing the uncertainty contribution. In order to simplify the formulation new operators are defined :∫

I
• dω = (•)ω ;

∫
S
• dP(s) = (•)s ;

∫
S

∫
I
• dωdP(s) = (•)ω,s (12)

with ‖ • ‖= (• · I · •∗) where •∗ is the complex conjugate operator.
In order to find the required approximation the norm of the scalar product of the residue, respect the

m order of the approximation, is to minimize :(
‖Rm+1‖2)

ω,s =
(
‖Rm−KX̂m+1λ̂m+1(ω)σ̂m+1(s)‖2

)
ω,s

(13)

By minimizing equation 13 over the three variables, a triplet of equation is obtained :

σ̂m+1 =

(
ℜ(λ̂m+1 R ∗mKX̂m+1)

)
ω(

λ̂m+1X̂∗m+1 K
∗KX̂m+1λ̂m+1

)
ω

(14a)

λ̂m+1 =

(
ℜ(σ̂m+1 R ∗mKX̂m+1)

)
s(

σ̂m+1X̂∗m+1 K
∗KX̂m+1σ̂m+1

)
s

(14b)

X̂m+1 =
(

λ̂m+1σ̂m+1 K∗Kσ̂m+1λ̂m+1

)−1

ω,s

(
λ̂m+1σ̂m+1 K ∗Rmσ̂m+1λ̂m+1

)
ω,s

(14c)

In order to perform the minimization a power type algorithm is required :
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Algorithm 1: PGD for stochastic brad band problems

Initialization of R0 = F;
for i = 1 to m do

Initialization of X̂0
i ;

Initialization of λ̂0
i ;

for k = 1 à kmax do
Compute :
σ̂

k
i = (X̂k−1

i , λ̂k−1
i )→ (14a);

λ̂
k
i = (X̂k−1

i , σ̂k
i )→ (14b);

X̂k
i = (λ̂k

i , σ̂
k
i )→ (14c);

Stationarity check (X̂k
i , σ̂

k
i ,λ̂k

i );

Update of Ri+1 = Ri−KX̂iσ̂iλ̂
k
i ;

Convergency check;

It has to be noticed that any initialization would leads to convergency but an initialization choice
somehow linked to the problem could leads to a sensible faster convergency.

4 Numerical example and validation

A simple 1D problem in Figure 2 is considered since is the first time VTCR is extended to uncertainty.

x
L0

p=1 p     -Zv=0

Q.I: p

L/2

mid

Fig. 2 – 1D problem

The example consists in a wave guide of L = 2m where on x = 0 a unitary pressure is imposed and
a variable Robin condition is applied on x = L. Considered fluid is air (density is ρ = 1,125kg.m−3 and
sound speed is c = 320m.s−1). The problem is defined on a frequency band f ∈]1000,4500[ Hz and
the real part of impedance is considered uncertain between 100 and 500 (s = ℜ(Z)). This example is
particularly useful in this explorative phase for two main reasons : there is a simple analytic reference to
compare PGD approximation with and PDG results are of immediate and clear interpretation. For a 1D
case the ensemble of admissible solution is found on the function family of {eikx,e−ikx} with k = ω/c.
For this reason the unknown pressure is expressed in the form :

p(x) = X+eikx +X−e−ikx (15)

and v is :

v(x) =− k
ρ0ω

(X+eikx−X−e−ikx) (16)

The analytical solution is found solving :{
p(0) = 1
p(L) −Zv(L) = hed

(17)

or in matrix form : [
1 1

eikL
(

1+ Zk
ρ0ω

)
e−ikL

(
1− Zk

ρ0ω

)](X+

X−

)
=

(
1

hed

)
(18)
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In order to find a PGD-VTCR approximation a number of tests matrices K and vectors F is to find
through a course discretization of the frequency and stochastic spaces. The variational formulation (5)
can be easily particularized for 1D problems as :

(X++X−−1)
k

ρ0ω
(δX+−δX−)+(

X+eikL
(

1+
Zk

ρ0ω

)
+X−e−ikL

(
1− Zk

ρ0ω

)
−hed

)
k

ρ0ω
(−δX+e−ikL +δX−eikL) = 0

(19)

or in matrix form :
−Zk
ρ0

(
1− e−2ikL

(
1− Zk

ρ0ω

))
(

e2ikL
(

1+
Zk

ρ0ω

)
−1
) −Zk

ρ0


X+

X−

=


(

1−hede−ikL
)

(
hedeikL−1

)
 (20)

which is exactly the synthetic formulation expressed in 10. Once the test matrices are found a PGD
iterative algorithm is applied to find the desired approximation :

Algorithm 2: 1D algorithm

for i = 1 to "stochastic test point number" do
for j = 1 to "frequency test point number" do

Find Ki, j =K(ω,s);
Find Fi, j = F(ω,s);

Apply algorithm 1← ({K}i, j,{F}i, j);

↪→ PGD triplets
{(

X̂(θ), λ̂(ω)σ̂(s)
)}

m
Post-processing

Let’s take an uniform distribution on Z, a PGD approximation can be built with 30 discretization
points on stochastic and 1500 on frequency band. PGD solution is built with 150 triplets.
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(a) FRF on frequency band totality
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(b) Zoom on 1000 to 1200 Hz frequency band

Fig. 3 – PGD-VTCR mean pressure compared to mean reference

It can be noticed the very good agreement between the PGD approximation and the reference both for
the general FRF shape and the peaks location. Looking at convergency issue in Figure 4 we can see that
a fast regular and smooth convergency is provided with a modest numbers of algorithm sub-iterations
(see Figure 5).

Finally an evaluation of triplets contribution on the solution has been conducted in Figure 6.
All results showed were found without making any choice on probability distribution. A simple post-

processing is needed in order to include a chosen distribution.
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Fig. 5 – Evolution of sub-iteration number necessary to reach a stationarity criteria
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Fig. 6 – Evolution of real pressure on middle point increasing decomposition’s order
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