Andrea Barbarulo 
email: barbarulo@lmt.ens-cachan.fr
  
Pierre Ladèveze 
email: pierre.ladeveze@lmt.ens-cachan.fr
  
Hervé Riou 
email: riou@lmt.ens-cachan.fr
  
Matthieu Graveleau 
email: matthieu.graveleau@ec-nantes.fr
  
Proper Generalized Decomposition and Variational Theory of Complex Rays: an alliance to to consider uncertainties over mid and high broad frequency bands

Keywords: Model Order Reduction, Proper Generalized Decomposition, Uncertainties, Monte Carlo 1 Introduction

In this paper an innovative model reduction technique is applied to the Variational Theory of Complex Rays (VTCR) in order to take account of uncertainties over a mid/high frequency band. Several methods have been developed to solve mid frequency problems, one of them is the VTCR, in order to solve noise and vibration problems in the medium-frequency range. The principal features of VTCR approach are the use of a weak formulation of the vibration problem, which allows to consider automatically boundary condition between sub-domains, without using any auxiliary equation such as Lagrange coefficients, and the use of Herglotz wave functions to represents the vibrational field ; those functions are an integral repartition of plane waves in all the direction, the unknowns of the problem are their amplitudes. In order to improve its performances over a frequencies range, Proper Generalized Decomposition (PGD) has been successfully applied in past works. The PGD is a model reduction technique that leads to construction of separated variables representations of the solution of models defined in tensor product spaces. Thanks to PGD, it is possible to write an approximation of wave amplitude on a reduced base, separating the polar contribution "θ" from the frequency dependent contribution "ω" leading to inexpensive broad band calculation. The main idea of this paper is to extend this model reduction to take into account parametric uncertainty. Being VTCR a pure deterministic method the easiest way to tackle stochastic problems would be to apply non-intrusive techniques, like Monte-Carlo simulation. The advantage of this technique is that it only requires to do several times the deterministic problem. Despite its simplicity, this method leads to important computational costs if considering complex cases and in particular broad bands. For that reason in this paper, the Proper Generalized Decomposition is proposed to consider uncertain parameters over a model order reduction, in addiction to the previous space/frequency decomposition on the reduced space. An iterative algorithm, based on residue minimization, is proposed in order to find the triplets (space, frequency and stochastic parameter) witch compose the solution over a reduced space. Finally an example is provided to show method efficacy on a stochastic mid-frequency broad bands and to show its potentialities to tackle high frequency.

Introduction

!"#$%&'%()*#+,-.+"&&)/)-0 23)+-.%+#$$4)%,"+'%(#$)5""*)(#+&) &657"('",)'-)#(-6&'%()"8(%'#'%-+ 9:#;4<)!"#$%&'("$)*"+*,$-($../($-*01"#)'( 1 un ensemble de véhicules d'une même ligne de production. Il y a eu des progrès récents dans l'extension de la SEA à la prévision de la variance des énergies du sous-système [Langley et Brown, 2004[START_REF] Cotoni | Numerical and experimental validation of variance prediction in the statistical energy analysis of built-up systems[END_REF]. La prédiction de la variance est basée sur l'ergodicité des problèmes de vibrations hautes fréquences. C'est-àdire que la moyenne et la variance de l'énergie d'un sous-système, peuvent être retrouvées en faisant varier soit les paramètres structuraux, soit les conditions aux limites.

La SEA constitue une approche globale dans la mesure où elle ne fournit que des estimations des énergies vibratoires moyennes par sous-systèmes. La difficulté principale de la méthode est la détermination des paramètres physiques qui interviennent dans sa formulation : facteurs de perte par dissipation, facteurs de perte par couplage entre sous-systèmes, densités modales, puissances injectées.

Le monde de la recherche est toujours très productif dans ce domaine. La question des HF reste encore largement ouverte.

La gamme de fréquences intermédiaires est appelée la gamme moyennes fréquences (MF). Ce domaine est caractérisé par une densification modale importante, et une hypersensibilité du champ vibratoire par rapport aux conditions sur le bord. En effet, une petite perturbation de la géométrie ou du chargement peut induire un changement important de la réponse locale du système.

Dans ce domaine, la méthode des éléments finis se heurte à une détérioration de la qualité de la solution numérique. De nombreuses recherches [Babuška et Sauter, 1997, Deraemaeker et al., 1999] ont en effet montré que les solutions éléments finis des problèmes de propagation d'ondes présentent un phénomène spécifique appelé pollution (numérique) : la vitesse de propagation de l'onde dans le milieu discrétisé est différente de la vitesse dans le milieu continu. Ce phénomène rend la FEM peu robuste quand le nombre d'onde augmente. En effet, pour les grands nombres d'onde, la résolution du maillage nécessaire pour maintenir l'erreur de pollution raisonnablement petite conduit à des modèles à très grand nombre de noeuds. Ceci rend les problèmes MF trop coûteux pour la FEM standard.

Pour pallier à ce problème, les modifications de la FEM standard ont donné naissance à de nombreuses techniques, comme par exemple la Galerkin least-square FEM [Harari et Mid-frequency is a complex frequency range. Classical tools suited for the low or the high frequencies are generally not sufficiently accurate to give a reliable prevision in mid-frequency range. Indeed, on one hand the FEM techniques [START_REF] Zienkiewicz | The Finite Element Method[END_REF], established tools for low frequency, suffer from pollution errors and computational costs become prohibitive. On the other hand, the SEA technique [START_REF] Lyon | Power flow between linearly coupled oscillators[END_REF], established tool for high frequency, remains too global and not optimal in this range of frequencies. It is a great challenge for modern computational dynamics, to account for all of these provisions while preserving a stochastic element .

The aim of this paper is to extend the Variational Theory of Complex Rays, a powerful mid-frequency technique, to broad frequency bands including the influence of a stochastic parameter.

The VTCR was introduced in [START_REF] Ladevèze | A new computational approach for structure vibrations in the medium frequency range[END_REF] and belongs to the Trefftz family of methods which uses exact solutions of the governing differential equations for the expansion of the field variables. The decisive advantage of all Trefftz methods is that since they use exact solutions of the governing equations no refined discretization is necessary. Therefore, the model's size and the computational effort are considerably less than with element-based methods. The VTCR differs from other Trefftz methods in the choice of transmission conditions at the inter-element boundaries and in the types of shape functions utilized. It has already been shown to be capable of finding accurate solutions of vibration problems involving 3D plate assemblies [START_REF] Ladevèze | The variational theory of complex rays for the calculation of medium-frequency vibrations[END_REF], plates with heterogeneities [START_REF] Ladevèze | A multiscale computational method for medium-frequency vibrations of assemblies of heterogeneous plates[END_REF] and shell structures [START_REF] Riou | Extension of the variational theory of complex rays to shells for mediumfrequency vibrations[END_REF] as well as solutions of acoustic problems [START_REF] Riou | The multiscale vtcr approach applied to acoustics problems[END_REF].

Despite its efficacy VTCR presents two main disadvantage : the resulting formulation is totally frequency dependent and being a deterministic method extension to uncertainty is not straight forward. In other to overcome these limitations, a model order reduction through a separated representation, called Proper Generalized Decomposition, is applied over frequency and space .

Such a technique was proposed many years ago by Ladevèze for the resolution of complex nonlinear thermomechanical problems [START_REF] Ladevèze | Nonlinear computationnal structural mechanics-new approaches and non-incremental methods of calculation[END_REF] Today, the common name used for techniques involving a separated representation of the variables is Proper Generalized Decomposition (PGD). PGD belongs to the family of Reduced-Order Modeling (ROM) techniques, along with the ROM-POD method [START_REF] Lieu | Reduced-order fluid/structure modeling of a complete aircraft configuration[END_REF] and the reduced-basis element method [START_REF] Maday | A reduced-basis element method[END_REF], but in the case of PGD the construction of the representation takes into account the nature of the problem directly. The general form of a PGD separated representation of a function u of N variables is

u(x 1 , ..., x N ) u M (x 1 , ..., x N ) = M ∑ m=1 u 1 m (x 1 ) × ... × u N m (x N )
, M being the order of the approximation. Many applications of PGD, covering several domains, have already been presented : for example advanced nonlinear solvers using separated space-time representations ; multidimensional models ; the separation of physical spaces ; parametric models ; real-time simulations ; the quantification of uncertainties and stochastic parametric analysis. Reviews of recent works on PGD can be found in [START_REF] Chinesta | Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models[END_REF] and [START_REF] Chinesta | A short review on model order reduction based on proper generalized decomposition[END_REF].

An application to acoustic mid frequency broad bands can be found in [START_REF] Barbarulo | Proper generalized decomposition applied to linear acoustic : a new tool for broad band calculation[END_REF] and in this paper, using the same technique, an extension to a simple case with uncertain parameter is provided.

Reference problem and VTCR formulation

Let Ω a be a 2-D dimensional acoustic bounded domain partitioned into n el non-overlapping elements Ω aE with intersection boundaries Γ EE . The acoustic reference problem to solve is : find p in H 1 (Ω a ) such that :

∆p E + k 2 a p E = 0 in Ω aE (1) 
p E = p dE on ∂ p Ω aE (a) L v [p E ] = v dE on ∂ v Ω aE (b) p E -Z E L v [p E ] = h dE on ∂ Z Ω aE (c) (2) p E -p E = 0 on Γ EE L v [p E ] + L v [p E ] = 0 on Γ EE (3) 
where p E is the restriction of p to Ω E , k a is the acoustic wave vector,

L v [p E ] = i ρ 0 ω ∂p E ∂n
is the velocity operator with the density ρ 0 , the frequency ω and the outward normal n, Z E an impedance coefficient and i the imaginary unit. Boundary conditions on the exterior boundaries of Ω a are related to prescribed pressures p dE (2-a), prescribed velocities v dE (2-b), h dE Robin equations (2-c) and interface continuity between the acoustic sub-cavities (3). VTCR formulation is obtained from the boundary value problem (1-2-3) by rewriting it in a weak form. After defining the following functional space :

A E ad = p E | ∆p E + k 2 p E = 0, ∀x ∈ Ω aE (4) 
it can be shown (see [START_REF] Riou | The multiscale vtcr approach applied to acoustics problems[END_REF]) that the boundary value problem (1-2-3) is equivalent to the following variational problem : find (p 1 , ...p n el ) ∈ A 1 ad × ... × A n el ad , such as :

∑ Ω aE ℜ ∂ p Ω E (p E -p dE ) L v [δp E ]ds + ∂ v Ω E L v [p E ] -v dE δp E ds + 1 2 ∂ Z Ω E (1 -Z E L v ) [p E ] -h dE L v [δp E ] + (L v -1/Z E ) [p E ] + h dE /Z E δp E ds + ∑ Γ EE ℜ 1 2 Γ EE (p E -p E ) L v [δp E -δp E ] +L v [p E + p E ] (δp E + δp E ) ds = 0 ∀(δp 1 , ...δp n el ) ∈ A 1 ad × ... × A n el ad (5) 
The principle of the VTCR is to search an approximated solution p h E ∈ A E,h ad ⊂ A E ad of the variational problem [START_REF] Ladevèze | The variational theory of complex rays for the calculation of medium-frequency vibrations[END_REF]. It is possible to find different subspaces of A E ad , but the classic one used in the VTCR defines p h E as a sum of propagating waves :

p h E (x) = π -π X h E (θ)e -ik(θ)x dθ (6) 
where X h E (θ) describes the amplitudes of the plane waves propagating in the θ direction. The unknown is X h E (θ), which can be expressed as a Fourier series on the 2N + 1 first terms (see [START_REF] Kovalevsky | The variational theory of complex rays for threedimensional helmholtz problems[END_REF]) :

X h E (θ) = N ∑ n=-N X h E,n π -π e inθ dθ (7) 
Once ( 6) and ( 7) are injected into the formulation (5), a resolution of a discretized finite dimension matrix is required in order to find the unknowns X h E,n :

   K 1,1 . . . K 1,n el . . . . . . . . . K n el ,1 . . . K n el ,n el       X h 1 . . . X h n el    =    F 1 . . . F n el    (8) 
or in a synthetic form

KX = F (9) 
where K i, j and F i are respectively the matrices of the bilinear forms and the vectors of the linear form of the variational formulation (5) and X h j is the vector of the amplitudes of the shape functions used in Ω a j .

Proper Generalized Decomposition applied to broad band calculation with uncertainty

As it is clear from sections above, VTCR differs from other mid-frequency techniques (like [START_REF] Cotoni | Numerical and experimental validation of variance prediction in the statistical energy analysis of built-up systems[END_REF], [START_REF] Soize | Medium frequency linear vibrations of anisotropic elastic structures[END_REF] and [START_REF] Ichchou | A transient local energy approach as an alternative to transient sea : Wave and telegraph equations[END_REF]) for being a deterministic formulation. Introducing uncertainty, without passing trough expensive techniques like Monte Carlo simulation [START_REF] Metropolis | The beginning of the monte carlo method[END_REF], is hence a complex problem. The proposed solution is to extend the results found in [START_REF] Barbarulo | Proper generalized decomposition applied to linear acoustic : a new tool for broad band calculation[END_REF] to uncertainty parameters as in [START_REF] Nouy | A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations[END_REF]. The basic concept is to find a separate representation of the solution over frequency space and uncertainty with only few tests point arbitrarily chosen over the concerned spaces. If considering a system response over a wave band and a stochastic parameter s ∈ S the final VTCR equation can be written as :

K(ω; s)X(ω; s) = F(ω; s) ( 10 
)
the objective is to find an approximation of X such as :

X(ω; s) ≈ X m (ω; s) = m ∑ i=1 Xi λi (ω) σi (s) ( 11 
)
where Xi is a space dependent vector, λi is a frequency dependent function and σi (s) is a function representing the uncertainty contribution. In order to simplify the formulation new operators are defined :

I • dω = (•) ω ; S • dP(s) = (•) s ; S I • dω dP(s) = (•) ω,s (12) 
with

• = ( • • I • • *
) where • * is the complex conjugate operator. In order to find the required approximation the norm of the scalar product of the residue, respect the m order of the approximation, is to minimize :

R m+1 2 ω,s = R m -K Xm+1 λm+1 (ω) σm+1 (s) 2 ω,s (13) 
By minimizing equation 13 over the three variables, a triplet of equation is obtained :

σm+1 = ℜ( λm+1 R * m K Xm+1 ) ω λm+1 X * m+1 K * K Xm+1 λm+1 ω (14a) λm+1 = ℜ( σm+1 R * m K Xm+1 ) s σm+1 X * m+1 K * K Xm+1 σm+1 s (14b) Xm+1 = λm+1 σm+1 K * K σm+1 λm+1 -1 ω,s λm+1 σm+1 K * R m σm+1 λm+1 ω,s (14c) 
In order to perform the minimization a power type algorithm is required :

Algorithm 1: PGD for stochastic brad band problems

Initialization of R 0 = F; for i = 1 to m do Initialization of X0 i ; Initialization of λ0 i ; for k = 1 à k max do Compute : σk i = ( Xk-1 i , λk-1 i ) → (14a); λk i = ( Xk-1 i , σk i ) → (14b); Xk i = ( λk i , σk i ) → (14c); Stationarity check ( Xk i , σk i , λk i ); Update of R i+1 = R i -K Xi σi λk i ; Convergency check;
It has to be noticed that any initialization would leads to convergency but an initialization choice somehow linked to the problem could leads to a sensible faster convergency.

Numerical example and validation

A simple 1D problem in Figure 2 is considered since is the first time VTCR is extended to uncertainty. The example consists in a wave guide of L = 2m where on x = 0 a unitary pressure is imposed and a variable Robin condition is applied on x = L. Considered fluid is air (density is ρ = 1, 125kg.m -3 and sound speed is c = 320m.s -1 ). The problem is defined on a frequency band f ∈]1000, 4500[ Hz and the real part of impedance is considered uncertain between 100 and 500 (s = ℜ(Z)). This example is particularly useful in this explorative phase for two main reasons : there is a simple analytic reference to compare PGD approximation with and PDG results are of immediate and clear interpretation. For a 1D case the ensemble of admissible solution is found on the function family of {e ikx , e -ikx } with k = ω/c. For this reason the unknown pressure is expressed in the form :

p(x) = X + e ikx + X -e -ikx ( 15 
)
and v is :

v(x) = - k ρ 0 ω (X + e ikx -X -e -ikx ) (16) 
The analytical solution is found solving : [START_REF] Soize | Medium frequency linear vibrations of anisotropic elastic structures[END_REF] or in matrix form :

p(0) = 1 p(L) -Zv(L) = h ed
1 1

e ikL 1 + Zk ρ 0 ω e -ikL 1 -Zk ρ 0 ω X + X -= 1 h ed (18) 
In order to find a PGD-VTCR approximation a number of tests matrices K and vectors F is to find through a course discretization of the frequency and stochastic spaces. The variational formulation (5) can be easily particularized for 1D problems as :

(X + + X --1) k ρ 0 ω (δX + -δX -)+ X + e ikL 1 + Zk ρ 0 ω + X -e -ikL 1 - Zk ρ 0 ω -h ed k ρ 0 ω (-δX + e -ikL + δX -e ikL ) = 0 (19) 
or in matrix form :

    -Zk ρ 0 1 -e -2ikL 1 -Zk ρ 0 ω e 2ikL 1 + Zk ρ 0 ω -1 -Zk ρ 0         X + X -     =     1 -h ed e -ikL h ed e ikL -1     (20) 
which is exactly the synthetic formulation expressed in 10. Once the test matrices are found a PGD iterative algorithm is applied to find the desired approximation :

Algorithm 2: 1D algorithm for i = 1 to "stochastic test point number" do for j = 1 to "frequency test point number" do Find K i, j = K(ω, s); Find F i, j = F(ω, s);

Apply algorithm 1 ← ({K} i, j , {F} i, j ); → PGD triplets X(θ), λ(ω) σ(s) m Post-processing
Let's take an uniform distribution on Z, a PGD approximation can be built with 30 discretization points on stochastic and 1500 on frequency band. PGD solution is built with 150 triplets. It can be noticed the very good agreement between the PGD approximation and the reference both for the general FRF shape and the peaks location. Looking at convergency issue in Figure 4 we can see that a fast regular and smooth convergency is provided with a modest numbers of algorithm sub-iterations (see Figure 5).

Finally an evaluation of triplets contribution on the solution has been conducted in Figure 6. All results showed were found without making any choice on probability distribution. A simple postprocessing is needed in order to include a chosen distribution. 
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 2 Figure 2 Fonction de réponse en fréquence de 98 voitures issues de la même ligne de production [Kompella et Bernhard, 1993].
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 1 Fig.1-Frequency response of 98 "identical" cars from the same production line (courtesy of Toyota)[START_REF] Kompella | Measurement of the statistical variation of structural-acoustic characteristics of automotive vehicles[END_REF] 
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 3 Fig. 3 -PGD-VTCR mean pressure compared to mean reference
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 156 Fig. 4 -Residual error