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Résumé� In this work, a modal redution, based on real-valued modes, is used to improve the

omputational e�ieny of Finite Element problems inluding 3D modelling of sound absorbing

poroelasti materials. A mode seletion proedure is proposed and tested in order to downsize

the basis inluding only the most signi�ant ontributions. The results are presented in terms of

the level of e�ay reahed.
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1 Introdution

Modelling poroelasti materials for interior noise redution has been extensively studied over

the past two deades but an lead to rather expensive models when the Finite Element (FE)

method is used. Therefore, e�orts have been made in the last deade to propose e�ient solution

strategies for the Biot-Allard theory [1℄. Among them, use of equivalent aousti impedanes [2℄

proved to be very e�ient, but limited by strong assumptions. In the sope of 3D FE modelling,

use of a mixed displaement-pressure formulation for the solid and �uid phases respetively [3℄

downsized the number of degrees of freedom (dofs) per node from 6, when using a standard solid

and �uid phases displaement formulation, to 4 dofs. Alternatively, modal redution tehniques

have been proposed and applied to standard linear poroelasti �nite elements, in an attempt to

keep a �ne and omplex 3D modelling of low frequeny appliations [4�6℄.

In this work, a omponent mode synthesis is used to test the modal redution of the dissipative

part of a 3D poro-aousti FE problem. Desribing the poroelasti domain with the standard solid

and �uid displaements formulation, a diret omputation sheme is used to solve the frequeny-

dependent problem. Real-valued modes based on the bi-phase poroelasti media are used to

de�ne a transformation applied one at the initial inrement, and suitable for the frequeny

range of interest. A further modal basis downsizing is performed by seleting the most signi�ant

ontributions for the onsidered problem. After a presentation of the formulation as well as the

modal method used, the proposed redution and its enhanements are tested on a rigid avity

treated with a porous layer on one wall.

2 FE formulation for the poro-aousti problem

A poro-aousti problem is onsidered, whih desription and notations are presented on

Fig. 1. The aousti �uid and the porous media oupy the domains Ω
F

and Ω
P

respetively.

The ompressible �uid is desribed using pressure �utuation (p) as primary variable (Sub-

setion 2.1.1), while �uid and solid phases homogenized displaements (u
s

,u
f

) are retained as

primary variables for the porous media (Subsetion 2.1.2). The domains boundaries are sepa-

rated into ontours of (i) imposed Dirihlet boundary onditions denoted ∂1ΩF

and ∂1ΩP

, (ii)

presribed Neumann boundary onditions denoted ∂2ΩF

and ∂2ΩP

, and (iii) oupling interfae

between aousti �uid and porous media (Γ
FP

). The FE formulation is presented for a stationary

harmoni response at angular frequeny ω.
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Fig. 1 � Desription ans notations of the poro-aousti interation problem

2.1 Dynami equations and onstitutive laws

2.1.1 Compressible �uid (p)

The internal �uid within avities is assumed ompressible and invisid, satisfying the Helm-

holtz equation derived from the motion, ontinuity, and onstitutive equations

∆p+
ω2

c20
p = 0 in Ω

F

(1)

where c0 is the onstant speed of sound in the �uid, and p the pressure �utuation �eld.

2.1.2 Porous media Biot theory (u
s

,u
f

)

Notation Desription

ρ
s

Density of the material onstituting the frame

(λ; µ) Lamé parameters for the solid frame

ρ
f

Ambient �uid density

η Ambient �uid visosity

P0 Ambient �uid standard pressure

γ Heat apaity ratio for the ambient �uid

Pr Prandtl number for the ambient �uid

φ Porosity

α∞ Tortuosity

σ Stati �ow resistivity

Λ Visous harateristi length

Λ′
Thermal harateristi length

Tableau 1 � List of material parameters

At angular frequeny ω, the poroelasti media satis�es the following elastodynami linearized

equations, derived in the Biot-Allard theory [1℄, taking into aount inertia and visous oupling

e�ets between solid and �uid phases :

divσ
s

− iω b̃(ω)(u
s

− u
f

) + ω2 [((1− φ) ρ
s

+ ρ
a

)u
s

− ρ
a

u
f

] = 0 in Ω
P

(2a)

divσ
f

− iω b̃(ω)(u
f

− u
s

) + ω2 [−ρ
a

u
s

+ (φρ
f

+ ρ
a

)u
f

] = 0 in Ω
P

(2b)

where u
s

and u
f

are respetively the solid phase and �uid phase averaged displaements in the

sense of Biot theory. b̃(ω) (heneforth denoted b̃, where ˜ refers to a omplex-valued quantity)

and ρ
a

are respetively the omplex frequeny-dependent visous drag and the inertia oupling

parameter, based on the standard notations of material parameters introdued in Table 1 [1℄,

and given by

b̃ = σφ2

[
1 +

4iωα2
∞
ηρ

f

σ
2Λ2φ2

] 1
2

, (3)

ρa = φρ
f

(α∞ − 1). (4)

σ
s

and σ
f

are the averaged stress tensors for the solid and �uid phases respetively. In [6℄, it

was shown that they satisfy the Lagrangian stress-strain relations developed by Biot, rewritten
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in the following form using Voigt notation :

σ
s

= D(1)
s

ε(u
s

) +
(
K̃

f

− P0

)
D(2)

s

ε(u
s

) +D
(1)
sf

ε(u
f

) +
(
K̃

f

− P0

)
D

(2)
sf

ε(u
f

), (5a)

σ
f

= D
(1)
sf

ε(u
s

) +
(
K̃

f

− P0

)
D

(2)
sf

ε(u
s

) +D
(1)
f

ε(u
f

) +
(
K̃

f

− P0

)
D

(2)
f

ε(u
f

), (5b)

where ε(u
s

) and ε(u
f

) are the strain tensors assoiated to the averaged displaements vetor

�elds u
s

and u
f

respetively. K̃
f

(ω) is the e�etive bulk modulus of the �uid phase (heneforth

denoted K̃
f

), given by

K̃
f

=
γP0

γ − (γ − 1)

[
1 + 8η

iωPrΛ′2ρ
f

(
1 + iωPrΛ′2ρ

f

16η

) 1
2

]
−1 . (6)

D
(1),(2)
s

, D
(1),(2)
f

and D
(1),(2)
sf

are onstant real-valued onstitutive matries given in [6℄.

2.2 Fluid-struture interation problem

2.2.1 Poro-aousti oupling and boundary onditions

At external boundary of the aousti domain, rigid walls are onsidered, imposing a free

pressure �eld (∂1ΩF

= ∅). The time-harmoni soure term is given by

grad p · n = ω2ρ
F

u
Fb

on ∂2ΩF

, (7)

where u
Fb

is non-zero at the aousti soure loation only (see ∂2ΩF

on Fig. 1).

Coupling at interfae Γ
FP

is given by normal stress and normal displaement ontinuity

onditions between aousti �uid and both �uid and solid phases of porous media :

σ
s

n+ (1 − φ) p n = 0 on Γ
FP

, (8a)

σ
f

n+ φ p n = 0 on Γ
FP

, (8b)

u
F

· n− (1− φ)u
s

· n− φu
f

· n = 0 on Γ
FP

, (9)

where φ is the porosity of the porous material, i.e. the volume fration of �uid.

No external fore is applied to the outer boundary of the porous media beside at interfae

Γ
FP

. Therefore, ∂2ΩP

= ∅ in the onsidered problem. Finally, at external boundary ∂1ΩP

, two

types of boundary onditions an be presribed, the porous material being onsidered either as

sliding or bounded to a rigid wall (Table 2).

Bounded layer Sliding layer

u
s

= 0 u
s

· n
P

= 0
u
f

· n
P

= 0 u
f

· n
P

= 0

Tableau 2 � Boundary onditions for porous layer on ∂1ΩP

2.2.2 Finite element disretized problem

The test-funtion method is used to derive the variational formulation of the oupled pro-

blem. Details an be found in [6℄. Thus, using the Helmholtz equation (1), the elastodynami

equations (2a) and (2b), the onstitutive expressions (5a) and (5b), as well as the exitation and

oupling onditions (7), (9), (8a) and (8b), the following disretized system of equations arises :







K
F

0 0

−(1− φ)AT

Fs

K
(1)
ss

K
(1)
sf

−φAT

Ff

K
(1)T
sf

K
(1)
�


+

(
K̃

f

− P0

)


0 0 0

0 K
(2)
ss

K
(2)
sf

0 K
(2)T
sf

K
(2)
�




+iω b̃



0 0 0

0 C
ss

C
sf

0 CT

sf

C
�


− ω2



M

F

(1− φ)A
Fs

φA
Ff

0 M
ss

M
sf

0 MT

sf

M
�








P

U
s

U
f


 =



ω2U

Fb

0

0




(10)

This non-symmetri formulation an be symmetrized in the frequeny domain by dividing the

aousti equation by ω2
(ω 6= 0).
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3 Modal redution of the porous media

3.1 Presentation of the proposed solution strategy

The proposed modal-based redution is applied to the porous domain of a poro-aousti

problem, where the aousti domain is kept unredued. Within the aousti domain, the degrees

of freedom (dofs) are separated into internal ones (subsript Ī), and those at interfae with the

porous media (subsript I). Notations used are presented in Fig. 2. These notations allow easy

���
���
���
���
���
���
���
���
���

Porous dofs

Aousti interfae dofs I

Aousti internal dofs Ī

Fig. 2 � Problem desription for modal redution of porous media

extension of the method to problems with multiple interfaes [7℄. In addition, the solid and �uid

phase dofs (subsripts s and f respetively) are further denoted by a ommon set of porous dofs

(subsript P), so that the matrix system of equations (10) may be rewritten as



KĪĪ − ω2

MĪĪ KĪI − ω2
MĪI 0

KIĪ − ω2
MIĪ KII − ω2

MII −ω2
AIP

0 −AIP
T

K
(1)
P

+
(
K̃
f

− P0

)
K

(2)
P

+ iω b̃C
P

− ω2
M

P



[
PĪ

PI

U
P

]
=

[
ω2

UĪb

0

0

]
(11)

whih an be symmetrized by dividing the aousti equations by ω2
(ω 6= 0).

3.2 Modal-based redution

From the proposed expression of the porous media FE problem, real-valued normal modes

an be omputed assoiated to the oupled poroelasti eigenvalue problem

(
K

(1)
P

− ω2M
P

)
φ = 0. (12)

It is supposed that the Dirihlet boundary onditions imposed result in a nonsingularK
(1)
P

matrix,

therefore removing zero-frequeny modes. A modal redution basis Φ
Pm is built, seleting the

m lowest-frequeny modes. They are normalized with respet to the porous mass matrix M
P

so

that

Φ
Pm

T M
P

Φ
Pm = Im, (13a)

Φ
Pm

T K
(1)
P

Φ
Pm = Ωm, (13b)

where Im is a unit matrix of dimension m, and Ωm a diagonal matrix with the m lowest

eigenvalues of (12) on its diagonal. It was shown in [6℄ that suh a trunated modal basis exhibits

lose to orthogonality properties with respet to the global matries K
(2)
P

and C
P

, implying

sparsely populated orresponding matries κm and ζm :

Φ
Pm

T C
P

Φ
Pm = ζm, (14a)

Φ
Pm

T K
(2)
P

Φ
Pm = κm. (14b)

The transformation leading to a redued version of system (11), keeping aousti dofs unon-

densed, is ompleted by linearly independent attahment funtions linking the interfae aousti

dofs to the porous dofs. They are omputed as the K
(1)
P

� stati responses of the porous media to

unit pressure suessively imposed at eah interfae aousti dof :

[
−AIP

T K
(1)
P

] [ II
Ψ

PI

]
= [0] ⇒ Ψ

PI = K
(1)−1

P

AIP
T . (15)

4



The orresponding hange of basis, leaving aousti dofs unondensed, is then



P̂Ī

P̂I

Û
P


 =

[
IĪ 0 0

0 II 0

0 Ψ
PI Φ

Pm

]

P̂Ī

P̂I

α̂m


 , (16)

where ̂ denotes an approximation of the original solution. When applied to a symmetrized form

of Eq. (11), the transformation leads to following redued set of equations :







1
ω2KĪ Ī −MĪ Ī

1
ω2KĪI −MĪI 0

1
ω2KIĪ −MIĪ

1
ω2KII −MII −K

(1)
PII

0

0 0 Ωm


+

(
K̃

f

− P0

)


0 0 0

0 K
(2)
PII

K
(2)
PIm

0 K
(2)
PmI

κn




+iω b̃



0 0 0

0 C
PII

C
PIm

0 C
PmI

ζm


− ω2



0 0 0

0 M
PII

M
PIm

0 M
PmI

Im








P̂Ī

P̂I

α̂m


 =



U

Fb

0

0


 ,

(17)

where for porous matries indexed by subsript P, i.e. B
P

∈ {K
(1)
P

,K
(2)
P

,C
P

,M
P

},

B
PII

= ΨT

PIBP

Ψ
PI ,

B
PIm

= ΨT

PIBP

Φ
Pm = BT

PmI
.

This proposed redued model for poroelasti materials was shown omputationally e�ient [6℄,

espeially onsidering the fat that the modal oordinates assoiated with the linearly inde-

pendent poroelasti equations an be further ondensed. However, the two following issues were

raised : (i) a large amount of modes are required when following the rule of thumb of two to

three times the highest frequeny of interest for trunation, even though most seem to have no

signi�ant ontribution, and (ii) the onvergene is not smooth with respet to the frequeny

when modes are added into the basis, whih exhibits modes not satisfyingly ordered aording

to their eigenfrequenies. Following, a seletion and sorting proedure is proposed in order to

enhane these two aspets.

3.3 Enhaned redued model using mode seletion proedure

The residual fores give a very useful insight into the quality of the redued model, as they

are diretly linked to the approximation ahieved. In the present approah, where the aim is

to provide a suitable basis for a set frequeny range, the residual fore is used to estimate

the signi�ane of eah mode ontribution. The residual fore is omputed, at a given angular

frequeny ω0, using the solution vetor of a redued model inluding only the very low frequeny

modes, e.g. the �rst mode. The result is a poor approximate solution at ω0 whih gives after

inverse transformation :



P̂Ī

P̂I

Û
P



ω0

=

[
IĪ 0 0

0 II 0

0 Ψ
PI Φ

P

LF

]

P̂Ī

P̂I

α̂
LF



ω0

, (19)

where Φ
P

LF

onsists of the lowest frequeny mode omputed by eigenvalue problem (12) and α
LF

the orresponding modal oordinate. Notiing that no external load is applied to the poroelasti

domain (see Eq. (11)) beside the oupling terms with the aousti domain, a residual fore

vetor for the porous domain an be omputed diretly from the last line of Eq. (11), at angular

frequeny ω0 :

R

F

P

(ω0) = AIP
T P̂Iω0

−
(
K

(1)
P

+
(
K̃

f

(ω0)− P0

)
K

(2)
P

+ iω0 b̃(ω0)CP

− ω2
0MP

)
Û

Pω0
. (20)

Next, eah mode shape is ompared to the ontent of this residual vetor. For this purpose,

the modal partiipation fators are used. Thus, the modal partiipation fator of the ith mode

shape Φ
Pi to the real part of residual fore R

Fj
(e.g. R

F

P

(ω0) assoiated to Φ
P

LF

in Eq. (20)),

is de�ned as

µij =
|Φ

Pi · ℜ(RFj
)|

ωi
2‖ℜ(R

Fj
)‖

, (21)
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Using only the real part of the residual vetor has proved to be su�ient so far. This �rst

approah enables a proper sorting of the mode shapes aording to their ollinearity with respet

to the residual fore vetor. Furthermore, being independent of the residual fore norm, the

partiipation fators de�ned as suh an be used to ompare the relative ontributions of a mode

shape to a set of several residual fore vetors omputed at di�erent frequenies. In the following,

it is supposed that for a given residual fore R

Fj
, a set of N modes are ordered by inreasing

modal partiipation so that

µ1j > · · · > µij > · · · > µ
Nj. (22)

In order to establish a trunation riterion based on the modal partiipation fators, they are

normalized with respet to the smallest ontribution for a given residual fore :

∀ i ∈ [1..N] µ̄ij =
µij

µ
Nj

> 1. (23)

In pratie, these fators di�er from one another by several orders of magnitude, whih makes a

logarithmi sale more appropriate for their representation (See Fig. 3). The logarithmi repre-

0 100 200 300 00 500 600 700 800
0

1

2

3

5

6

7

8

9

10
x 10

9

Mode number

N
or

m
al

iz
ed

 p
ar

tic
ia

tio
n 

fa
ct

or
 (

lin
ea

r 
sc

al
e)

(a)

0 100 200 300 00 500 600 700 800
0

2

6

8

10

12

1

16

18

Mode number

N
or

m
al

iz
ed

 p
ar

tic
ia

tio
n 

fa
ct

or
 (

lo
g 

sc
al

e)

(b)

Fig. 3 � Example of normalized modal partiipation fators : (a) linear sale and (b) logarithmi

sale

sentation allows to easily distinguish signi�ant ontributions, either by their ontribution level,

or by the hange of tangent slope (Fig. 3(b)). Therefore, several seletion riteria an be propo-

sed, e.g. based on a threshold value, a hange in the tangent slope, a ratio of ontribution. After

some tests, the latter approah is presented in this work. Thus, for a seletion of the �n� most

signi�ant modes in the trunated basis, the following riterion is proposed, based on a ratio of

the umulated logarithmi ontributions :

χ
nj =

n∑

i=1

log(µ̄ij)

N∑

i=1

log(µ̄ij)

6 χ
max

, (24)

where χ
max

is an empirial limit, in the interval ]0, 1], typially found to be onservatively suitable
when set to 0.4 in the tested 2D appliations.

4 Appliation and results

In the sope of this ontribution, the improvement indued by the proposed mode seletion

and sorting proedure is illustrated on a small 2D problem presented on Fig. 4. Further validation

ases an be found in Ref. [7℄ It onsists of an aousti domain �lled with air, bounded by rigid

walls, and treated with a porous layer on one wall, whih material parameters are given in Table 3.

Sliding oupling onditions are set for the porous layer with the side walls and stiking with the

bak wall (see Table 2). The low frequeny behaviour is tested applying a harmoni veloity

soure (Eq. (7)) at a orner of the avity, opposite the layer. The mesh, onsisting of 7× 5 linear
elements in the aousti and porous domains is suitable for an analysis up to 1500 Hz.
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0.15 m

0.05 m0.2 m

Acoustic source
Porous layer

Acoustic cavity

Fig. 4 � Mesh and dimensions of small 2D appliation

Frame Fluid Porous

c0 = 343 m/s φ = 0.96
λ = 905357 Pa γ = 1.4 σ = 32 kNs/m

4

µ = 264062 Pa Pr = 0.71 α∞ = 1.7
(1− φ) ρ

s

= 30 kg/m

3 ρ
f

= 1.21 kg/m

3 Λ = 90 µm
η = 1.84 · 10−5

Ns/m

2 Λ′ = 165 µm

Tableau 3 � Air and porous material parameters

The onvergene with the proposed modal-based redution of the poroelasti layer is pre-

sented on Fig. 5, where the mean quadrati pressure in the avity is given. It is ahieved when

the �rst 26 porous modes are inluded in the basis. The mode seletion and sorting proedure is
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Fig. 5 � Convergene with original modal basis :(a) 2 Modes ; (b) 15 Modes ; () 26 Modes

applied to the retained modal basis, and the orresponding results are presented in table 4, for a

seletion riterion χ
max

set to 0.4, and a residual fore vetor omputed at the arbitrarily hosen

frequeny of 375 Hz. The onvergene of this enhaned modal redution is presented on Fig. 6. It

Mode Eigenfrequeny (Hz) µij χ
nj

1 83 (0) (1)
2 161 12.9 0.06
21 1139 12.0 0.12
15 947 11.9 0.17
4 299 11.1 0.23
12 787 10.4 0.28
26 1343 10.3 0.32
16 951 9.8 0.37
7 468 9.2 0.4

Tableau 4 � Signi�ant modal ontributions seletion

appears learly that not only have the most signi�ant modal ontributions been seleted, thus

resulting in a further downsized problem, but they are also sorted aording to their frequeny

range of ontribution. One onsequene of this latter aspet, is that a seletion riterion χ
max

set to a too optimisti limit would only a�et the preision at the highest frequenies in the

onsidered range.
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Fig. 6 � Convergene with enhaned modal basis, χ
max

= 0.4 : (a) 1 Mode, (b) 3 Modes,

() 8 Modes

5 Conlusion

In this ommuniation, an enhaned modal-based redution for sound absorbing porous ma-

terials was presented. It inludes a seletion and sorting proedure of the modes aording to

their ontribution signi�ane. Tested on a 2D poro-aousti problem, it showed promising per-

formane improvements, downsizing the modal basis to less than a third of its original size.

Further work is fousing on tests for a larger range of industrial-like appliations [7℄.
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