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Abstract — This article presents a coupling strategy for transient fluid-structure interaction. The pro-
posed method is applied to a mono-dimensional test case where we study the phenomenon of propaga-
tion of shock waves across the fluid-structure interface. The solid sub-domain is discretized by Finite
Element Method in Total Lagrangian Formulation with Newmark time integrator, whereas for the fluid
sub-domain we use the mesh-less method SPH-ALE with 2nd order Runge-Kutta scheme. At the fluid-
structure interface, we impose a continuity condition for velocity to ensure that the interface energy
is zero during the whole period of numerical simulation. This coupling method can thus allow us to
preserve the minimum order of accuracy in time of the used time integrators for each sub-domain. A
good agreement is found between the numerical result and the analytical solution in the 1D shock wave
propagation test case. Finally, a multi-dimensional example is presented.
Keywords — fluid-structure interaction, SPH-ALE, interface energy, time integrators

1 Introduction

An important branch of multi-physics problems is the fluid-structure interaction. Generally the coupling
strategies of the two different physical domains can be classified into two major types [6]: monolithic
and partitioned procedures. In monolithic procedures, the fluid and solid equations are solved simultane-
ously, which is quite difficult when different solvers are used for the two sub-domains. The partitioned
procedures can overcome this limit. However, there always exists a time lag between the integration of
fluid and structure [5]. As a consequence, this partitioned method is typically energy increasing, hence
sometimes numerically unstable [7].

As presented in [1], from the energy point of view, we can preserve the minimum level of the order
of accuracy of the coupled system, as long as the interface energy is ensured to be zero during the
numerical simulation. In [2] Mahjoubi et al. have proposed an energy conserving method to couple
heterogeneous time integrators in structural dynamics. This strategy has been successfully used for
coupling 3D problems with many sub-domains.

In the present paper, we propose a monolithic approach for coupling finite element method (solid)
and a hybrid SPH-ALE method [4] (fluid), using different time integrators: Newmark scheme and 2nd

order Runge-Kutta scheme. By imposing the same mean value of normal velocity of the two sub-domains
at the fluid-structure interface, we can ensure rigorously the zero interface energy condition, hence we
can preserve the order of accuracy in time as well as the numerical stability.

The paper is organized as follows: we first present the governing equations and discretization meth-
ods for the fluid and solid sub-domains in Section 2 and Section 3. In Section 4, we describe the proposed
coupling strategy which can ensure the zero interface energy condition. Then, we give two 1D test cases
compared with the analytical solution in Section 5. A 3D example is also given to show the feasibility of
the proposed coupling method for multi-dimensional cases. Finally, the conclusion is offered.
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2 SPH-ALE method for fluid field

2.1 Governing equations

We consider a non-viscous, quasi-incompressible fluid on the domain Ω f , which is governed by the Euler
equations in ALE integral form [8]

∂
∂t

∣∣∣∣
χ0

∫
Ωt

ρf dΩ+
∫

Γt

ρf (vf −v0) ·n dΓ = 0

∂
∂t

∣∣∣∣
χ0

∫
Ωt

ρf vf dΩ+
∫

Γt

ρf vf (vf −v0) ·n dΓ =
∫

Ωt

(−∇pf +ρf g) dΩ
(1)

where ρf denotes the fluid density, vf the fluid velocity vector, pf the fluid pressure. g is the body force,
here it is the gravity vector. Ωt represents an arbitrary time-varying volume bounded by a closed surface
Γt , which is the referential domain in ALE setting. In this referential domain, χ0 denotes the coordinate
and v0 is the arbitrary velocity vector. Finally, “ |χ0

” means holding the referential coordinate fixed.
In addition, the Tait equation is used as the equation of state for quasi-incompressible fluid [9]

pf = B

[(
ρf

ρref
f

)γ

−1

]
(2)

where B = ρref
f
(cref

f
)2/γ and γ = 7, with ρref

f
being the reference density and cref

f
the reference speed of

sound for the fluid.

2.2 SPH-ALE method

To discretize the governing equations (1) in space, we apply the hybrid SPH-ALE approach proposed by
Vila [4], which combines the Smoothed Particle Hydrodynamics (SPH) and the Arbitrary Lagrangian-
Eulerian methods (ALE). Rewritting (1) in a concise form

∂
∂t

∣∣∣∣
χ0

∫
Ωt

Φ dΩ+
∫

Ωt

∇ · (FE −v0 ⊗Φ) dΩ = S (3)

where,

Φ =

{
ρf

ρf vf

, FE =

{
ρf vf

ρf vf ⊗vf + pf I
and S =


0∫

Ωt

g dΩ
(4)

with I being the identity tensor, and we will note that F = FE −v0 ⊗Φ.
Consider that the whole fluid domain Ω f is discretized into N f fluid “particles”. Each fluid “particle”

Ωi can be an arbitrary time-varying domain.
The semi-discrete fluid equations write

d
dt
(ωiΦi)+ωi ∑

k∈∂Di

nk ·Wik(Fk +Fi)sk +ωi ∑
j∈Di

∇iWi j · (F j +Fi)ω j = Si (5)

where ωi denotes the volume of Ωi, Φi the volume average value of Φ in each Ωi, Wi j the smoothing
kernel function, nk the normal vector of support domain truncated by solid boundary (Fig. 1), sk the area
of surface element “k”. (F j +Fi) is estimated by 2GE(Φi,Φ j) [4] with

GE(Φi,Φ j) = FE(Φi j(λi j
0
))−v0(xi j, t)⊗Φi j(λi j

0
)

Φi j(λi j
0
) = ΦE(λi j

0
,Φi,Φ j)

λi j
0
= v0(xi j, t) ·ni j

xi j =
xi +x j

2

(6)

with ΦE denoting an intermediate status obtained by solving the “moving” Riemann problem between
the two fluid states: Φi and Φ j.
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Fig. 1: The support domain truncated by solid wall.

In [3], J.C. Marongiu has initially proposed a method for calculating fluid pressure at solid walls,
which is coherent with the use of Riemann solvers inside of the fluid domain. In this method, the term
(Fk +Fi) is calculated by

2GE,ik = 2[FE(ΦE,ik)−v0(xk)⊗ΦE,ik] (7)

where ΦE,ik denotes the state of variables obtained by resolving a “partial Riemann problem” [10]. The
fluid pressure at solid wall “pk” writes

pk = ∑
i∈Dk

ωi2pE,ikWik (8)

where pE,ik is the intermediate fluid pressure.

3 Finite element method for solid field

3.1 Governing equations

The balance equation of linear momentum for the solid sub-domain Ωs writes∫
Ωs

(
ρs

d2us

dt2 −ρsb−∇ ·σs

)
dΩ = 0 (9)

where ρs denotes the solid density, us the displacement vector, b the body force, and σs the Cauchy stress
tensor. And we note in this paper 

vs =
dus

dt

as =
d2us

dt2

(10)

with vs and as being the velocity and acceleration vectors.

3.2 Discretization method

To discretize the governing equation in space, we apply the Total Lagrangian Finite Element formulation
[11]. The semi-discrete linear momentum equations write

Msas = fext − fint (11)

where Ms is the mass matrix, fext and fint represent the external and internal nodal forces, respectively.
For external nodal force, we can write

fext = LpΛ (12)
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Schemes β γ
Implicit Newmark 0.25 0.50
Explicit Newmark 0.00 0.50

Table 1: Two different Newmark schemes used for structure.

where Lp denotes the geometry operator, and Λ = [p1 p2 . . . pk . . .]T with pk being the pressure applied
at the surface element “k”. In linear geometry cases, i.e. the geometry of structure is considered to be
constant in time, Lp will not change as time evolves.

For internal nodal force, in linear case, fint can be simply written as

fint = Ksus (13)

where Ks is the stiffness matrix which is also constant in time.
The Newmark scheme is used as the time integrator for the structureun+1

s
= un

s
+∆tvn

s
+

∆t2

2
[
(1−2β)an

s
+2βan+1

s

]
vn+1

s
= vn

s
+∆t

[
(1− γ)an

s
+ γan+1

s

] (14)

with β and γ being the Newmark scheme’s coefficients. Choosing different coefficients, we have two
types of Newmark schemes as presented in Table 1.

4 Energy conserving coupling strategy

4.1 Zero interface energy condition

As presented in [1], when coupling two physical domains with two different time integrators, one can
preserve the minimal order of accuracy in time for the coupled system, as long as the interface energy
is ensured to be zero during the numerical simulation. For example, when one wants to couple two
different time integrators which are both second order accurate in time, the coupled system can have a
second order of accuracy, if neither energy injection nor energy dissipation occurs at the interface. In
contrast, if the zero interface energy condition can not be ensured, the coupled system will have probably
a first order of accuracy or a zero order of accuracy, or even an instable result.

The increment of interface energy over the time interval t ∈ [tn, tn+1] is defined as

∆WI =
∫ tn+1

tn

∫
ΓI

[
ns · (−psI) ·vs +n f · (−pf I) ·vf

]
dΓ dt (15)

where ps and pf represent the pressure applied to each sub-domain at the interface, and ps = pf = pk.
Supposing that pk and sk are piece-wise constant in time, one can write (15) as

∆W d
I =

Nk

∑
k=1

pksk

∫ tn+1

tn
nk ·
[
vs(xk)−vf (xk)

]
dt (16)

with X being the mean value of the variable X in [tn, tn+1].
Hence, if we impose that the two sub-domains (fluid and solid) have the same mean value of normal

velocity at each interface element “k”

nk ·vs(xk)−nk ·vf (xk) = 0 (17)

we can ensure rigorously the zero interface energy condition ∆WI = 0 over the time step t ∈ [tn, tn+1],
and thus for the whole period of numerical simulations.

4.2 Coupling algorithm

The overall coupling procedure is presented in Fig. 2, and the coupling algorithm is presented as follows:
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status solver

I-1

I-1

I-1
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2

I-2
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II-1

II
-1

II-1

II
-2

II-2

II
-2

II-3

II
-3

II-3

Fig. 2: The coupling procedure.

I-1: The fluid solver receives the already known interface status Un
I , and then calculates the fluid status

Un+1/2
f

;

I-2: The coupler uses Un+1/2
f

and the solid status Un
s

to solve the system of equations at tn+1/2 in order

to obtain the interface status Un+1/2
I ;

II-1: The fluid solver gets Un+1/2
I and finishes the Runge-Kutta scheme to calculate Un+1

f
;

II-2: The coupler solves the system of equations at tn+1 with Un
s

and Un+1
f

to calculate the interface
status Un+1

I ;

II-3: The solid solver receives Un+1
I and uses it as the imposed boundary condition to update to Un+1

s
.

5 Numerical results

5.1 Mass-spring system coupled with a column of water

Firstly, we couple a mass-spring system with a 1D water tube (Fig. 3). At the other side of this tube,
we impose the movement of the solid wall: xB(t) = Am [1− cos(ωt)], with Am = 2.5×10−4 m and ω =
2000 rad/s. The length of the tube L f = 1 m, which is discretized into 200 fluid particles.The mass
Ms = 0.8 kg, the spring stiffness Ks = 8000 N/m. The reference parameters for the fluid are chosen to
ρref

f
= 1000 kg/m3 and cref

f
= 1500 m/s. Initially, the whole system is at rest, and the result is shown in

Fig. 4.

Fig. 3: Linear test case – mass-spring system coupled with a column of water.

The objective of this linear test case is to verify if the coupling strategy can preserve the order of
accuracy in time. Since the used time integrators for the solid and fluid domains are both second order
accurate in time, hence if one ensures the zero interface energy condition, one can obtain a second order
accuracy in time for the coupled system.

To verify numerically the order of accuracy in time, we choose to apply the method used in [7],
which determines the observed order of accuracy by calculating

p = ln
(
∥Xnum

4τ −Xnum
2τ ∥

∥Xnum
2τ −Xnum

τ ∥

)
/ ln(2) (18)
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Fig. 4: Coupling result of the linear test case – (a) evolution in time of the mass point velocity; (b)
velocity profiles in fluid domain at three different moments (∆t = 10−6 s).

Variables (X) p∞ pL2

us 1.9313 2.0059
ρf (x = 25%L f ) 2.1125 2.1058
vf (x = 25%L f ) 1.8934 1.7871

Table 2: The observed order of accuracy in time of the coupling result.

where p denotes the observed order of accuracy in time, X a certain variable calculated by using different
time steps (τ, 2τ and 4τ) and ∥ ∥ means “L2-norm” or “∞-norm”. Table 2 shows that the coupled system
possesses a second order of accuracy in time.

5.2 1D propagation of shock wave

In the second test case, we replace the mass-spring system by a 1D linear beam (Fig 5). The initial length
L0

s
= 1 m, the initial solid density ρ0

s
= 2700 kg/m3, and the initial section area A0

s
= 1 m2. The Young’s

modulus Es = 67.5 GPa. The solid beam is discretized into 200 elements, and ∆t = 10−6 s.

x

Fig. 5: 1D linear beam coupled with a column of water: propagation of shock wave across the fluid-
structure interface.

The initial configuration of this test case is shown in Fig. 6. The initial discontinuity is located at the
fluid-structure interface. The total period of calculation T = 100∆t. In Fig. 7 and Fig. 8, one can observe
a good agreement between the numerical result and the analytical solution.

5.3 3D propagation of shock wave – linear structure

Finally, a 3D example is given to show the feasibility for multi-dimensional problems of the presented
coupling approach. Fig. 9 shows a water filled tank which is made of five rigid walls and one deformable
plate clamped at the four sides. The thickness of the plate d = 0.01 m, a = 0.1 m, the Young’s modulus
Es = 100 GPa, the density ρs = 2700 kg/m3, and the Poisson’s ratio ν = 0.3. A structural mesh is used
to discretize the plate into 20(a)×20(a)×10(d) elements. The length of the tank L f = 0.2 m, and there
are 20×20×40 fluid particles. Initially, the system is at rest, a discontinuity of fluid pressure is located
at x = 15%L f (Fig. 10).

Normally, the central point of the plate has the maximum amplitude of velocity in X . Fig. 11 shows
the numerical result of this central point. The total period of simulation T = 2× 104∆t = 0.004 s. As
time evolves, obvious numerical dissipation can be observed. Notice that the numerical dissipation is
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Fig. 6: Initial configuration for the test case with 1D linear beam: (a) initial profile of fluid pressure (p f )
and solid stress (−σs); (b) initial profile of fluid and solid velocity.
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Fig. 7: Comparison with the analytical solution (Implicit Newmark scheme).
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Fig. 8: Comparison with the analytical solution (Explicit Newmark scheme).

aa

a

Fig. 9: Configuration of the 3D test case.

Fig. 10: Initial fluid pressure field.
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introduced only by the fluid solver, since we ensure the zero interface energy condition, and the used
Newmark scheme does not dissipate.
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Fig. 11: Evolution in time of the central point’s velocity in X .

6 Conclusion

An energy conserving coupling approach is presented for transient fluid-structure interaction with dif-
ferent time integrators. Using such coupling strategy, neither numerical energy injection nor dissipation
occurs at the interface during the simulation. Two 1D test cases show that this coupling approach can
preserve the order of accuracy in time for the coupled system, and with this method one can correctly
calculate the interface status when a shock wave impacts onto the fluid-structure interface. A 3D example
is presented briefly to show the feasibility of this approach for multi-dimensional cases.
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