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Introduction

An important branch of multi-physics problems is the fluid-structure interaction. Generally the coupling strategies of the two different physical domains can be classified into two major types [START_REF] Farhat | Robust and provably second-order explicit-explicit and implicitexplicit staggered time-integrators for highly non-linear compressible fluid-structure interaction problems[END_REF]: monolithic and partitioned procedures. In monolithic procedures, the fluid and solid equations are solved simultaneously, which is quite difficult when different solvers are used for the two sub-domains. The partitioned procedures can overcome this limit. However, there always exists a time lag between the integration of fluid and structure [START_REF] Blom | A monolithical fluid-structure interaction algorithm applied to the piston problem[END_REF]. As a consequence, this partitioned method is typically energy increasing, hence sometimes numerically unstable [START_REF] Michler | A monolithic approach to fluid-structure interaction[END_REF].

As presented in [START_REF] Combescure | A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis[END_REF], from the energy point of view, we can preserve the minimum level of the order of accuracy of the coupled system, as long as the interface energy is ensured to be zero during the numerical simulation. In [START_REF] Mahjoubi | A monolithic energy conserving method to couple heterogeneous time integrators with incompatible time steps in structural dynamics[END_REF] Mahjoubi et al. have proposed an energy conserving method to couple heterogeneous time integrators in structural dynamics. This strategy has been successfully used for coupling 3D problems with many sub-domains.

In the present paper, we propose a monolithic approach for coupling finite element method (solid) and a hybrid SPH-ALE method [START_REF] Vila | On particle weighted methods and smooth particle hydrodynamics[END_REF] (fluid), using different time integrators: Newmark scheme and 2 nd order Runge-Kutta scheme. By imposing the same mean value of normal velocity of the two sub-domains at the fluid-structure interface, we can ensure rigorously the zero interface energy condition, hence we can preserve the order of accuracy in time as well as the numerical stability.

The paper is organized as follows: we first present the governing equations and discretization methods for the fluid and solid sub-domains in Section 2 and Section 3. In Section 4, we describe the proposed coupling strategy which can ensure the zero interface energy condition. Then, we give two 1D test cases compared with the analytical solution in Section 5. A 3D example is also given to show the feasibility of the proposed coupling method for multi-dimensional cases. Finally, the conclusion is offered.

SPH-ALE method for fluid field 2.1 Governing equations

We consider a non-viscous, quasi-incompressible fluid on the domain Ω f , which is governed by the Euler equations in ALE integral form [START_REF] Donea | Arbitrary Lagrangian-Eulerian Methods[END_REF] 

        ∂ ∂t χ 0 ∫ Ω t ρ f dΩ + ∫ Γ t ρ f (v f -v 0 ) • n dΓ = 0 ∂ ∂t χ 0 ∫ Ω t ρ f v f dΩ + ∫ Γ t ρ f v f (v f -v 0 ) • n dΓ = ∫ Ω t (-∇p f + ρ f g) dΩ (1) 
where ρ f denotes the fluid density, v f the fluid velocity vector, p f the fluid pressure. g is the body force, here it is the gravity vector. Ω t represents an arbitrary time-varying volume bounded by a closed surface Γ t , which is the referential domain in ALE setting. In this referential domain, χ 0 denotes the coordinate and v 0 is the arbitrary velocity vector. Finally, " | χ 0 " means holding the referential coordinate fixed. In addition, the Tait equation is used as the equation of state for quasi-incompressible fluid [START_REF] Macdonald | Some simple isothermal equations of state[END_REF] 

p f = B [( ρ f ρ ref f ) γ -1 ] (2) 
where 

B = ρ ref f (c ref f ) 2 /γ

SPH-ALE method

To discretize the governing equations (1) in space, we apply the hybrid SPH-ALE approach proposed by Vila [START_REF] Vila | On particle weighted methods and smooth particle hydrodynamics[END_REF], which combines the Smoothed Particle Hydrodynamics (SPH) and the Arbitrary Lagrangian-Eulerian methods (ALE). Rewritting (1) in a concise form

∂ ∂t χ 0 ∫ Ω t Φ dΩ + ∫ Ω t ∇ • (F E -v 0 ⊗ Φ) dΩ = S (3) 
where,

Φ = { ρ f ρ f v f , F E = { ρ f v f ρ f v f ⊗ v f + p f I and S =    0 ∫ Ω t g dΩ (4) 
with I being the identity tensor, and we will note that

F = F E -v 0 ⊗ Φ.
Consider that the whole fluid domain Ω f is discretized into N f fluid "particles". Each fluid "particle" Ω i can be an arbitrary time-varying domain.

The semi-discrete fluid equations write d dt

(ω i Φ i ) + ω i ∑ k∈∂D i n k •W ik (F k + F i )s k + ω i ∑ j∈D i ∇ i W i j • (F j + F i )ω j = S i ( 5 
)
where ω i denotes the volume of Ω i , Φ i the volume average value of Φ in each Ω i , W i j the smoothing kernel function, n k the normal vector of support domain truncated by solid boundary (Fig. 1), s k the area of surface element "k".

(F j + F i ) is estimated by 2G E (Φ i , Φ j ) [4] with              G E (Φ i , Φ j ) = F E (Φ i j (λ i j 0 )) -v 0 (x i j ,t) ⊗ Φ i j (λ i j 0 ) Φ i j (λ i j 0 ) = Φ E (λ i j 0 , Φ i , Φ j ) λ i j 0 = v 0 (x i j ,t) • n i j x i j = x i + x j 2 (6) 
with Φ E denoting an intermediate status obtained by solving the "moving" Riemann problem between the two fluid states: Φ i and Φ j .

Fig. 1: The support domain truncated by solid wall.

In [START_REF] Marongiu | Free surface flows simulations in Pelton turbines using an hybrid SPH-ALE method[END_REF], J.C. Marongiu has initially proposed a method for calculating fluid pressure at solid walls, which is coherent with the use of Riemann solvers inside of the fluid domain. In this method, the term

(F k + F i ) is calculated by 2G E,ik = 2[F E (Φ E,ik ) -v 0 (x k ) ⊗ Φ E,ik ] (7) 
where Φ E,ik denotes the state of variables obtained by resolving a "partial Riemann problem" [START_REF] Dubois | Partial Riemann problem, boundary conditions, and gas dynamics. Absorbing Boundaries and Layers, Domain Decomposition Methods: Applications to Large Scale Computations[END_REF]. The fluid pressure at solid wall "p k " writes

p k = ∑ i∈D k ω i 2p E,ik W ik ( 8 
)
where p E,ik is the intermediate fluid pressure.

3 Finite element method for solid field

Governing equations

The balance equation of linear momentum for the solid sub-domain Ω s writes

∫ Ω s ( ρ s d 2 u s dt 2 -ρ s b -∇ • σ s ) dΩ = 0 (9)
where ρ s denotes the solid density, u s the displacement vector, b the body force, and σ s the Cauchy stress tensor. And we note in this paper

     v s = du s dt a s = d 2 u s dt 2 (10) 
with v s and a s being the velocity and acceleration vectors.

Discretization method

To discretize the governing equation in space, we apply the Total Lagrangian Finite Element formulation [START_REF] Belytschko | Nonlinear Finite Elements for Continua and Structures[END_REF]. The semi-discrete linear momentum equations write

M s a s = f ext -f int (11)
where M s is the mass matrix, f ext and f int represent the external and internal nodal forces, respectively. For external nodal force, we can write where L p denotes the geometry operator, and Λ = [p 1 p 2 . . . p k . . .] T with p k being the pressure applied at the surface element "k". In linear geometry cases, i.e. the geometry of structure is considered to be constant in time, L p will not change as time evolves.

f ext = L p Λ ( 
For internal nodal force, in linear case, f int can be simply written as

f int = K s u s ( 13 
)
where K s is the stiffness matrix which is also constant in time.

The Newmark scheme is used as the time integrator for the structure

   u n+1 s = u n s + ∆tv n s + ∆t 2 2 [ (1 -2β)a n s + 2βa n+1 s ] v n+1 s = v n s + ∆t [ (1 -γ)a n s + γa n+1 s ] (14) 
with β and γ being the Newmark scheme's coefficients. Choosing different coefficients, we have two types of Newmark schemes as presented in Table 1.

4 Energy conserving coupling strategy

Zero interface energy condition

As presented in [START_REF] Combescure | A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis[END_REF], when coupling two physical domains with two different time integrators, one can preserve the minimal order of accuracy in time for the coupled system, as long as the interface energy is ensured to be zero during the numerical simulation. For example, when one wants to couple two different time integrators which are both second order accurate in time, the coupled system can have a second order of accuracy, if neither energy injection nor energy dissipation occurs at the interface. In contrast, if the zero interface energy condition can not be ensured, the coupled system will have probably a first order of accuracy or a zero order of accuracy, or even an instable result. The increment of interface energy over the time interval t ∈ [t n ,t n+1 ] is defined as

∆W I = ∫ t n+1 t n ∫ Γ I [ n s • (-p s I) • v s + n f • (-p f I) • v f ] dΓ dt (15) 
where p s and p f represent the pressure applied to each sub-domain at the interface, and p s = p f = p k . Supposing that p k and s k are piece-wise constant in time, one can write (15) as

∆W d I = N k ∑ k=1 p k s k ∫ t n+1 t n n k • [ v s (x k ) -v f (x k ) ] dt (16) 
with X being the mean value of the variable X in [t n ,t n+1 ].

Hence, if we impose that the two sub-domains (fluid and solid) have the same mean value of normal velocity at each interface element "k"

n k • v s (x k ) -n k • v f (x k ) = 0 (17)
we can ensure rigorously the zero interface energy condition ∆W I = 0 over the time step t ∈ [t n ,t n+1 ], and thus for the whole period of numerical simulations.

Coupling algorithm

The overall coupling procedure is presented in Fig. 2, and the coupling algorithm is presented as follows: 

Mass-spring system coupled with a column of water

Firstly, we couple a mass-spring system with a 1D water tube (Fig. 3). At the other side of this tube, we impose the movement of the solid wall: The objective of this linear test case is to verify if the coupling strategy can preserve the order of accuracy in time. Since the used time integrators for the solid and fluid domains are both second order accurate in time, hence if one ensures the zero interface energy condition, one can obtain a second order accuracy in time for the coupled system.

x B (t) = A m [1 -cos(ωt)], with A m = 2.
To verify numerically the order of accuracy in time, we choose to apply the method used in [START_REF] Michler | A monolithic approach to fluid-structure interaction[END_REF], which determines the observed order of accuracy by calculating Variables (X)

p = ln ( ∥X num 4τ -X num 2τ ∥ ∥X num 2τ -X num τ ∥ ) / ln(2) (18) 0 1 2 3 4 5 x 10 3 -3 -2 -1 0 1 2 3 t (s) v s 
p ∞ p L 2 u s 1.9313 2.0059 ρ f (x = 25%L f ) 2.1125 2.1058 v f (x = 25%L f ) 1.8934 1.7871 Table 2:
The observed order of accuracy in time of the coupling result.

where p denotes the observed order of accuracy in time, X a certain variable calculated by using different time steps (τ, 2τ and 4τ) and ∥ ∥ means "L 2 -norm" or "∞-norm". Table 2 shows that the coupled system possesses a second order of accuracy in time.

1D propagation of shock wave

In the second test case, we replace the mass-spring system by a 1D linear beam (Fig 5). The initial length L 0 s = 1 m, the initial solid density ρ 0 s = 2700 kg/m 3 , and the initial section area A 0 s = 1 m 2 . The Young's modulus E s = 67.5 GPa. The solid beam is discretized into 200 elements, and ∆t = 10 -6 s.

x Fig. 5: 1D linear beam coupled with a column of water: propagation of shock wave across the fluidstructure interface.

The initial configuration of this test case is shown in Fig. 6. The initial discontinuity is located at the fluid-structure interface. The total period of calculation T = 100∆t. In Fig. 7 and Fig. 8, one can observe a good agreement between the numerical result and the analytical solution.

3D propagation of shock wave -linear structure

Finally, a 3D example is given to show the feasibility for multi-dimensional problems of the presented coupling approach. Fig. 9 shows a water filled tank which is made of five rigid walls and one deformable plate clamped at the four sides. The thickness of the plate d = 0.01 m, a = 0.1 m, the Young's modulus E s = 100 GPa, the density ρ s = 2700 kg/m 3 , and the Poisson's ratio ν = 0.3. A structural mesh is used to discretize the plate into 20(a) × 20(a) × 10(d) elements. The length of the tank L f = 0.2 m, and there are 20 × 20 × 40 fluid particles. Initially, the system is at rest, a discontinuity of fluid pressure is located at x = 15%L f (Fig. 10).

Normally, the central point of the plate has the maximum amplitude of velocity in X. Fig. 11 shows the numerical result of this central point. The total period of simulation T = 2 × 10 4 ∆t = 0.004 s. As time evolves, obvious numerical dissipation can be observed. Notice that the numerical dissipation is introduced only by the fluid solver, since we ensure the zero interface energy condition, and the used Newmark scheme does not dissipate. 

Conclusion

An energy conserving coupling approach is presented for transient fluid-structure interaction with different time integrators. Using such coupling strategy, neither numerical energy injection nor dissipation occurs at the interface during the simulation. Two 1D test cases show that this coupling approach can preserve the order of accuracy in time for the coupled system, and with this method one can correctly calculate the interface status when a shock wave impacts onto the fluid-structure interface. A 3D example is presented briefly to show the feasibility of this approach for multi-dimensional cases.

  and γ = 7, with ρ ref f being the reference density and c ref f the reference speed of sound for the fluid.
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 212235 Fig.2: The coupling procedure.

  5 × 10 -4 m and ω = 2000 rad/s. The length of the tube L f = 1 m, which is discretized into 200 fluid particles.The mass M s = 0.8 kg, the spring stiffness K s = 8000 N/m. The reference parameters for the fluid are chosen to ρ ref f = 1000 kg/m 3 and c ref f = 1500 m/s. Initially, the whole system is at rest, and the result is shown in Fig. 4.

Fig. 3 :

 3 Fig.3: Linear test case -mass-spring system coupled with a column of water.

Fig. 4 :

 4 Fig. 4: Coupling result of the linear test case -(a) evolution in time of the mass point velocity; (b) velocity profiles in fluid domain at three different moments (∆t = 10 -6 s).

Fig. 6 :

 6 Fig. 6: Initial configuration for the test case with 1D linear beam: (a) initial profile of fluid pressure (p f ) and solid stress (-σ s ); (b) initial profile of fluid and solid velocity.

Fig. 7 :

 7 Fig. 7: Comparison with the analytical solution (Implicit Newmark scheme).
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 89 Fig. 8: Comparison with the analytical solution (Explicit Newmark scheme).
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 10 Fig. 10: Initial fluid pressure field.

Fig. 11 :

 11 Fig. 11: Evolution in time of the central point's velocity in X.

Table 1 :

 1 12) Two different Newmark schemes used for structure.

	Schemes	β	γ
	Implicit Newmark 0.25 0.50
	Explicit Newmark 0.00 0.50