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Résumé — L’objectif de ce papier est de déterminer le domaine de validité de l’hypothèse de champ
vibratoire diffus dans une plaque. L’idée est de résoudre un problème de vibration sur un ensemble
de plaques en utilisant la TVRC. La diffusivité du champ de vibration sur l’ensemble des plaque peut
etre mesuré soit en utilisant la fonction de corrélation du champ de déplacement, ou en utilisant une
description ondulatoire du champ diffus. Le domaine de validité de champ diffus est directement relié au
domaine de validité de la SEA.
Mots clés — Champ diffus, vibrations, hautes fréquences, Monte Carlo, TVRC, SEA

1 Introduction

The problem of calculating the response of a complex engineering structure to dynamic loading may
generally be approached using the Finite Element Method [1]. This technique allows a great flexibility
in the definition of the system geometry but unfortunately leads to very large numerical models as the
frequency increases. Therefore its applications are in practice limited to the low-frequency range. In the
mid frequency regime there are alternatives, such as the Trefftz method [2]. These methods differ from
the FEM by employing shape functions that are exact solutions of the governing differential equations.
They lead to a model size and computational effort that are considerably reduced compared to element-
based methods. One of these methods is the Variational Theory of Complex Rays (VTCR) [3] where
the vibrational field is sought as an integral distribution of plane waves (Herglotz function) and the
boundary conditions are satisfied using a weak formulation. The unknown of the problem is the amplitude
distribution of the waves.

It is, in principle, possible to extend deterministic methods to higher frequencies, at the expense of
increasing demands in term of the size of the model and the consequent computational time. However,
there is a fundamental physical reason why such extension is ultimately doomed to failure : it is as-
sociated with an unavoidable uncertainty about the precise dynamic properties of the structure. As the
frequency increases, the solution becomes more and more sensitive to small changes in the structural
details and therefore a deterministic solution becomes more and more unreliable.

The alternative is to treat the response prediction from the outset as a probabilistic problem. The high
frequency response of a population of similar systems of which individual members differ in unpredic-
table detail may be characterized by their ensemble-average behavior. For example Statistical Energy
Analysis [4] seeks the mean energy and its variance in the different part of the system. The theoretical
justification of the SEA equations is normally based on either a diffuse wave field approach or a modal
approach to the system dynamics. Therefore, the domain of validity of the SEA is directly linked to the
domain of validity of the diffuse field assumption. In [5], some work has been done to determine the do-
main of validity using the modal approach. The goal of this paper is to determine the domain of validity
of the diffuse field assumption in the particular case of plate vibrations.
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2 The reference problem

The reference problem being considered is the steady-state vibration of a plates at a fixed circular fre-
quency ω. This plate is assumed to have five edges and to be thin, homogeneous, isotropic and governed
by the elastic Kirchhoff-Love theory. Classically, all quantities are defined as complex quantities, i.e. an
amplitude Q(x) is associated with Q(x)eiωt . Let S denotes the mean surfaces of the plate and ∂S its boun-
daries. The thickness, stiffness tensor (including the damping η) and density are designated respectively
by h, D and ρ. The plate is excited by a point force F located at x f . The boundary conditions are free
edges (prescribed zero bending moment and shear force) with three clamped points Ci,e (i ∈ {1,2,3}) on
each edge e (prescribed zero deflection and slope).

The reference problem is : find (w,M) ∈W ×M (set of the finite-energy fields) such that :∣∣∣∣ div(divM)+ρehω
2we = Fδ(xF −x) in S

M = DX(w) in S
(1)

∣∣∣∣∣∣∣∣∣∣
w = 0 on Ci,e, e ∈ {1..5}, i ∈ {1,2,3}
w,ne = 0 on Ci,e, e ∈ {1..5}, i ∈ {1,2,3}
neMene = 0 along ∂S
Ke = nediv(Me)+(neMene),t = 0 along ∂S
[[teMene]] = 0 at the corner of ∂Se, e ∈ {1,2}

(2)

where ne and te are respectivelly the outward normal and the tangent to S on the edge e. [[�]] denotes the
value of the jump of quantity � and X is the curvature operator. If D is positive definite and the damping
factors η of the plate is positive, the solution of the reference problem is unique.

3 The Variational Theory of Complex Rays applied to plate vibration

3.1 The variational formulation associated with the VTCR

The VTCR uses a global formulation of Problem (1)-(2) in terms of both displacements and forces
along with the boundary conditions and transmission conditions. First, one must define S ad , the functio-
nal space that satisfies the governing equations (1) :

(w,M) ∈ S ad ⇔

∣∣∣∣∣∣
(w,M) ∈W ×M
div(divM)+ρhω

2w = Fδ(xF −x) in S
M = DX(w) in S

(3)

Similarly, let S ad
0 be the functional space which satisfies the homogeneous governing equations (the same

equations as (3), but without F). Then, the VTCR formulation of Problem (1)-(2) is : find (w,M) ∈ S ad

such that :∫
∂S

[
(neMne)δw∗,ne

−Kδw∗
]

dl− ∑
corners

[[teMne]]δw∗+∑
Ci,e

[
neδMnew∗,ne

−δKw∗
]
= 0

∀(δw,δM) ∈ S ad
0

(4)

where �∗ denotes the complex conjugate of �.
Equation (4) can be shortened to : find s = (w,M) ∈ S ad such that :

a(s,δs) = l(δs) ∀δs ∈ S ad
0 (5)

In order to find an approximate solution of (1)-(2), the basic idea is to seek a solution of (5) in a space
S h,ad ⊂ S ad (and, consequently, S h,ad

0 ⊂ S ad
0 ) of finite dimension : find sh = (wh,Mh) ∈ S h,ad such that :

a(sh,δsh) = l(δsh) ∀δsh ∈ S h,ad
0 (6)
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3.2 Construction of admissible fields

In order to define the S h,ad term in (6), we must find the exact solutions of the governing equations
(1). The explicit expression of (1) is :

D
[

∂4w
∂x4 +2

∂4w
∂x2∂y2 +

∂4w
∂y4

]
−ρhω

2w = Fδ(xF −x) (7)

where D =
E(1+ iη)

1−ν2
h3

12
, where E is the Young modulus and η the damping coefficient.

The displacement w is sought in the form w = w0 +wp, where wp is a known particular solution
of (7) while w0 ∈ Se

ad,0 is taken as a sum of Herglotz wave functions, i.e. an integral superposition of
propagative or evanescent plane waves of the form :

w0(x) :=
∫

C
Ap(θ)eıkp(θ)·(x−xp)dθ+∑

e

[∫
C

Ae(θ)eıke(θ)·(x−xe)dθ+∑
i

∫
C

Ae,i(θ)eıke(θ)·(x−Ce,i)dθ

]
. (8)

Any Herglotz wave function is a solution of homogeneous equation (7). Keeping the terminology
from previous works on the VCTR, functions Ap, Ae, and Ae,i are called the amplitude portraits of w.

In (8), C is the unit circle, xp is a reference point located in the centre of the plate, xe is a reference
point along edge e, Ap(θ) is the amplitude of the propagative plane wave in direction θ which contributes
to w, Ae(θ) and Ae,i(θ) are the amplitude of the evanescent plane wave in direction θ which contributes
to w. The wave vectors kp(θ) and ke(θ) are defined by :

kp(θ) = k cos(θ)ex + k sin(θ)ey (9)

ke(θ) =−ık
√

1+ cos2(θ)ne + k cos(θ)te (10)

where k =
(

ρhω2

D

)1/4

In order to discretize and get the VCTR formulation (6), each amplitude portrait A� (where � is
either p, e or e, i) is discretized as a sum of N� Dirac distributions supported at angular locations θn.
Then, w is the superposition of a finite number of plane waves :

w(x) := wp +
N p

e

∑
n=1

ap
neıkp(θ

p
n )·(x−xp)+∑

e

[
Ne

∑
n=1

ae
neıke(θe

n)·(x−xe)+∑
i

Ne,i

∑
n=1

ae,i
n eıke(θe,i

n )·(x−Ci,e)

]
(11)

where a�n are the unknowns of the problem and θ�
n = n 2π

N�
e

.

3.3 The discretized forme of the VTCR

With the displacement discretized according to (11), the VTCR formulation (6) leads to a linear
system of equations in the complex domain :

Aa = b (12)

Matrix A corresponds to the discretization of the bilinear form of weak formulation (6), a is the vector
of the unknown quantities which approximate the distribution of the wave amplitudes and b corresponds
to the discretization of the linear form of (6). A does not have any symmetry, but its symmetric part is
related to the dissipation of the problem, which guarantees that it is invertible. The VTCR approximate
solution of Problem (1)-(2) is given by Equation (11).
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4 The concept of diffuse field over an ensemble of plates

The concept of a diffuse field is used widely in vibro-acoustics to describe the high-frequency res-
ponse of an ensemble of structural components or acoustic volumes. The wave description of the SEA is
based on the hypothesis of diffuse field over the ensemble of structure. Therefore, being able to measure
the diffusivity of the displacement field across an ensemble of plate is the first step to define the domain
of validity of the SEA. In this section, we define the considered ensemble of plates, and then suggest two
measures of the diffusivity based on different approaches.

4.1 Ensemble of plates

In this paper, we study the response of an ensemble of plates. The ensemble is created by randomising
either the geometry of the plate and the position of the clamped point Ci,e. The Figure 1 represents the
reference geometry and 6 members of the ensemble of plates.

Fig. 1 – Left : geometry of reference for the ensemble of plates. Right : six members of the ensemble of
plates.

The reference geometry is a regular pentagon with a circumradius of 1m. The position of the vertices
is randomised by imposing a uniform distribution in a 0.05 m radius disk centered on the vertice of the
reference pentagon. Then the geometry is scaled such as all the member of the ensemble have the same
area.

The boundary conditions are randomised by changing the position of the clamped point. On each
edge, the clamped point follow an uniform distribution over a 0.1 length. The three zones are uniformly
distributed over the edge.

In this paper the ensemble of plate is composed of 8192 members. We consider 128 different geome-
tries, and 64 different boundary conditions configurations. Each member is solved using the VTCR for
a given frequency and level of damping. Using the VTCR allow us to have accrs to the displacement of
the plate (like any other deterministic method) but also to a wave description of the vibrational field.

4.2 Displacement approach

The concept of a diffuse field can be expressed in terms of the correlation function χd(r) (defined in
equation (13)) calculated on a set of lines over the ensemble of plates.

χ
d(r) =

[w(0) ·w(r)∗]√
[w(0) ·w(0)∗][w(r) ·w(r)∗]

(13)

where [ ] represents the mean over the set of lines over the ensemble of plates.
It is well known that the correlation function of a diffuse field χd,ex(r) (defined in equation (14))

along a line is related to the Green’s function of the system [6].

χ
d,ex(r) = J0(kr) (14)
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Fig. 2 – Measured correlation function over the set of line over the ensemble of plates at 400Hz, with a
damping sets to 1.5% .

Therefore, by comparing the correlation function χd(r) (defined in equation (13)) and the close form
χd,ex(r) (defined in equation (14)), it is possible to measure the diffusivity of the field across the ensemble
of plates. Let ε be such a measure :

ε
d =

∫
r

[
|χd(r)−χ

d,ex(r)|
]

dr (15)

4.3 Wave approach

A wave viewpoint of the diffuse field is adopted in this sub-section, and in this context a number
of textbook definitions of a diffuse wavefield in an acoustic volume are as follows : “plane waves are
incident from all directions with equal probability and random phase” , page 157 in [7] ; “the average
energy density is the same throughout the volume of the enclosure, and all directions of propagation are
equally probable” page 313 in [8]. A mathematical, rather than descriptive, statement of this concept has
been given by Morse and Ingard page 576 in [9] and Pierce page 255 in [10] ; in the former case the
response is represented as an integral over a continuum of plane wave headings, while in the latter case a
sum over a large number of discrete wave headings is employed. Thus it is clear that plane wave motion
is central to the concept of a diffuse field, and, moreover, the response of the system is considered to be
a superposition of plane waves that propagate with equal intensity in all directions — a concept that is
equally applicable to structural components.

To consider the field diffuse, the distribution of plane wave :
– should be uncorrelated,
– should have an uniform distribution of the phase in all the direction,
– should have the same distribution of magnitude in all the direction.
The next three subsection present how the verification of each these points are done.

4.3.1 Uncorrelation of the waves

The autocorrelation matrix χw of the amplitudes of the wave is defined as :

χ
w(θi,θ j) =

[Ap(θi) ·Ap∗(θ j)]√
[Ap(θi) ·Ap∗(θi)][Ap(θ j) ·Ap∗(θ j)]

(16)

A diffuse field will produce a autocorrelation matrix equal to the identity matrix.
The measure of the correlation of the wave consists into fitting an exponential model of correlation
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to χw. An exponential correlation matrix is defined by :

χ
w,e(θi,θ j) = exp

(
−
(|θi−θ j mod 2π|)

∆θcor

)
(17)

where ∆θcorr represents the correlation angle. One could remark, that when the correlation angle
tends to zero, the matrix χw,e tends to the identity.

The measure of the diffusivity is defined by :

ε
w,c =

∫∫
||χw,e(θi,θ j)−χ

w(θi,θ j)||dθidθ j (18)

The correlation angle is chosen that it minimised the quantity εw,c.
The figure 3 represents the autocorrelation matrices χw,e(θi,θ j) and χw(θi,θ j) calculated across the

ensemble of plate at 400Hz with the damping set to 1.5

Fig. 3 – autocorrelation matrices χw(θi,θ j) and χw,e(θi,θ j) (respectively left and right) calculated across
the ensemble of plate at 400Hz with the damping set to 1.5%.

4.3.2 Equipartition of the amplitude phase

For each propagative wave in the direction θ, the distribution of phase across the ensemble of plates
should be uniform.

Let dφ(θ) be the calculated histogram of the phase across the ensemble of plate of the wave propa-
gating in the direction θ. The measure of the equidistribution if done by calculating :

ε
w,p =

∫
|dφ(θ)− 1

2π
|dθ (19)

The figure 4 represents the calculated histogram of the phase in all the direction. It also represent the
evolution of the mean square error of the distribution with the direction of propagation.

4.3.3 Equidistribution of the amplitude magnitude

The distribution of the magnitude of the propagative wave has to be identical for all the direction.
It means that both of the mean and variance of the magnitude distribution in a given direction has to be
constant over all the direction.

Therefore we define the measure :

ε
w,a =

∫ 1
2
|[|A(θ)|]− [[|A|]]|+ 1

2
|(|A(θ)|)− ((|A|))|dθ (20)

where [|A(θ)|] and [[|A|]] represent respectively the mean value of the magnitude in the direction θ,
and the mean value across all the direction of [|A(θ)|]. Similar notation are used for the variance.

The first line of the figure 5 represents the histogram of the magnitude over all the direction, and the
evolution of the mean and variance of the distribution with the direction of propagation.
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Fig. 4 – calculated histogram dh(θ) and evolution of the mean square error of the distribution calculated
across the ensemble of plate at 400Hz with the damping set to 1.5%.

Fig. 5 – histogram of the magnitude over all the direction, and the evolution of the mean (red) and
variance (blue) of the distribution with the direction of propagation calculated across the ensemble of
plate at 400Hz with the damping set to 1.5%.

4.3.4 Global measure of the diffusivity

The measure of the diffusivity is done by combining the previous measures :

ε
w = 3
√

εw,c× εw,p× εw,a (21)

5 Results

In [5], Le Bot and Cotoni suggested that the domain of validity of the SEA could be represented
in the plan frequency-damping. The domain of validity of the SEA is directly linked to the domain of
validity of the diffuse field assumption. The idea of this section is to measure the diffusivity of the field
across an ensemble of plates on the frequency range 100-1000Hz, and a damping range of 10−3-10−0.5.

The figure 4 and 5 represent the diffusivity of the field across the ensemble of plate measured res-
pectively using the displacement approach end the wave approach. The color blue represents a better
diffusivity of the field across the ensemble of plates.

As one can see, the two approaches give similar results. At low frequency, the field across the en-
semble of plate is not diffuse, this could be expalin by the fact that the wave length if much bigger that
the dimension of the plate and its variations, and therefore the response is not sensitive to the change of
geometry. At higher frequency, one could remarks that only low value of damping produce a diffuse field
across the ensemble of plates. When the damping is to high, the direct field is damped before it could
reach the edges and produce a reverberant field, the response is then close to an infinite plate, and it not
affected by the change of geometry and boundary conditions.
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Fig. 6 – diffusivity across an ensemble of plates using a displacement and wave approach (respectively
left and right).

6 Conclusion

In this paper the VTCR has been combined with a Monte Carlo simulation, to simulate the response
of an ensemble of plates. The response could be obtained either in term of displacement or in term of
waves. Then the result has been used to measured the diffusitvity of the field across the ensemble of
plates. It is important to highlight the fact that, the field is diffuse across the ensemble, whereas one
realisation does not have a diffuse field. Two measures of the diffusivity has been proposed, one using a
displacement approach the second one using a wave approach. It has been shown that the two approach
gives similar results. The results could be used to determine the domain of validity of the SEA. It might
be interesting to investigate the relation between the correlation angle of the waves and the geometry and
investigate an wider frequency band. Further works will include the study of assembly of plates.
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