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- Safran Ceramics, 33600 Pessac, France
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Abstract

Detailed knowledge regarding the nature of and mechanisms causing neutron

irradiation damage in graphite remains a scientific and technological chal-

lenge, particularly at high irradiation doses. Using electrons as a surrogate

for neutron irradiation, we develop a time-dependent atomistic reconstruc-

tion strategy fed by a time series of high-resolution transmission electron

microscopy (HRTEM) images, to monitor damage propagation in a graphite

grain up to a dose of about one displacement per atom (i.e. well beyond

the conventional irradiation simulations based on molecular dynamics). The

reduction in crystalline order and the development of interlayer bonding ob-

served in the models with increasing irradiation time induce significant mod-
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ifications of the elastic constants and thermal conductivity. Homogenizing

these properties to the case of isotropic polycrystalline graphite we are able

to reproduce the increase in Young’s modulus and decrease in thermal con-

ductivity observed experimentally for reactor graphites with increasing dose.

Further validation of the models is provided via a comparison of simulated

and experimental data from irradiated material such as: HRTEM images,

carbon K-edge electron energy loss spectra, dose rate and stored energies.

1. Introduction

Controlled nuclear fission has always been intimately linked to graphite,

from the first nuclear piles in the 1940s, through the first civil nuclear reactor,

Calder Hall, which opened in 1956, and subsequent second and third gener-

ation reactors (Magnox and Advanced Gas-Cooled Reactors (AGR), to the

next generation (GenIV) very high temperature reactors (VHTR). In most

designs, graphite serves not only as a neutron moderator but also as a key

structural component, providing the mechanical integrity of the core, and

acting as a thermal management system. As an example of the importance

of graphite in the field, over 90 % of the current nuclear reactors in the UK

are based on a graphite core. Knowledge of radiation damage and its effects

on properties in nuclear graphite is thus particularly important at a time

where society has to make important choices related to the extension or de-

commissioning of existing, older nuclear reactors, as well as the development

of new high temperature reactors.

Neutron radiation produces atomic displacement cascades in graphite, re-

ducing crystalline order to only a few nm [1] and resulting in contraction along
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the a-axis and swelling along the c-axis [2, 3] also observed upon electron ir-

radiation [4]. Even though graphite core reactors usually operate at high

temperature (≈ 400◦C), it is often more convenient to study radiation effects

at room temperature to avoid thermal annealing of the produced damage.

From the point of view of physical properties, increases in Young’s modulus

(E) by factors of two [5] to four [6], due to an increase in C44 in graphite

grains [7], as well as decreases in thermal conductivity (κ) by approximately

an order of magnitude [8] have been reported for nuclear graphites upon

neutron irradiation at room temperature.

Using DFT calculations, Heggie et al. have ascribed dimensional changes

to the buckling of graphene layers induced by interlayer defects (spiro-interstitials)

[9, 10] in addition to the growth of vacancy lines and interstitial prismatic

loops as previously hypothesized [11, 12]. Direct molecular dynamics (MD)

simulations of the impact of energetic particles on graphite [13–17] tend to

confirm the formation of pinned interstitial atoms. However, these theoretical

and simulation studies are limited to primary damage, in which only a small

fraction of the atoms are displaced (10−2 in Ref. 17), in contrast to doses of

20-30 displacements per atom (dpa) experienced by nuclear graphite compo-

nents. Constructing structural models of graphite at higher irradiation doses

and rationalizing them with the experimental observations of pronounced

changes in physical properties is therefore a key issue for the development of

new reactors, the assessment of the optimal life time of actual plants or the

decommissioning of older ones.

Reconstructive atomistic modeling methods have proven to be consider-

ably helpful in the elucidation of structure-property relationships for various
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carbonaceous materials [18–21]. In particular, the image guided atomistic

reconstruction (IGAR) method, using high resolution transmission electron

microscopy (HRTEM) images as input data, has allowed the construction of

atomistic representations of highly anisotropic pyrolytic carbons reproduc-

ing with great accuracy both experimental textural (HRTEM images) and

structural (pair distribution functions) data [21, 22].

Building up on former experimental work [4, 23, 24] showing that electron

and neutron irradiation damage can be compared, we present in this work a

time-dependent IGAR method to model the propagation of radiation damage

in graphite using as experimental input a series of HRTEM images taken

during in situ electron irradiation of graphite. Irradiation induced changes

in physical properties are then discussed based on the proposed models.

2. Materials and methods

2.1. Transmission electron microscopy

TEM samples of Pile Grade A (PGA) graphite were prepared by grind-

ing/crushing. Flakes were mixed with acetone and dispersed onto 3 mm

copper TEM grids coated with holey amorphous carbon support film; the ar-

eas examined were < 50 nm thick. In situ TEM studies were performed in a

Philips CM200 field emission TEM operated at 200 kV with a tip extraction

bias of 3.21 kV and equipped with a GIF200 EELS spectrometer. We oper-

ated at Scherzer defocus c.a. -698 Å and data were collected periodically

(every 1 min.) during room temperature electron beam exposure over several

regions within the specimen. The localized heating effect from the electron

beam was considered to be negligible due to the high thermal conductivity of

4



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

graphite. The total duration of the exposure was of 13 minutes, which cor-

responds to a total estimated dose of around 1 dpa (see below). Considering

that actual reactor dose rates are on the order of 1 dpa per 15 months of

operation at full power and that significant annealing occurs under operation

temperatures, the damage level corresponding to 1 dpa of room temperature

electron irradiation should be equivalent to the one obtained in a reactor core

after a few years of its lifetime.

2.2. Time-dependent image guided atomistic reconstruction

The principles of the IGAR method, introduced in Ref. 25 and further

developed in recent years [21, 22], are schematized in Fig. 1(a). It starts

with the production of a 3D HRTEM image block, from an initial random

distribution of grey levels, using a multi-resolution pyramidal image synthesis

technique trained to reproduce image statistics collected on 2D images and

extended to 3D by considering the equivalence of spatial statistics by rotation

around the c axis. In a second step, this 3D analogue of the 2D experimental

HRTEM image is used as an external potential in a liquid quench MD sim-

ulation to guide atoms towards regions inferred from HRTEM fringes to be

high atomic density. At the end of the quench, the resulting atomistic model

is both chemically sound, thanks to the used interatomic potential, and car-

ries the nanotexture of the actual material, thanks to the HRTEM template.

This method has proven successful in the elucidation of the nanostructure of

highly textured laminar pyrocarbons [21].

We present in Fig. 1(b) a modification of this method, the time-dependent

IGAR method (TD-IGAR), specifically developed in this work to model

the dynamic evolution of an anisotropic carbon from a given time series
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Figure 1: Schematic description of (a) the conventional IGAR method and (b) the time-

dependent IGAR method. (c,d) 3D HRTEM image analogues at (c) 4 and (d) 5 minutes

of irradiation. (e) Image of the orientation difference (OD) between the 3D images at 4

and 5 min. (f) Initial temperature image for the reconstruction of the atomistic model

at 5 min of irradiation. (g) histogram of the OD image (e) showing the three regimes

of initial temperatures (in the orange domain a cosine function is used to progressively

increase temperature with OD from 300 K to 10 000 K).
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of HRTEM images. The starting points here are a pre-existing 3D HRTEM

image block and an atomistic model of the system at a given time ti (for in-

stance produced by a conventional IGAR simulation). Then, a 3D HRTEM

image at time ti+1 is obtained by modifying the 3D HRTEM image at time

ti in order to match the statistics derived from the experimental 2D image at

time ti+1. The pyramidal 3D synthesis, being based on a local optimization

scheme, ensures that the produced block at ti+1 is a minimal perturbation

from the block at time ti (see examples of two such blocks corresponding to

4 and 5 min of electron irradiation in Fig. 1(c) and Fig. 1(d), respectively).

Similarly, the 3D atomistic model at time ti+1 is obtained by modifying the

atomistic model at time ti, however, special care need to be taken such that

only damaged areas get altered, or in other words, areas in which the 3D im-

age block has significantly changed between time ti and time ti+1. In order

to do identify such areas, an orientation difference (OD) image (Fig. 1(e))

is produced from the angular difference between the normal to the grey-level

iso-surface at a given location at times i and i + 1. The normal vector is

estimated on every voxel of the 3D HRTEM image using the structure tensor

technique [26]. This 3D OD image is converted (see Fig. 1(g)) into a 3D

temperature image block (Fig. 1(f)): 10,000 K and 300 K for OD larger

and lower than some upper and lower thresholds respectively, with a cosine

switch in between. This temperature image block then serves to define the

space-dependent initial temperature for a rapid MD quench run. The latter

starts with the atomistic model at time ti and is biased by the HRTEM image

at time ti+1. The result from this run is the atomistic model at time ti+1 in

which changes in chemical bonding can only have occurred in areas of high
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OD values.

2.3. Evaluation of elastic properties and thermal conductivities

Elastic constants (and compliances) at room temperature and finite strains

are obtained using relaxed tensile simulations, constrained tensile simulations

and shear simulations under Lees-Edwards [27] boundary conditions as de-

scribed in Ref. 28. Engineering strain rates are set to 0.4 and 1 ns−1 for ten-

sile tests and shear tests, respectively. Phonon contributions (in the classical

limit) to the thermal conductivities are computed using the velocity-swapping

NEMD scheme of Müller-Plathe [29]. In these simulations, the systems are

replicated three times along the test direction to limit the magnitude of the

temperature gradients. One velocity swapping event was performed every

12.5 fs and 50 fs for simulations along a and c directions, respectively. This

leads to gradients of the order of 3-5 (a) K/nm and 20-25 K/nm (c).

2.4. Computational details

Molecular dynamics simulations are performed on periodic cubic cells of

5.025 nm width filled with 14009 carbon atoms (i.e. at a fixed density of

2.2 g.cm−3). Interatomic interactions are accounted for by the second gen-

eration reactive empirical bond order potential (REBO) [30], which provides

a reasonable description of defect energies in graphite [31, 32] and has been

recently used to investigate primary damage in graphite [17] and the struc-

ture/property relationships of many graphite-based materials [18, 19, 28].

Van der Waals interactions between non-bonded carbon atoms, not included

in the IGAR quenches, are introduced in order to relax the systems after

removal of the image potential and to compute properties. This is achieved
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using a Lennard-Jones potential introduced in an adaptive way based on both

distance and bond order criteria [33]. Equations of motion are integrated

with a velocity-Verlet integrator with time steps of 0.25 fs for simulations

involving high temperatures (IGAR and TD-IGAR reconstructions) and 0.5

fs for simulations performed at room temperature (relaxations and property

evaluations). The stochastic Andersen thermostat [34] is used to fix the tem-

perature in most simulations. The only exception is the non-equilibrium MD

(NEMD) simulations to evaluate thermal conductivities, for which a Berend-

sen thermostat [35] is used. In this particular case the thermostat only aims

at avoiding energy drifts on long timescale runs. The time constant of the

thermostat was thus set to a large value (0.5 ps) in order to have little effect

on the obtained temperature gradient, which was checked against shorter

Newtonian runs. In some simulations (constant pressure relaxations and re-

laxed tensile tests), all or some diagonal elements of the stress tensor are

fixed to atmospheric pressure using an anisotropic Berendsen barostat [35].

The 3D HRTEM image blocks used as external potentials in the (TD-

)IGAR reconstructions have a 9.81 pm/pixel resolution and were synthesized

from data collected on experimental images at least 25 nm and 10 nm width

along the a and c directions, respectively. The proportionality relationship

between energy and grey level is as in former work [21]: from 0 eV (black) to

4 eV (white). This correspondence between dark contrasts and high atomic

density was verified using HRTEM simulation for atomistic models as wide

as 12.5 nm [21].

The initial atomistic model in the TD-IGAR process is built from the

HRTEM image obtained at two minutes of irradiation (lower irradiation times
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could not be accurately described by the 5 nm width models used in this

work) using almost the same simulation parameters as those given in Ref.

21. The only difference is that the minimum quench rate is reduced by a

factor of 2, down to 0.25 K/ps, at temperatures between 5,200 and 4,000 K.

In the TD-IGAR approach, the initial temperature Tinit for the quench

process is non-uniform in space; it depends on the difference in orientation

(OD) at a given location between the actual 3D HRTEM-like image block

and the one at the former step. Based on tests of the effects of simulation

parameters on the reproduction of HRTEM features we adopted the following

choice of parameters: Tinit was set to 300 K and 10,000 K at respectively low

and high OD with a cosine switch in between (see Fig. 1(g)). The threshold

OD values for low and high Tinit were chosen so that they belonged to the tail

of the OD histogram, whose precise location showed some slight difference

from one system (i.e. one time) to another. On average we used Tinit = 300

K for OD < 7.5◦ and Tinit = 10,000 K for OD > 8.5◦ (note that this choice is

not that sensitive as, owing to the very rapid quench rate, structural changes

will only occur where strong alterations of the 3D HRTEM image blocks have

taken place, in other words, far into the tail of the OD histogram). As in

former work, the IGAR and TD-IGAR runs are performed without the van

der Waals potential to save computational time. The latter is introduced in a

second step to relax the system before property calculations are undertaken.

2.5. HRTEM simulation

HRTEM images were simulated from the atomistic models using the mul-

tislice image simulation technique implemented in the NCEMSS package [36].

The microscope parameters were set to match the experimental study. Two

10



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

images were simulated for each atomistic model, with the electron beam

aligned with the two equivalent directions (a and b axes). Average image

properties (L2, τ , RIMOD) were computed based on these two sets of im-

ages.

2.6. EELS calculations

A small-scale (216 atoms) atomistic model was produced using a simple

liquid quench MD simulation to allow for the calculation, using density func-

tional theory (DFT), of C K- electron loss near edge structures (ELNES).

The system density, 2.0 g/cm−3, and the quench rate, 0.25 K/ps, were chosen

so as to produce a structure resembling as much as possible that of the larger

irradiated graphite models. It is worth noting that, in such a small system,

highly anisotropic carbon forms straightforwardly and without imposing any

bias such as the external potentials based on 3D HRTEM image blocks used

in the IGAR simulations, because of the strong interactions with the periodic

boundary conditions.

ELNES features of this model were computed using the plane wave DFT

[37, 38] code CASTEP [39] with the Tkatchenko-Scheffler-van der Waals-

corrected [40] GGA PBE [41] functional with a 4×4×4 Monkhorst-Pack [42]

k point grid (spacing of less than 0.022 Å−1), and a plane wave energy cut-

off of 600 eV. The model was fully relaxed before calculation of the carbon

K-edges using 3072 unoccupied states up to +65 eV above the Fermi en-

ergy with self-consistently generated [43] on-the-fly pseudopotentials where

Blöchl’s projector-augmented wave [44] (PAW) formalism was used to recon-

struct the all-electron eigenstates to calculate the matrix elements. The scat-

tering momentum change −→q in the perturbation term ei
−→q .−→r was neglected to
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satisfy the dipole approximation in keeping with the small collection aperture

semi-angle used in the experiment. Energy-independent Gaussian instrumen-

tal broadening of 0.7 eV was applied alongside Lorentzian final-state lifetime

broadening of 0.17 eV based on published values [45].

3. Results

3.1. HRTEM observation

Three HRTEM (002) lattice fringe images taken from the 14 images time

series are presented in Fig. 2(a-c). At short irradiation times (2 min), long

linear fringes, reminiscent of the virgin (unirradiated) graphite structure, are

easily detected in the images. However, fringes exceeding 3 nm length are

very rare at the end of the 13 minute irradiation process as shown in the

filtered images with superimposed fringes in Fig. 2(d-f)). The overall fringe

tortuosity also significantly increases with increasing irradiation time as can

be visually perceived from these images. Damage progression is also evident

in the orientation images (Fig. 2(g-i)) where large columnar domains of even

contrast and hence constant orientation are observed at short irradiation

times, whilst smaller patchy orientation domains can be observed at the end

of the process. A complete time series of rotated HRTEM image cuts is

given as supporting movie S1 and quantitative descriptions of fringe (Fig.

S1) and orientation (Fig. S2) properties are provided in section S1 of the

supplementary material.

3.2. Atomistic models of irradiated graphite

We now present the properties of the times series of atomistic models,

dynamically reconstructed with the TD-IGAR method, based on data gath-
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Figure 2: HRTEM images of graphite during in-situ electron irradiation. (a-c) Observed

(002) lattice fringes after (a) 2, (b) 6 and (c) 13 minutes of irradiation. (d-f) Band pass

filtered enlargements of (a-c) with superimposed fringes. (g-i) orientation images of (d-f).

Image analysis was limited to domains having their 002 direction normal to the electron

beam, other areas are masked in black.
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Figure 3: Full size atomistic models of electron irradiated graphite after (a) two and (b)

thirteen minutes of irradiation. (c) time series of atomistic models by steps of two minutes

(only 2×2×2 nm3 volumes are displayed for clarity). Atoms are color coded according

to C6 (threefold atom in three hexagonal rings) : white; C4 (fourfold atom): red; C3a

(threefold atom bonded to three threefold atoms, yet belonging to a non-hexagonal ring):

orange; C3b (threefold atom bonded to at least one fourfold atom): yellow; C3c (threefold

atom bonded to at least one twofold or singlefold atom): violet; C2 (twofold atom): blue;

C1 (onefold): green; bonds between two C6: cyan; other bonds: black (see text for the

definition). The full time series of snapshots is also provided as movies S2 (2 × 2 × 2 nm3

volumes) and S3 (full width, 1 nm thick slabs).
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ered from the HRTEM images. Some of them are presented as snapshots

(either full sized or small volume cuts) in Fig. 3; the distribution of chemical

environments within these models is described in Fig. 4.

The initial model, reconstructed using the usual IGAR method from the

HRTEM image of graphite after two minutes of electron irradiation is shown

in Fig. 3(a). This model essentially retains a graphite-like structure with

more than 98 % of the atoms being threefold coordinated (sp2) and more

than 70 % (see Fig. 4), denoted as C6 atoms in the present work, belonging to

three distinct hexagonal rings (see Fig. 3(c)). Among the remaining 30 % of

“defect” atoms are a few fourfold (sp3) and twofold (either sp or edge-radical

sp2) coordinated atoms denoted as C4 (0.9 %) and C2 (0.6 %), respectively, as

well as 28 % of defective sp2 atoms. The latter can be subdivided into atoms

bonded only to sp2 atoms yet belonging to a non-hexagonal ring, denoted

as C3a (24 %), atoms bonded to a C4 atom, denoted as C3b (3 %) and the

remainder of sp2 atoms (those bonded to two-fold (C2) or single-fold (C1)

atoms), denoted as C3c (less than 1 %). C6 atoms form large, well-stacked

graphene domains resulting in relatively long pair correlations and narrow

diffraction peaks (see Fig. S4 in the supplementary materials), corresponding

to relatively large coherence lengths (La = 4.0 nm, Lc = 4.6 nm) compared

to the simulation cell (a 5 nm wide cube). The interlayer distance between

the basal planes, d002, is equal to the value in pristine graphite (0.335 nm),

even though our model adopts a turbostratic stacking of basal planes, due

to random in-plane orientations, inherent to the reconstruction technique.

Hexagonal graphene layers are bound in plane through well-known grain

boundaries involving pentagonal and heptagonal rings [22, 46], giving rise to
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C3a atoms. In addition, a complex network of interlayer crosslinks, essentially

in the form of screw dislocations, as identified recently in pyrolytic carbons

[22] and predicted to be a stable defect in graphite using DFT calculations

[47, 48], is clearly visible in Fig. 3(a). This is where most C4, C3b and C3c

atoms are apparent, in addition to numerous C3a atoms.

Figure 4: Evolution with irradiation time of the proportions of the different atomic carbon

environments (same definition and color code as in Fig. 3).

Fig. 3(c) and Fig. 4 reveal that under further irradiation, up to 13 min,

the total fraction of sp2 atoms slightly decreases from 98 % down to 93 %,

which is essentially accounted for by an increase in sp3 (C4) atoms, from 0.9

% up to 6 %, the C2 fraction remaining at around 1 % during the whole

process. With increasing irradiation the fraction of C6 atoms is significantly

reduced, from above 70 % down to 28 %, while the fraction of C3a atoms

increases from 24 % up to 45 % due to a significant increase in the number of

non-hexagonal rings, essentially pentagons and heptagons (see table S1 for
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detailed ring statistics). Correspondingly the fraction of C3b atoms increases

from 3 % to about 20 %, yet the ratio of C3b to C4 atoms remains in the

range 3.2 to 3.6, indicative of a very limited clustering of C4 atoms. We note,

that the production of defects (mainly C4, C3a and C3b atoms), rapid in the

very beginning of the process, tends to saturate above 9 min of irradiation.

Because of the large amount of damage occurring between two successive

models (see the dose rate below) we cannot assess the atomistic details of

damage production. However, as shown in Fig. 3(c), this work provides

for the first time a clear picture of damage progression at larger scale. The

reduction of in-plane order and increase in layer buckling is evident and

consistent with the significant decrease of intensity in the long range pair

correlation functions and reduction in longitudinal and transverse coherence

lengths (see Fig. S4). Also evident in Fig. 3(c) is the nucleation and build-up

of the screw dislocation network.

3.3. Validation

In Fig. 5 we compare some properties of experimental HRTEM images

and images derived from the 3D atomistic models obtained using a multi-

slice HRTEM simulation software [36]: L2, the average fringe length (Fig.

5(a)); βMOD, the plateau value of the rotationally invariant mean orientation

difference (RIMOD) [49] at large (inter-domain) distances (Fig. 5(b)); and

LMOD, the average pixel to pixel distance at a fixed intra-domain RIMOD

value (Fig. 5(c)). As can be seen, the simulated HRTEM images reproduce

the evolution with irradiation of the fringe and orientation properties ob-

served in experimental images. The only significant deviation is observed for

βMOD values at longer irradiation times, indicating a slight overestimation
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Figure 5: Quantitative comparison of simulated and experimental HRTEM images. Evo-

lutions with irradiation time of (a) the average fringe length L2, (b) the plateau value

βMOD of the RIMOD at large interpixel distance, and (c) the average interpixel distance

at which RIMOD = 4◦. Fringes with L2 > 4 nm were discarded from the analysis in (a)

to allow for a comparison between simulations and experiments. The complete time series

of simulated HRTEM images are available as supporting movies S4 and S5.

of the misorientation between adjacent orientation domains. Comparison of

experimental (Fig. S2(c)) and simulated (Fig. S3(b)) isovalue polar chats of

the RIMOD, in the supplementary materials, further validate the reproduc-

tion of image properties.

The dose rate, expressed as the number of displacements per atom (dpa)

and per unit time can be relatively easily calculated from the models. For

this, we considered successive models (i.e. separated by a one-minute time

interval) and used two criteria for atomic displacements: one based on a

minimum displacement distance of 1.42 Å, corresponding to the bond length

in graphite, and the second one based on a minimum change of connectivity

of at least two neighbors, which holds for the creation (or annihilation) of

all common defects (Stone-Wales, vacancy, interstitial, etc...). These two

criteria led to very similar results for the number of displaced atoms at each
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step (less than 5% difference between the two methods) and the same average

dose rate: 0.070 dpa/min (see Fig. 6).
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Figure 6: Cumulative number of displaced atoms (expressed in dpa) as a function of

irradiation time. Symbols: simulation results (uncorrected for multiple displacements)

using the connectivity criterion (the data were shifted, based on fit, to match a zero

displacement at the unirradiated stage); full line: linear fit to the simulation data; dashed

blue line: lower limit of the experimental dose based on Ed = 30 eV, corresponding to σd

= 5 barns [50, 51]; red dotted line: upper limit based on Ed = 15 eV (σd = 27.5 barns)

[51, 52].

However, our method for the dose calculation does not account for the

possibility that an atom undergoes several (two) displacements between two

successive models and thus provides a lower limit of the dose rate. A cor-

rection to account for double displacement, q2/2 = 0.00245 where q is the

calculated dose rate (this was obtained by integrating over one minute the

number of displaced atom at time t multiplied by the displacement proba-
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bility of an atom in a time interval δt) allows obtaining a corrected dose rate

of 0.072 dpa/min from the MD simulations. The total dose corresponding to

the 13 minutes exposure is thus estimated to 0.94 dpa. We would also like to

stress that this correction term only represents a small fraction of the total

dose rate, thus validating the choice of a one minute interval between two

successive snapshots.

In the TEM experiment, the average electron flux during beam exposure

was approximately 7.85 × 105 nm−2s−1, which, for a 13 minutes long ex-

posure, gives a total fluence of 5.81 × 108 e− nm−2. The conversion from

electron fluence to displacements per atom can be calculated by consider-

ing the displacement cross section (σd) and energy displacement threshold of

a carbon atom (Ed). There has been a relatively broad range of Ed values

quoted in the literature for various graphite-related structures, basically from

10 to 60 eV [50, 52], confusing the issue of the conversion between electron

fluence and dose. However, most recent studies, either based on experiments

or calculations seem to converge towards a narrower range of 15 to 30 eV

[14, 16, 50, 51, 53–55].

Assuming 30 eV and 15 eV as upper and lower bounds for Ed, an electron

energy of 200 kV, and referring to Ref. 56 we obtain lower and upper bounds

for σd of 5 and 27.5 barns, respectively. The corresponding dose rates, which

we consider here as lower and upper bounds (see Fig. 6), are thus of around

0.0225 and 0.123 dpa/min, respectively. We see that the dose rate determined

from the models, 0.072 dpa/min, resides almost exactly in the middle of the

experimental uncertainty. It corresponds to an energy displacement threshold

of around 20 eV, i.e., very close to recent estimations for graphene (21 eV
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using TEM and DFT [55]) and graphite (25 eV using MD simulations [16,

50]). A last point to mention here is that, for simplicity and because of lack

of available data, we have considered here that the dose is a linear function

of irradiation time (or electron fluence). However, after severe irradiation

damage one can expect the energy displacement threshold to become reduced

[57], and hence, exhibit an increase in dose rate with increasing irradiation

time, as seems to be the case in the simulation data (see Fig. 6).
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Figure 7: Stored energy of the irradiated graphite models as a function of the received

dose. Heat of combustion measurements for graphite irradiated with neutrons at room

temperature are given for comparison [58].

The amount of energy stored by the material during irradiation (i.e. its

net change in enthalpy) is a crucial and well-characterized property of nuclear

graphites as this energy could be released upon accidental increase in tem-

perature and potentially promote melting of the fission reactor core (Wigner

effect). We present in Fig. 7 the evolution with dose of the stored energy,
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computed as the average atomic enthalpy difference between irradiated and

pristine graphite models at room temperature and zero pressure. We observe

a sharp increase at the beginning of the irradiation process up to a plateau

of about 220 meV/atom obtained at around 0.6 dpa (corresponding to ≈ 9

min of irradiation), matching well the trend of defect production (see Fig.

4). It has to be compared to the continuous increase in dose (dpa) with time

up to the end of the process (see Fig. 6), in spite of an apparent steady state

for the chemical bonding within the material at times larger than 9 min.

Although we do not have experimental data for electron irradiated graphite,

the values reported here for the stored energy compare reasonably well to

heat of combustion measurements on neutron-irradiated graphite [58], show-

ing saturation at a similar dose value (0.43 dpa) albeit with an energy level

some 45 % larger than predicted here. This is consistent with the fact that

collisions with neutrons being more energetic than with electrons, they, on

average, create higher energy defects [59] (this is not accounted for in the

dose which relates more to the amount of created defects).

A last validation of the structural models concerns the reproduction of

electron energy loss (EEL) C K-edge spectra experimentally measured by

Mironov et al. in a similar in situ experiment in the TEM [60]. As the di-

rect calculation of EELS spectra from the large atomistic models simulated

in this work is not currently achievable, because of the high computational

cost associated with DFT calculations, we adopted a two-stage process: i)

firstly we used density functional theory (DFT) to calculate the C K- elec-

tron loss near edge structures (ELNES) of a small-scale (216 atoms) model

produced by liquid quench MD, and so identified the average contributions
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of C6, C4, C3a and C3b atom types; and ii) we then produced simulated spec-

tra for the full series of larger scale models based on these separate relative

contributions.

Figure 8: (a) Small scale model of defective graphite produced by liquid quench MD

simulation and (b) DFT calculated C K-edge including the individual contributions of C6,

C3a, C3b and C4 atoms (same color code as Fig. 3).

The small-scale model, shown in Fig. 8(a), contains 29 % C6, 5 % C4, 50

% C3a and 16 % C3b atoms, i.e., typical of the values obtained from the large-

scale models for irradiation times of 9 min and longer (see Fig. 4). It is worth

mentioning that the bonding structure of the model was entirely preserved

during the DFT relaxation, confirming the stability of the structure produced

with the empirical (AIREBO) potential. Especially, we checked with extra

care the stability of the two interlayer sp3-sp3 bonds present in the model by

testing the local potential energy surface (PES) around these features which

closely resemble the well-known “pinch defect” in graphite (i.e. interlayer

bond between two α atoms) which is known to be artificially stabilized by

the AIREBO potential [32]. As shown in the supplementary materials (Fig.
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S5), they actually correspond to well-defined minima in the DFT based PES,

confirming their stability, at least in sufficiently disordered systems like those

corresponding to doses close to 1 dpa.

The C K-ELNES computed from this model using DFT (Fig. 8(b)) is

typical of disordered carbons with a narrow, low intensity, π∗ band, ≈ 2.5 eV

above the Fermi level, and a broad, high intensity σ∗ band with maximum

intensity in the 7.5-25 eV energy range. Analysis of the contributions from

the different carbon environments reveals that: (i) C4 atoms do not show any

π∗ features in agreement with experimental diamond C K ELNES [61]; (ii)

C6 atoms have, as for graphite, narrower bands with an increased intensity

at the π∗ maximum; (iii) C3a atoms show an increase in intensity in the

region between the π∗ and σ∗ bands (the interband intensity); and (iv) C3b

atoms show a strong and narrow feature immediately above the Fermi level.

The origin of the latter feature, consistent with a well-known edge mode

[62] resulting from dangling bonds at the graphene edge, is discussed in the

supplementary materials (Fig. S6).

In Fig. 9(a) we compare the EELS spectrum computed for the large-scale

irradiated graphite model at the end of the TD-IGAR reconstruction (0.94

dpa) to an experimental spectrum obtained at a similar irradiation dose (1.03

dpa), and observe an overall good agreement, the main deviation being the

absence in the experimental spectrum of the low energy shoulder associated

to C3b atoms. This can be explained by either the overestimation in the

models of the amount of C4 atoms created by irradition (especially because

of the constraint of operating at fixed density), and hence of C3b atoms,

or by hydrogen or oxygen passivation of these sites in the actual material.
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Figure 9: Electron energy loss carbon K-edge spectra. (a) Comparison of the predicted

and experimental spectra at ≈ 1 dpa. (b) Evolution with irradiation dose of the absolute

planar sp2 carbon content (circles) and non-planar to planar sp2 carbon ratio (squares)

derived from predicted and experimental spectra. (experimental data are from Mironov

et al. [60], with the conversion from fluence to dose recalculated based on a displacement

energy threshold of 20 eV instead of 30 eV).

However, C3b atoms are stable defects, regularly encounterd in amorphous

carbon models produced by ab initio molecular dynamics simulations [63, 64].

From both the simulated and the experimental spectra we have been able

to extract and compare the absolute “planar sp2 carbon content”, calculated

from the ratio of π∗ (band) intensity divided by total integrated intensity,

normalized to graphite, and the so-called “non-planar to planar sp2 carbon

ratio” calculated from the ratio of intensity lying between the π∗ and σ∗

bands (the inter-band intensity) divided by the sum of π∗ and inter-band

intensities (see Ref. 60). As shown in Fig. 9(b), the experimental decrease

in planar sp2 content and increase in non-planar to planar sp2 ratio with

dose, up to a dose of ≈ 1 dpa at which they are known to plateau [60], are

relatively well accounted for by the models, although the predicted plateau
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values are obtained at significantly lower doses (≈ 0.35 dpa).

3.4. Prediction of properties

Figure 10: Evolution with irradiation time of (a) the longitudinal and (b) transverse

Young’s moduli and thermal conductivities as well as of (c) the basal shear elastic constant

(C44). Values and error bars of E‖ and κ‖ for the IGAR models are based on the average

values and deviations, respectively, from simulations performed along x and y directions.

Following validation of the models, we present in Fig. 10 some of their

elastic constants (the complete list of elastic compliances is given in table

S2) and their classical phonon contributions to the thermal conductivity.

Interestingly, the evolution of in-plane (Fig. 10(a)) and out-of-plane (Fig.

10(b)) properties show a very similar behavior with increasing irradiation for

both the Young’s modulus and thermal conductivity. The in-plane modulus,

E‖, quickly drops during the early stages of irradiation, before slowly reaching

a plateau at around 560 GPa, accounting for ≈ 2/3 of the pristine value.

Correspondingly, the in-plane conductivity, κ‖, decreases by approximately a

factor of four. Out-of-plane properties, E⊥ and κ⊥, progressively increase by

a factor of ≈ 2 between 2 and 13 minutes of irradiation (note that the strong

reduction in these properties between pristine graphite and the 2 minutes

irradiated graphite model is due to the absence of 3D crystalline order in
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IGAR reconstructed models [28]). As shown in Fig. 10(c), and in agreement

with experimental observations [65] (at much lower damage levels), the most

affected elastic constant is C44 which increases by a factor of ≈ 35 after

13 min of irradiation. The findings reported here can be rationalized by

the structural alterations observed in the models: the decrease in in-plane

properties is consistent with the decrease of in-plane structural order and the

increase in transverse (except between 0 and 2 min of irradiation) and shear

properties can be attributed to the progressive development of interlayer

covalent bonding [28]. Further discussion of these properties, in line with

literature data, is provided in section S4 in the supplementary materials.

0 0.2 0.4 0.6 0.8 1
Dose [dpa]

0

25

50

75

100

125

E
is

o
 [

G
P

a]

E
iso

0

5

10

15

20

25

κ
is

o
 [

W
/m

/K
]

κ
iso

Figure 11: Evolution with dose of the Young’s modulus and thermal conductivity homog-

enized to isotropic graphite (Voigt-Reuss-Hill average).

Finally, we present in Fig. 11 the evolution with irradiation dose of the

Young’s modulus Eiso and thermal conductivity κiso for a dense isotropic

polycrystalline graphite, as a proxy for actual nuclear graphites. This has
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been predicted via homogenization of the elastic constants and thermal con-

ductivities computed from the anisotropic irradiated graphite models (see

section S5 and Fig. S7 in the supplementary materials). Eiso shows the well-

known increase in modulus with increasing dose, as well as signs of saturation

at around 3 times the value of the virgin material at a dose approaching 1

dpa, in good agreement with experimental observation on neutron irradiated

nuclear graphite [5]. Quantitatively speaking, the predicted values of Eiso

are typically ≈ 4 times larger than experimental values for nuclear grade

graphite, including the virgin unirradiated material. This is expected as we

operate at the density of the single crystal of graphite (2.2 g/cm3), whilst the

density of actual nuclear graphites is usually lower than 1.8 g/cm3, because

of porosity, thus reducing stiffness. The well-known experimental decrease in

κiso with increasing dose [8] is also well accounted for, here by a factor of 4,

although a fully quantitative description of thermal conductivity is definitely

not achievable using such small (5 nm width) models, as discussed in section

S4 in the supplementary materials.

4. Conclusion

We have presented a relatively intuitive and robust methodology to ex-

tract the atomistic features of room temperature irradiation damage in graphite

solely from HRTEM (002) lattice fringe images. The dynamic reconstructed

models have allowed us to characterize damage propagation at doses corre-

sponding to years in a nuclear reactor core and where conventional damage

mechanisms, based on Frenkel pair formation and migration, do not apply.

The models have been validated via a comparison with experimental data of
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dose rate, HRTEM image contrast, EELS carbon K-edges and stored ener-

gies. We have demonstrated that these models capture the elastic properties

and thermal conductivities of irradiated graphite and, upon homogenization

to the case of an isotropic polycrystalline graphite, we are able to predict,

for the first time using an atomistic model, the increase in Young’s modulus

and decrease in thermal conductivity occurring during the irradiation of a

nuclear grade graphite. Whilst improvements are possible, for instance by

taking into account dimensional changes or using HRTEM images of graphite

irradiated with neutrons in the reconstruction procedure, we believe that the

approach proposed in this paper opens up many opportunities for the deduc-

tion of structure/property diagnostics for irradiated graphite, a particularly

relevant issue for current and future graphite-based nuclear power plants.
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