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Résumé— Engineering design problems generally involve a high-dimensional input space of design
variables yielding an output space by means of costly high-fidelity evaluations. In order to decrease the
overall cost, reduced-order models for the output space such as Proper Orthogonal Decomposition (POD)
and proper Generalized Decomposition (PGD) are a promising area of research. However, little research
has been conducted into alleviating the problems associated with a high-dimensional input space. In this
paper, we present a simultaneous meta-modeling protocol for both spaces : reparametrization of the input
space by constrained shape interpolation using theα-manifold of admissible shapes (finite element/CFD
meshes, etc), and constrained Proper Orthogonal Decomposition for reducing the output space and apply
the approach to two industrial shape optimization problems.
Mots clés— Input space reduction, model reduction, design, diffuse approximation.

1 Introduction

When "high fidelity" computer simulations (finite elements, finite volumes, etc.) are used for calcu-
lating the objective functions and nonlinear constraints in the process of optimizing mechanical systems,
the CPU time frequently becomes disproportionately large. This is due to the cost of individual simula-
tions, the number of simulations or function evaluations needed, and the various additional aspects like
license management of the legacy codes and the stability of a complex simulation chain involving mul-
tiple codes.
All of these brought about a need for the development and validation of efficient surrogate-based me-
thods in design optimization. Some of the recent advances in surrogate-based design methodology have
been thoroughly discussed in [1]. In physical modeling, several techniques have been used to replace a
complicated numerical model by a lower-order meta-model, like polynomial response surface methodo-
logy (RSM), kriging, least-squares regression and Moving Least Squares [2]. Surrogate functions and
reduced-order meta-models have also been used in control systems to reduce the order of the overall
transfer function [3]. [4] proposed a goal-oriented, model-constrained optimization framework
A popular physics-based meta-modeling technique consists of carrying out the approximation on the full
vector fields using PCA and Galerkin projection [5] in CFD [6] as well as in structural analysis [7]. This
approach has been successfully applied to a number of areas such as flow modeling [8, 9] optimal flow
control [10], aerodynamics design optimization [11] or structural mechanics [12].
However, this requires manipulation of the input variablesV̄. Now for complex shapes the dimensiona-
lity d can be very high [13] and can greatly exceed theintrinsic dimensionalityof the design problem.
Another far more serious implication is the generation of inadmissible/infeasible structural shapes [14],
which could eventually lead to crashes of either the mesh generator or the solver. This was pointed out
in [15] wherenoneof the POD solutions, and only a few of the constrained POD solutions could be
validated, since nearly ALL of the optimal geometries obtained were inadmissible and generated errors
in the CAD stage !
A final inconvenience is that gradients/sensitivities need to be calculated using either finite differences or
the Adjoint method [16]. All in all, geometric parameterization is an impediment to truly non-intrusive
[17] optimization using a clearly separatedoffline/onlineapproach that would allow for interactive design
using, for example, a tablet PC.
The phenomenon of CAD failure due to the generation of inadmissible shapes is due to the difficulties
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in expressing all the technological and common sense constraints needed to convert a set of geometric
parameters to an admissible shape. This issue is frequently encountered but remains relatively under-
discussed in the context of design and optimization, and is the motivation for our work. While traditional
shape morphing ([18, 19]) is popular, it requires a single reference shape and an arbitrary definition of
the morphing boxes and control points.
The authors have not observed much if any research into using decomposition-based surrogate models
for reducing dimensionality of the design domain in design or shape optimization [20]. This area is pro-
mising considering the obvious advantages of having far fewer parameters describing the domain with
implicit verification of technological/admissibility constraints : better applicability to gradient-based sol-
vers due to reduced dimensionality, and from the implementation point of view, a separation between the
CAD and the optimization phases in system design by giving the optimization group a protocol to re-
parameterize structural shapes for a given set of admissible shapes/meshes that can be generated by the
CAD group, and using the presented algorithm (or a variant thereof) on these to get the new set of design
variables.
In this paper, we develop an approach that builds up a design space bylearningusingshape interpolation
between shape/mesh instances given by a sequence of parameter values. The input space is reduced using
first direct POD on a set ofadmissiblestructural shapes in thelocal neighborhoodof the evaluation point,
followed by analyzing theinter-relationshipbetween theα’s in this local neighborhood (µ(ᾱ) = 0 : the
manifold ofα’s), represented using a local parametric expressionᾱ = ᾱ(t̄). The output space (physics) is
modeled using constrained Proper Orthogonal Decomposition [21] giving the smallest set of coefficients
β1...βm needed to conservelinear objective and constraint functions. The POD coefficients for the shape
andphysics are then analyzedtogetherto get the local parametric expression for bothα’s as well asβ’s
in the neighborhood of the evaluation point.
In addition, our approach gives an elegant, practical and straightforward method to compute the so-called
"shape derivatives" of the performance objective(s), which are increasingly popular as used in "shape cal-
culus" [22, 23, 24, 25].
The methodology and the overall algorithm are described in the next section with the help of a simple
structural test case, and then applied to an industrial shape optimization problem in section 3 with a full
set of numerical results and discussion before the concluding paragraph.

2 Simultaneous meta-modeling using "shape space" and constrained POD

The key points of our approach in this paper are as follows :

1. We build the parameterization scheme (shape space) ”learning” directly from example admissible
shapes.

2. We perform POD directly on the structural shapes in alocal neighborhoodof 7-10 admissible
shapes.

3. We donot truncate the basis, i.e. we retain ALL the modes without losing precision. Instead we
look at the inter-relationship between the projection coefficients.

4. We calculate gradients, etc in thislocal shape spaceto get the shape derivatives of the performance
objectives.

To this end, consider a typical structural optimization problem in equation 1 with geometric dimensiona-
lity d where we would like to minimize the performance objectiveJ(V̄) (calculated using FEM) :

FindV̄opt = Argmin
V̄∈[V̄min,V̄max]⊂R d

J(Ū(V̄))

such thatK(V̄)Ū(V̄) = F̄(equation of equilibrium)

andC̄(V̄) = 0̄(shape/admissibility constraint)

andAH(V̄)≥ Ao(mass constraint) (1)

whereK(V̄) (stiffness matrix),Ū = K−1F̄, force F̄ andAo are constants,̄C : [V̄min,V̄max] → R
nc is the

shape constraint function that is unknown/difficult to express analytically (nc =size of constraint vector)
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where∀V̄ ∈ Ee ⊂ [V̄min,V̄max],C̄(V̄) = 0̄,Ee is the subset of admissible shapes.
So we need toimplicitly satisfy the admissibility criterion i.e.̄V(ᾱ) ∈ Ee reducing (1) to :

Find ᾱopt = Argmin
Φ=const

{J(ᾱ,Φ)},

s.t.ᾱ ∈ [ᾱmin, ᾱmax]⊂ R
m,c(ᾱ) = 0,ah(ᾱ)≤ 0, (2)

wherem<< d. The basisΦ is fixed in (2) since even though it will vary globally, (2) is applied locally.

2.1 Design domain and shape indicator functions

We first study the range of admissible shapes (i.e. snapshots [34]) sweeping the neighborhood of the
evaluation point in the physical design domain, typically in a Lagrangian description with a sampling
of the geometry-based design variables within their rangeV̄ ∈ [V̄min,V̄max] ⊂ R

d, for an initial random
sampling ofM admissibledesignsV̄1..V̄M (i.e. satisfyingC̄(V̄) = 0̄) and convert to the corresponding
shape indicator functionsS1...SM . herevoxelizationhas been used.

2.2 Principal Components Analysis

This is the first stage of the model reduction. We calculate the deviation and covariance matricesDs

andCv for the snapshotsS1..SM :

Ds =
[

S1− S̄ S2− S̄ ... SM − S̄
]

andCv = DS.D
T
S (3)

allowing us to express anySj in terms of the eigenvectors̄φi of Cv whereM <<Nc = number of snapshots,
Si = ith individual snapshot and̄S is the mean snapshot.

Sj = S̄+
M

∑
i=1

αi j φ̄i , αi j = φ̄T
i Sj (4)

for the jth indicator function. (NOTE :−1≤ φ̄i ≤ 1, 0≤ S̄≤ 1 while Sj is binary). The usual reduction
approach would be to limit the basis to the firstm<< M most ”energetic” modes :

S̃j = S̄+
m

∑
i=1

αi j φ̄i andε(m) = 1−
∑m

i=1λi

∑M
i=1λi

(5)

whereε(m) is the relative projection error,λ’s are the eigenvalues ofCv. However, the last equation does
not provide a sufficient basis for establishing the value ofm since we need to specify a threshold value
for ε.

2.3 Model reduction by constructing the localα-manifold

Since theα’s can not be directly interpreted as new design variables without taking into account the
possible inter-relationships that exist between them so as to render feasible shapes. In addition, trunca-
ting the basisΦ would limit precision. Therefore, instead of truncating the basis, we instead analyze the
inter-relationships between theseα’s obtained from theM snapshots in order to detect the true dimensio-
nality (p) of the design domain.
In the general case, we obtain ap-dimensional manifold with the local parametric expressionᾱ =
ᾱ(t̄), t̄ ∈ Rp, p ≤ d). t1....tp are local parameters that allow us to move along the tangent plane to the
manifold. For e.g., from the previous section - for a plate with an elliptical hole of varying radii, theα’s
form a set of two-dimensional manifolds (figure??) rather than a cloud of points in 3D spaceregardless
of the particular triplet of modes used, clearly indicating that the design domain is parametrized bytwo
local parameterst1, t2. This means thatα1 = α1(t1, t2),α2 = α2(t1, t2)....
Basically, points lying outside the manifolds always produce inadmissible shapes so the surfacesα1,α2, ... vs t1, t2...tp

may be interpreted as the set of all possible "constraints" (direct geometric constraints, technological
constraints etc that are difficult to express mathematically) on the geometric parametersV̄ in theα-space.
In other words,the α-manifold represents the feasible region of admissible shapes. In our work, we
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introduce this local parametric expressionᾱ = ᾱ(t1, ..., tp)) using Diffuse Approximation [30]. Consider
the snapshots inα-space :̄α1, ...ᾱM ∈ R M. We would like to implement an algorithm that :
1. Detects the ”true”/inherent dimensionality of the design domain (p ≤ M) from the local rank of the
α-manifold in the vicinity of the evaluation point, so that the feasible region may (locally) be expressed
asα1 = α1(t1..tp), ....αM = αM(t1..tp).
2. Constrains the evaluation point (ᾱev) to stay on the feasible region of admissible shapes, during the
course of the optimization.

To locally detect the dimensionality of theα1...αM hyper-surface in the neighborhood ofᾱev, we ex-
tend the method of Fukunaga and Olsen [35]. First, we establish a sufficiently dense local neighborhood.
Let β̄1...β̄nbd benbdneighboring points inα-space, we next use a polynomial basis centered onᾱev

P(ᾱev) =





1 β1
1−αev

1 β1
2−αev

2 .... β1
M −αev

M ....
. . . .... . ....
1 βnbd

1 −αev
1 βnbd

2 −αev
2 .... βnbd

M −αev
M ....



 (6)

with an appropriate weighting function (e.g. Gaussianw(d) = e−cd2
) and assemble the moment matrix

Mt = PTWP, whereW is the diagonal matrix whose elements correspond to the weighted contributions
of the nodes̄β1...β̄nbd. Next, we detect the local rank of the manifold by calculating the rank of the mo-
ment matrix from the number of singular values ofMt , this gives us the dimensionalityp≤ M.

2.4 Diffuse predictor-corrector ”walking” algorithm

This algorithm will bring the design point (inα-space) in the optimization algorithm (or interac-
tive design procedure) back down to theα-manifold in subsequent iterations using a predictor-corrector
scheme consisting of the following steps (figure??).
1. LetQi be the current design point :̄αev in α-space. In the predictor stage, using a single Quasi-Newton
step fromQi, letQ0

i+1 be the new candidate point that needs to be brought back on to the manifold/feasible
region (correction phase). We first establish theα-neighborhood ¯µ1...µ̄nbd of Q0

i+1.
2. Calculate the centroid ¯µm = (∑nbd

i=1 β̄i)/nbd.
3. Find the centroidal plane for the neighborhood from the eigenvectors of the covariance matrixCnbd,
the first eigenvector representing the plane normal :

Cnbd = (1/nbd)
nbd

∑
i=1

(µ̄i − µ̄m)(µ̄i − µ̄m)
T , (v̄1, v̄2...) = eigenvectors(Cnbd) (7)

4. Project the evaluation point as well as the neighborhood points in the local coordinate system ¯v1, v̄2...
(origin at centroidβ̄m) to get the local co-ordinatesh, t1...tp for a generalᾱ whereh is height over the
centroidal plane using :

h= v̄T
1 (ᾱ− µ̄m) , t1 = v̄T

2 ᾱ , etc (8)

5. We next obtain the shape (indicator function) and calculateJ for the evaluation point. We recreate the
structural shape for an arbitrary design point (t̄) using theα coefficients obtained from̄t (location on the
α-manifold), and thus the indicator functioñS :

S̃(t̄) = S̄+
m

∑
i=1

αi(t̄)φ̄i (9)

To calculate the objective functionJ(S̃) using a response surface between the output-space and input
space meta-models giving us the output space POD coefficientsβ1..βm as β̄(ᾱ(t̄)). We now get the
objective function usinḡJ(ṽ) whereṽ is the physical vector field reduced by the physics meta-model.

J ≈ J(ṽ) = J(v̄0+Ψβ̄(ᾱ(t̄))) (10)

6. Do the Diffuse Approximation for̄αev as well as the objective functionJ using thenbd neighboring
points to get the local surfaceh = h̃(t1...tp) using a polynomial basisPq(ᾱev) with weightingW, and
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J = J̃(t1..tp) in a similar fashion using a basisPj (ᾱev).

[h̃(t̄ev),
∂h̃
∂t1

(t̄ev),
∂h̃
∂t2

(t̄ev), ....]T = (Pq
TWPq)

−1Pq
TW[h1, ...,hnbd]

T (11)

[J̃(t̄ev),
∂J̃
∂t1

(t̄ev),
∂J̃
∂t2

(t̄ev), ....]T = (Pj
TWPj)

−1Pj
TW[J1, ...,Jnbd]

T (12)

where the term in the LHS is the local tangent hyper-plane atQ0 in the neighborhood̄β1...β̄nbd.
7. We then project the pointQ0

i+1 onto this tangent plane to get the adjusted evaluation pointQ1
i+1, and

then repeat by finding the new neighborhood, tangent plane and projection point ,etc till the evaluation
point stops changingQf

i+1.

2.5 Gradient and Hessian : Diffuse "Shape derivatives"

Our concept of shape derivatives∇J (and HessianH with additional derivatives) is simply that of the
”diffuse” derivatives [30] ofJ with respect tōt (from the previous section), sincēt is simply thelocal
descriptionof the shape manifold :

∇J = [
∂J̃(t̄)
∂t1

,
∂J̃(t̄)
∂t2

, ..] = ΦT dJ
dS

(13)

which is simply theprojectionof theEulerian derivativeontoΦ.

2.6 Optimization in shape-space

The optimization problem in reduced-space now becomes :

Find t̄opt = Argmin̄t∈R p{J(ᾱ(t̄))}
s.t.c(ᾱ(t̄)) = 0,ah(ᾱ(t̄))≤ 0, ᾱmin ≤ ᾱ(t̄)≤ ᾱmax (14)

wherec represents the admissibility constraint (i.e. theα-manifold), ah represents the mass constraint,
andᾱmin andᾱmax are the bounds on̄α.

3 TEST-CASE : Optimization of engine intake port

3.1 Description of Test-Case : Intake geometry and CAD issues

This test-case is related to the performance optimization of an engine intake (figure 1(a) and (b)),
originally proposed by Renault as a third benchmark optimization case for the OMD2 project [36]. The
intake pipe and port system has a very complex structural shape with physical details as shown in figure
1(c). We optimize two important performance objectives : the mass flow rateQ through the cylinder and
tumble pattern of flow (vorticityτ). This variable 3D geometry is parameterized by using 93 bounded

CYLINDER

INTAKE

PIPE AND

PORT

(a) (b) (c)

Fig. 1 – (a) Full system (b) Sand model of intake pipe (c) External& internal details of engine intake

geometric design variables̄V ∈ [V̄L,V̄U ]⊂ R
93 in CATIA with CAD failure rate of over60%.
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3.2 Results & Discussion

3.2.1 α-manifolds for the engine intake

Theα-manifolds for the design problem of an engine intake are shown in figures 2 indicating a di-
mensionalityp less than3, and this has been drawn using a set of snapshots corresponding to the set of
admissible shapes generated using 93 geometric parameters.
This is verified using the Fukunaga-Olsen algorithm [35] in figure 3(a). Ap= 1 approximation would
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Fig. 2 –α-manifolds for the engine intake problem

beparticularly attractive (figure 3(b)).
It bears mentioning that the analysis of dimensionality from a cloud of points inND-space is a multi-
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Fig. 3 – (a) Dimensionalityp calculation, (b) Constrained shape interpolation usingp= 1, (c)α-manifold
approximation usingp= 2

scale problem, so when resampled in a smaller neighborhood,p might creep up to a value of 2 as
illustrated in figure 3(c) showing the 2Dα-manifolds for the same problem.

3.2.2 Single-parameter shape morphing for93-parameter engine intake

Keeping the previous discussion in mind, we can safely build a single parameter (p = 1) approxi-
mation/representation of the engine intake design space. So from the set ofα-manifolds, we generate a
set of 58 points on the axis of the manifold, yet again using the Diffuse Approximation [30]. These are
shown in figure 3(b). We can now reconstruct the 58 admissible shapes using CATIA to generate smooth
transitions in structural shape i.e. vary 93 geometric parameters using a single parameter (position along
the axis of the manifold), giving us̄V = V̄(α1(t),α2(t)...αM(t)), while constantly staying in the feasible
region. This will greatly simplify the task of optimizing the intake shape i.e.V̄opt for a given objective.

3.2.3 Design space exploration using2 parameters and interactive design using meta-models

Figure 4 shows 4 frames of the interactive design for the engine intake problem, using 2Dα-
manifolds in MATLAB for 4 different locations on shape space, easily handled using modest resources.
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Flow field Flow field

Flow field Flow field

(shape) (shape) (shape) (shape)

(shape) (shape) (shape) (shape)

Fig. 4 – Interactive design usingα-manifolds and CPOD coefficients for the 6-parameter intake problem

4 Références bibliographiques

Références

[1] A. I. J. Forrester and A. J. Keane, “Recent advances in surrogate-based optimization.,”Progress in Aerospace
Sciences, vol. 45, pp. 50–79, 2009.

[2] P. Breitkopf, H. Naceur, A. Rassineux, and P. Villon, “Moving least squares response surface approximation :
Formulation and metal forming applications,”Computers and Structures, vol. 83, no. 17-18, pp. 1411–1428,
2005.

[3] K. Willcox and J. Peraire, “Balanced model reduction via the proper orthogonal decomposition,”AIAA Jour-
nal, vol. 40, no. 11, pp. 2323–2330, 2002.

[4] T. Bui-Thanh, K. Willcox, O. Ghattas, and B. van Bloemen Waanders, “Goal-oriented, model-constrained
optimization for reduction of large-scale systems,”Journal of Computational Physics, vol. 224, no. 2, pp. 880
– 896, 2007.

[5] G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal decomposition in the analysis of turbulent
flows,” Annu Rev Fluid Mech, vol. 25, no. 1, pp. 539–575, 1993.

[6] C. Audouze, F. De Vuyst, and P. Nair, “Reduced-order modeling of parameterized pdes using time-space-
parameter principal component analysis,”International Journal of Numerical Methods in Engineering,
vol. 80, no. 8, pp. 1025 – 1057, 2009.

[7] L. Cordier, B. A. El Majd, and J. Favier, “Calibration of pod reduced order models using tikhonov regulari-
zation,” International Journal for Numerical Methods in Fluids, vol. 63, no. 2, pp. 269–296, 2010.

[8] R. A. Sahan, H. Gunes, and A. Liakopoulos, “A modeling approach to transitional channel flow,”Computers
and Fluids, vol. 27, no. 1, pp. 121–136, 1998.

[9] M. Couplet, C. Basdevant, and P. Sagaut, “Calibrated reduced-order pod-galerkin system for fluid flow mo-
deling,” Journal of Computational Physics, vol. 207, no. 1, pp. 192–220, 2005.

[10] S. S. Ravindran, “A reduced-order approach for optimal control of fluids using proper orthogonal decompo-
sition,” International Journal for Numerical Methods in Fluids, vol. 34, no. 5, pp. 425–448, 2000.

[11] P. A. LeGresley and J. J. Alonso, “Airfoil design optimization using reduced order models based on proper
orthogonal decomposition,”Fluids 2000 Conference and Exhibit,Denver, CO, 2000.

7



[12] J.-L. Dulong, F. Druesne, and P. Villon, “A model reduction approach for real-time part deformation with
nonlinear mechanical behavior,”International Journal on Interactive Design and Manufacturing, vol. 1,
no. 4, pp. 229–238, 2007.

[13] W.-H. Zhang, P. Beckers, and C. Fleury, “Unified parametric design approach to structural shape optimiza-
tion,” International Journal for Numerical Methods in Engineering, vol. 38, no. 13, pp. 2283–2292, 1995.

[14] A. Veiz and M. Egerland, “Cad-parametric optimization with optislang-ansys workbench,”4th Weimar opti-
mization and stochastic days, 2007.

[15] B. Raghavan, M. Hamdaoui, M. Xiao, P. Breitkopf, and P. Villon, “A bi-level meta-modeling approach for
structural optimization using modified pod bases and diffuse approximation,”Computers & Structures, 2012.

[16] F. Van Keulen, R. Haftka, and N. Kim, “Review of options for structural design sensitivity analysis. part 1 :
Linear systems,”Computer Methods in Applied Mechanics and Engineering, vol. 194, no. 30-33, pp. 3213–
3243, 2006.

[17] R. F. Coelho, P. Breitkopf, and C. Knopf-Lenoir, “Bi-level model reduction for coupled problems,”Int J Struc
Multidisc Optim, vol. 39, no. 4, pp. 401–418, 2009.

[18] A. Y. N. Sofia, S. A. Meguid, and K. T. Tan, “Shape morphing of aircraft wing : Status and challenges,”
Materials & Design, vol. 31, no. 3, pp. 1284–1292, 2010.

[19] R. Duvigneau, “Adaptive parameterization using free-form deformation,”INRIA Research Report RR-5949,
July 2006.

[20] D. Wang and W. Zhang, “A bispace parameterization method for shape optimization of thin-walled curved
shell structures with openings,”International Journal for Numerical Methods in Engineering, vol. 90, no. 13,
pp. 1598–1617, 2012.

[21] M. Xiao, P. Breitkopf, R. F. Coelho, C. Knopf-Lenoir, M. Sidorkiewicz, and P. Villon, “Model reduction by
cpod and kriging,”Int J Struc Multidisc Optim, vol. 41, no. 4, pp. 555–574, 2009.

[22] S. Jan and J.-P. Zolesio, “Introduction to shape optimization : Shape sensitivity analysis, springer verlag
berlin,” 1992.

[23] G. Allaire, F. Jouve, and A.-M. Toader, “Structural optimization using sensitivity analysis and a level-set
method,”Journal of Computational Physics, vol. 194, no. 1, pp. 363–393, 2004.

[24] F. Murat and J. Simon, “Sur le controle par un domaine geometrique,”Pre-publication du Laboratoire d’Ana-
lyse Numerique, no 76015, Universite de Paris, vol. 6, 1976.

[25] V. Schulz, “A riemannian view on shape optimization,”Foundations of Computational Mathematics, 2012.

[26] L. P. Swiler and G. D. Wyss, “A user’s guide to sandia’s latin hypercube sampling software : Lhs unix library
standalone version,”Sandia National Laboratories, 2009.

[27] C. Ghnatios, F. Chinesta, and E. Cueto, “Optimizing composites forming processes by applying the proper
generalized decomposition,”International Conference on Advances in Materials and Processing Technolo-
gies,Ctr Arts & Metiers ParisTech, Paris, FRANCE, 2010.

[28] R. F. Coelho, J. lebon, and P. Bouillard, “Hierarchical stochastic metamodels based on moving least squares
and polynomial chaos expansion : Application to the multiobjective reliability-based optimization of space
truss structures,”Int J Struc Multidisc Optim, vol. 43, no. 5, pp. 707–729, 2011.

[29] D. Amsallem, J. Cortial, K. Carlberg, and C. Farhat, “A method for interpolating on manifolds structural dy-
namics reduced-order models,”International Journal for Numerical Methods in Engineering, vol. 80, no. 9,
pp. 1241–1258, 2009.

[30] B. Nayroles, G. Touzot, and P. Villon, “Generalizing the finite element method : diffuse approximation and
diffuse elements,”Computational Mechanics, vol. 10, no. 5, pp. 307–318, 1992.

[31] N. H. Kim and Y. Chang, “Eulerian shape design sensitivity analysis and optimization with a fixed grid,”
Computer Methods in Applied Mechanics and Engineering, vol. 194, no. 0, pp. 3291–3314, 2005.

[32] A. Kaufman, D. Cohen, and R. Yagel, “Volume graphics,”IEEE Computer, vol. 26, no. 7, pp. 51–64, 1993.

[33] S. Oshier and J. A. Sethian, “Fronts propagating with curvature-dependent speed : Algorithms based on
hamilton-jacobi formulations,”Journal of Computational Physics, vol. 79, pp. 12–49, 1988.

[34] A. Chatterjee, “An introduction to the proper orthogonal decomposition,”Current Science, Special Section :
Computational Science, vol. 78, no. 7, pp. 808–817, 2005.

[35] K. Fukunaga and D. Olsen, “An algorithm for finding intrinsic dimensionality of data,”IEEE Transactions
on Computers, vol. 20, pp. 176–183, 1971.

[36] O. project home page, “Last accessed feb 22, 2011,”http ://omd2.scilab.org/, 2009.

8


