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ABSTRACT

This paper presents a new approach for unsupervised band selection
in the context of hyperspectral imaging. The hyperspectral band se-
lection (HBS) task is considered as a clustering problem: bands are
clustered in the image space; one representative image is then kept
for each cluster, to be part of the set of selected bands. The proposed
clustering method falls into the family of information-maximization
clustering, where mutual information between data features and
cluster assignments is maximized. Inspired by a clustering method
of this family, we adapt it to the HBS problem and extend it to
the case of multiple image features. A pixel selection step is also
integrated to reduce the spatial support of the feature vectors, thus
mitigating the curse of dimensionality. Experiments with different
standard data sets show that the bands selected with our algorithm
lead to higher classification performance, in comparison with other
state-of-the-art HBS methods.

Index Terms— Hyperspectral imaging, band selection, dimen-
sionality reduction, clustering, classification

1. INTRODUCTION

Hyperspectral imaging offers the possibility of acquiring what is
named a hyperspectral cube, i.e. a collection of images correspond-
ing to different spectral bands. Typically, the number of images
composing a cube is in the range of one or two hundreds, i.e. each
pixel of a hyperspectral image can be seen as a high-dimensional
vector. As a consequence, the computational complexity when pro-
cessing and analyzing such data can be very high. Moreover, a cer-
tain information redundancy, due to highly correlated bands, may
even decrease the accuracy of algorithms exploiting hyperspectral
data. Therefore, methods that efficiently select a significant subset
of spectral bands are welcome. An extra advantage of such methods
is that the selection of few bands would enable the design of less
expensive ad-hoc multispectral systems (3 to 10 bands).

Hyperspectral band selection (HBS) methods are typically di-
vided into unsupervised and supervised methods, the latter making
use of labeled samples. Unsupervised HBS methods are more ro-
bust, in the sense that they offer a way to select a chosen number of
bands given any input cube (regardless of the presence and quality
of labeled samples). Unsupervised HBS methods are further clas-
sified into two main categories: ranking-based and clustering-based
methods. The former ones aim at ranking the bands according to a
certain metric that quantifies their importance (e.g. [1, 2, 3, 4, 5]).
Clustering-based HBS methods [6, 7], by following an optimiza-
tion strategy, group images into clusters: the bands to select are
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then collected by choosing a representative image for each clus-
ter. Clustering-based HBS methods are generally showed to be able
to reach higher performance, and are typically designed by adapt-
ing well-known clustering methods to the hyperspectral case. HBS
methods leveraging graph theory (e.g. [8]) can also be included in
this category. While there are a few HBS methods relying on infor-
mation theory principles [9, 6], as far as we know clustering meth-
ods fully based on probabilistic modeling have not been studied in
this context. In particular, a family of these methods follows the
so called infomax principle [10, 11], which is related to the max-
imization of the mutual information between the unknown cluster
labels and the data vectors. The key idea is that a good labeling of
the images should be in some way informative about the underlying
high-dimensional data structure. This is particularly desirable in the
case of hyperspectral data, since the clustering should have a certain
“spectral consistency”.

Recently a new clustering method relying on the infomax prin-
ciple has been introduced in [12, 13]. The authors propose a kernel
model for the posterior class probability and use a variant of Mu-
tual Information (MI) called squared-loss MI (SMI), which allows
the solution to be computed analytically. The resulting method is re-
ferred to as SMI-based clustering (SMIC). In this paper, we propose
a new HBS algorithm that builds on SMIC. Besides the adaptation
of SMIC to the band selection problem, we propose a new kernel
model for the posterior class probability, which involves multiple
features. Moreover, we introduce a dedicated pixel selection step,
which reduces the number of dimensions to be considered for dis-
tance computation. The remainder of the paper is organized as fol-
lows. In Section 2 we specify the notation we use and briefly recall
the clustering framework for HBS. Section 3 details our proposed
clustering-based approach, which relies on the modeling of a multi-
feature posterior class probability and an optimization stage via SMI
maximization. In Section 4, a quantitative assessment is performed
to compare our algorithm with other state-of-the-art HBS methods
in terms of classification performance.

2. HYPERSPECTRAL BAND SELECTION VIA
CLUSTERING

We denote a hyperspectral cube as a 3-dimensional matrix H ∈
RM×N×L, i.e. it is composed by L images of dimension M ×N .
The matrix H can be further rearranged by stacking all the pixels of
one image to form a column of a unique matrix X ∈ RD×L, where
D = M ×N . HBS consists then in finding a subset of bands B of
cardinality |B| = K < L.

A family of unsupervised HBS methods is based on clustering
approaches. All images composing the cube (the columns of the
matrix X) are considered as individual points and clustered in the
shared D-dimensional space. Clustering-based HBS methods con-
sist of two steps.



1. Clustering: all images are clustered in the image space, i.e.
each image xi is given a label yi ∈ {1, . . . ,K}.

2. Band selection: for each cluster, a unique representant (an
image, corresponding to a specific spectral band) is kept.

Clustering-based HBS methods are generally based on exi-
sting clustering algorithms, e.g. affinity propagation [7] and Ward’s
method for agglomerative hierarchical clustering [6]. Once the clus-
ters are formed, the band selection step often consists in picking
the cluster centroids. While these methods already allow to select
subsets of bands that enable good performance in further tasks (e.g.
classification), they lack of a probabilistic interpretation. In the next
section we present a clustering-based HBS method that relies on
probabilistic modeling.

3. PROPOSED APPROACH

In probabilistic model-based clustering, y is seen as a hidden ran-
dom variable, which reflects the cluster membership for every point
in the data set. After optimizing over the parameters of the model,
it is possible to compute a posterior class probability p(y|x), which
expresses for a data point its probability of belonging to a certain
cluster. In the HBS problem we can exploit the computed probabili-
ties to decide on the bands to select. For the k-th cluster, we retain as
a representative band the image xi exhibiting the highest probability
of having the label yi = k assigned. The selection of all bands, by
repeating this procedure for all clusters (k = 1, . . . ,K), is given by
the following expression:

B =

{
arg max
xi∈RD

p(yi = k|xi)

}K
k=1

. (1)

In Section 3.1 we present a posterior class probability model for
hyperspectral image clustering. The model includes the use of mul-
tiple image features and an internal pixel selection step (Algorithm
1). The parameters of the model are then inferred by maximizing the
information between data features and cluster assignments (Section
3.2). Band selection can finally be performed by the rule in (1).

3.1. Posterior class probability model

Most of the probabilistic model-based clustering are generative mod-
els, where the probability of the data p(x) is defined as a mixture
of processes. The parameters of this mixture are generally inferred
by maximizing the marginal likelihood p(x|y). The class labels
are then assigned according to the posterior class probability com-
puted as p(y|x) ∝ p(x)p(x|y). However, when dealing with high-
dimensional vectors, this approach basically constrains to use mix-
tures of Gaussian processes (for their easy tractability), by typi-
cally requiring a very large number of components [10]. Instead,
we choose to directly model the posterior class probability. At this
regard, kernel estimation methods have been proven to effectively
estimate densities even when few data points are available [14]. We
then choose to model the posterior class probability as a linear com-
bination of kernel functions evaluated at each data point:

p(y|x;ααα) =

L∑
i=1

αy,iK(x,xi) , (2)

where K is a smoothing kernel function, and αααy is a L-dimensional
parameter vector characteristic of the cluster labeled as y. We then
have a set of K parameter vectors {αααy}Ky=1 that have to be deter-
mined in order to quantify the posterior probability (2).

A first contribution to this model relates to the expression of the
kernel function K, which implies a prior pixel selection step. The
function used is a sparse version of the Gaussian local-scaling kernel
[15], which scales distances according to each local neighborhood:

K(xi,xj) =


exp
(
−
dDi(xi,xj)dDj (xi,xj)

2σiσj

)
dDi(xi,xj) ≤ σi ∨
dDj (xi,xj) ≤ σj

0 otherwise

, (3)

where σi = dDi(xi,x
P
i ) and σj = dDj (xj ,x

P
j ) are the distances

from xi and xi to their P -th neighbors (xP
i and xP

j respectively).
In fact, as also stated in [13], P represents a crucial parameter in the
definition of the kernel. The pixel selection appears in the expression
of the inter-image distances, which are intended as average segmen-
tal distances over a reduced support (specific to the reference image
considered):

dDi(xi,xj) =

∑
k∈Di

|xik − xjk|
|Di|

, (4)

where Di is the reduced support (the subset of selected pixels) spe-
cific to the image xi and the double subscript notation indicates a
particular pixel (i.e. xij is the j-th pixel of the image xi). The idea of
performing pixel selection comes from the following remark: when
clustering high-dimensional data, only a fraction of all dimensions
are locally pertinent [16]. In our case, we decide to select the pix-
els which are the most stable “locally” (within neighboring bands),
i.e. their values vary the least. For a given image xi, we consider
a set of spectrally neighboring bands and compute for each image
pixel a score zij measuring local changes. The pixels related to the
Dtgt lowest scores are finally retained, where Dtgt is a desired tar-
get number of dimensions. The pixel selection procedure is reported
in Algorithm 1. The algorithm takes as parameters Dtgt and ∆ (the
radius of the local neighborhood), and returns all selected supports
{Di}Li=1 to be used in (3).

Algorithm 1 Find the best local supports for kernel computation.
1: procedure PIXELSELECTION(X ∈ RD×L, Dtgt,∆)
2: for i = 1, . . . , n do
3: Ni = {xj}|i−j|<∆, i 6=j, 1≤j≤L . neighboring bands

4: zi =
1

|Ni|
∑

xj∈Ni

|xi − xj |

5: Di ←Dtgt first indexes (lowest values of zi)
6: end for
7: end procedure

A second contribution to the model (2) relates to the extension to
multiple image features. For a given image xi, besides considering
the simple reflectance intensity (the collection of all pixel intensities,
which we can refer to as xri ∈ RD), we can also consider spatial and
spectral features. These features are intended to account for spatial
and spectral “texture” and can be derived from gradient-type opera-
tions. If we consider per-pixel features, for an image we then have
two extra feature vectors xsi ,x

w
i ∈ RD , referring to spatial and spec-

tral features respectively. Overall, we have that a hyperspectral cube
yields three matrices (Xr,Xs,Xw ∈ RD×L), related to the three
types of features considered. To combine these multiple features in
the posterior kernel model (2), we adopt the generalized composite
kernel (GCK) approach [17]. For a pair of images, instead of con-
sidering a convex combination of kernels, we simply concatenate the
kernel outputs computed individually w.r.t. three feature vectors:

KC(xi,xj) :=
[
K(xri ,x

r
j ),K(xsi ,x

s
j),K(xwi ,x

w
j )
]T

. (5)



If we consider kernel distance matrices storing all inter-image dis-
tances for all features, Kr,Ks,Kw ∈ RL×L, this is equivalent to
vertically concatenating the three matrices to form a unique kernel
matrix

KC = [Kr,Ks,Kw]T ∈ R3L×L . (6)
With the multi-feature composite kernel, the posterior class proba-
bility model in (2) formally becomes:

p(y|x;ααα) =

L∑
i=1

αy,iKC(x,xi) , (7)

where now αy,i ∈ R3, i.e. each per-cluster parameter vector to esti-
mate has 3L values (αααy ∈ R3L).

Unlike kernel computation via convex combination, the GCK
approach does not require extra mixing parameters, but an optimal
combination is indirectly found by optimizing the parameters of (7).

3.2. Squared-Loss Mutual Information Maximization

As a strategy to find the parameters of the model (7), we choose to
maximize the information between cluster labels and feature vectors.
The metric used is the squared-loss mutual information (SMI) [13]:

SMI :=
1

2

∫ K∑
y=1

p(x)p(y)

(
p(x, y)

p(x)p(y)
− 1

)2

dx . (8)

After some manipulations of (8), we obtain:

SMI =
1

2

∫ K∑
y=1

1

p(y)
[p(y|x)]2 p(x) dx− 1

2

' 1

2n

L∑
j=1

K∑
y=1

1

p(y)
[p(y|xj)]2 −

1

2

, (9)

where p(y), if unknown, can be assumed to follow the uniform dis-
tribution (i.e. p(y) = 1/K ∀y). If we now plug in (9) the posterior
model of (7), we have:

SMI ' 1

2L

K∑
y=1

1

p(y)
αααT
yKCK

T
Cαααy −

1

2
, (10)

where KC is the composite kernel matrix defined in (6).
With the expression found for the SMI, we can define the op-

timization problem to find the parameter vectors of the model as
follows:

{α̂ααy}Ky=1 = arg max
ααα1,...,αααK

K∑
y=1

αααT
yKCK

T
Cαααy . (11)

Every product αααT
yKCK

T
Cααα

T
y , under the constraint ‖αααy‖ = 1, is the

so-called Rayleigh quotient [18]. Finding K vectors that maximize
the sum in (11) corresponds then to taking the first K normalized
eigenvectors of the square matrix KCK

T
C , {φφφy}Ky=1. As in [13], we

impose the eigenvectors to be mutually orthogonal (φφφT
yφφφz = 0) and,

the sign being arbitrary, to sum up to a positive number.
After deriving the parameters of the model, we can finally com-

pute the posterior class probabilities for each image. From (7), after
rounding up possible negative outputs and normalizing, we obtain:

p(y|xi) =
max

(
0,φφφT

y(KC)i
)

max (0L,ΦΦΦT(KC)i)
T 1L

(12)

where (KC)i indicates the i-th column of KC and ΦΦΦ is the matrix
with all eigenvectors as columns. Band selection is then possible by
following the criterion reported in (1).

4. EXPERIMENTAL RESULTS

In this section we evaluate our algorithm in terms of classification
performance. In particular, we compare with:
• a variance-based ranking approach (theK bands reporting the

highest variance values are selected) [1];
• the well-known K-means clustering method [19];
• the LCMV-BCM (Linearly constrained minimum variance

with band correlation minimization) ranking-based method
[2];

• the recent E-FDPC algorithm proposed in [5], a hybrid
clustering-ranking method that defines cluster centers as lo-
cal maxima of the data point density (empirically estimated);

• the case, indicated as “FULL”, where band selection is not
performed, but all bands are considered.

As for our proposed algorithm, we consider both a complete ver-
sion including additional spatial and spectral features, and a simpli-
fied version considering only reflectance intensity features. We de-
note them as “PROPOSED (multi feat.)” and “PROPOSED (only
int.)”, respectively. For the spatial characterization, we consider
single-scale Laplacian of Gaussian (LoG) features, where only one
Gaussian filter with size 5× 5 and standard deviation σ = 0.5 is ap-
plied. As for the spectral features we instead consider an average of
the finite differences, computed on a local portion of the spectrum.
For the n-th pixel of the image xi, we have:

xwi,n :=
1

2τ

∑
−τ≤k≤τ
k 6=0

|xi,n − xi+k,n| , (13)

with τ = 2 taken in our experiments to define the local spectrum.
The posterior kernel model presented in Section 3.1 needs 3 pa-

rameters to be chosen. The first one is the reference neighborhood
taken to determine the scaling distances σi and σj in (3). In [13],
the reference number of P is chosen after estimation of the squared
mutual information (SMI) via an external algorithm. We instead
choose P to be proportional to the ratio between number of bands
and number of clusters, i.e. the average number of images per clus-
ter: T = β L

K
. In the experiments we take a constant β ∈ [0.5, 0.6].

Other two parameters are related to the pixel selection procedure of
Algorithm 1. In the experiments we choose ∆ (the radius of the local
neighborhood considered) equal to 3, andDtgt (the target number of
selected pixels) equal to 1000.

The proposed approach is compared to the state-of-the-art meth-
ods listed above with two popular benchmark data sets1 : the Pavia
University data set, consisting in hyperspectral data of resolution
610 × 340 × 103 acquired with the ROSIS-03 sensor, and the
Kennedy Space Center data set, consisting in hyperspectral data of
resolution 512 × 614 × 176 acquired with the AVIRIS sensor. The
data sets are provided with ground-truth pixel-wise classification
maps. We divide the image pixels into training and testing sets.
We then consider the case where the complete spectral signature is
used and the one where the spectral vectors have been reduced after
HBS, performed with any of the listed methods, including ours. The
performance is measured in terms of overall accuracy for different
numbers of selected bands. The classifiers considered are K Nearest
Neighbors (KNN) with 5 neighbors considered, and Support Vector
Machines (SVM) with Gaussian radial basis kernel. The results of
such tests are reported in Fig. 1 and Fig. 2, for the Kennedy Space
Center and Pavia University datasets respectively.

1The two data sets used can be publicly downloaded at the follow-
ing URL: http://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral_Remote_Sensing_Scenes.
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Fig. 1. Performance (overall accuracy) on the Kennedy Space Center
data set versus number of bands selected, for different band selection
methods and two classifiers: KNN (a) and SVM (b).

As the curves, show, our approach generally outperforms the
other state-of-the-art-methods. Starting from a certain value of K,
the subset of bands selected with our method leads to a higher clas-
sification accuracy. The gap is particularly significant w.r.t. sim-
ple ranking-based methods such as [1, 2], which perform poorly. In
comparison to the full-spectrum case, the performance is satisfac-
tory too: K ' 10 selected bands are generally sufficient to obtain
a similar performance. Moreover, we observe that the introduction
of additional spatial and spectral features brings an extra, more or
less appreciable, gain, with respect to the only use of intensity fea-
tures. Fig. 3 reports an example of selected bands (K = 4) from the
Kennedy Space Center data set, with the E-FDPC methods and with
our proposed method.

5. CONCLUSION

In this paper we presented a new clustering-based algorithm for un-
supervised hyperspectral band selection (HBS). As a novelty in the
HBS context, we adopt a probabilistic model-based clustering ap-
proach, where the posterior class probability is directly modeled.
The parameters of the model are inferred by maximizing the infor-
mation between data features and cluster assignments. A canonical
posterior model is enriched by considering, besides intensity fea-
tures, additional spatial and spectral features, which are integrated
via a generalized composite kernel approach. Prior to the kernel ma-
trix computation, an ad-hoc pixel selection step is also proposed, to
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Fig. 2. Performance (overall accuracy) on the Pavia University data
set versus number of bands selected, for different band selection
methods and two classifiers: KNN (a) and SVM (b).

(a) E-FDPC [5]

(b) Proposed (multiple features)

Fig. 3. Example of selected bands (K = 4) from the Kennedy Space
Center data set, with the E-FDPC method (bands # 23, 51, 121, 147)
and our proposed method (bands # 22, 52, 75, 120).

reduce the image support for distance computation. The algorithm
is evaluated, in terms of classification performance, with standard
data sets, by varying the number of selected bands. Results prove
the effectiveness of the proposed approach, which outperforms other
state-of-the-art methods, and the general usefulness of the HBS task.
10 bands are in fact generally sufficient to match the performance
with full-spectrum data. Future work will concern the study of dif-
ferent image features and optimization strategies, while remaining
in the framework of probabilistic model-based clustering.
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