
HAL Id: hal-01716965
https://hal.science/hal-01716965v1

Submitted on 10 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning-based tone mapping operator for efficient
image matching

Aakanksha A Rana, Giuseppe Valenzise, Frédéric Dufaux

To cite this version:
Aakanksha A Rana, Giuseppe Valenzise, Frédéric Dufaux. Learning-based tone mapping opera-
tor for efficient image matching. IEEE Transactions on Multimedia, 2019, 21 (1), pp.256-268.
�10.1109/TMM.2018.2839885�. �hal-01716965�

https://hal.science/hal-01716965v1
https://hal.archives-ouvertes.fr


1

Learning-based tone mapping operator for efficient
image matching

Aakanksha Rana, Student Member, IEEE, Giuseppe Valenzise, Member, IEEE, Frédéric Dufaux, Fellow, IEEE,

Abstract—In this paper, we propose a new framework to
optimally tone map the high dynamic range (HDR) content
for image matching under drastic illumination variations. Since
tone mapping operators (TMO) have traditionally been used
for displaying HDR scenes, their design is suboptimal when
used for computer vision tasks such as image matching. We
address this sub-optimality by proposing a two-step framework,
consisting of: a) a luminance-invariant guidance model based
on a Support Vector Regressor (SVR) to optimally adapt the
tone mapping function for image matching; and b) an energy
maximization model to generate appropriate training samples
for learning the SVR. At each step, we collectively address both
stages of keypoint detection and descriptor extraction in the
feature matching framework. By locally altering the intrinsic
characteristics of the tone mapping function, the learned guid-
ance model facilitates the extraction of local invariant features
in the presence of illumination variations. We demonstrate that
the proposed TMO significantly outperforms perceptually-driven
state-of-the-art TMOs on a dataset of HDR scenes characterized
by challenging lighting variations, such as day/night transitions.

Index Terms—High dynamic range, tone mapping operator,
image matching, stochastic gradient descent, machine learning.

I. INTRODUCTION

From acquisition to display, several significant develop-
ments have been made in High Dynamic Range (HDR) im-
agery in the last couple of decades [3]. It has been successfully
applied to several multimedia technologies, including video
coding [4], inverse tone mapping [5], saliency detection [6],
data hiding [7], and quality assessment [8], but also to fields
such as automotive or spacecrafts imaging [9]. HDR enables to
capture a wider dynamic range and color gamut, encapsulating
a vast amount of information. In computer vision applications,
for instance, the performance of existing algorithms degrades
substantially with drastic lighting variations [10] when the
scenes are captured using traditional low dynamic range (LDR)
images/videos. In such scenarios, a high contrast-preserving
technology like HDR can be of potential interest as it enables
to draw on subtle, yet discriminating details present both in
the extremely dark and bright areas of a scene [11,12], which
would otherwise get lost.

In this paper, we study how HDR can be employed to solve
one fundamental problem of image matching [13]. The latter
lies at the basis of many high-level multimedia applications
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such as image/video search [14,15], classification [16] and
localization [17]. Generally, it relies on the matching of dis-
tinctive features that are extracted from key (interesting) image
locations and are invariant to geometric (scaling, rotation, etc.)
and photometric variations [13,18]. Such algorithms have been
designed and tuned for LDR images, which are represented
using gamma-corrected 8-bit integer representation and ap-
proximately linear to human perception.

HDR images, in contrast to LDR, consist of real-valued
pixels which are proportional to the physical luminance of the
scene and are expressed in 𝑐𝑑/𝑚2. As a consequence, HDR
linear values can vary up to 105𝑐𝑑/𝑚2 on a sunny day [3],
and are inappropriate when used with LDR-optimized features
extraction pipelines [12,19]. Our previous studies [11,19] on
keypoint detection and image matching demonstrate exper-
imentally that using HDR linear values significantly biases
the localization of keypoints towards the extremely bright
areas. In such scenarios, a simple solution introduced in
recent studies [1,2,11,12,19,20] is to convert HDR into an
adequate LDR representation using a Tone Mapping Operator
(TMO) [9], and then using conventional features extraction
pipelines to perform image matching.

Classical TMOs have been designed to convert a HDR
content into a suitable 8-bit LDR representation for display
purposes [5,21,22]. For instance, a popular technique involves
the compression of the estimated luminance (e.g., using edge
preserving filters such as bilateral [23] or in the gradient
domain [24]) from the HDR scenes in order to produce a
visually pleasing tone mapped output. Generally speaking,
existing TMOs are oriented towards preserving human-vision
attributes such as brightness and perceptual contrast [3,9,25].

Differently to human visual perception, image matching
is a task for machines. Its goal is not to yield a satisfying
quality of experience, but rather to extract unique signatures
from image locations which can be matched when the same
scene is captured under different transformations. In contrast
to perceptual attributes [26], such signatures are specifically
designed for invariance to geometric and photometric changes.
As a result, existing perceptually motivated TMOs might be
sub-optimal for image matching techniques.

Several recent studies emphasize the necessity [11,12,20]
and explain the requisites [27] for designing TMOs which
are optimal for individual tasks such as keypoint detection.
We made the first contribution in this direction and designed
a detector-optimal TMO [1] controlled by a guidance model
which is learned to understand the keypoint’s locally extremal
and covariant characteristics. Similarly, we also introduced a
descriptor-optimal TMO where the guidance model is mainly
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trained to facilitate the invariant densely-sampled descriptor
extraction [2]. However, both TMOs in [1,2] only handle one
aspect at a time, namely, keypoint detection or descriptor ex-
traction. This is inefficient in practice for the image matching
task, e.g., a poor detector degrades descriptor matching [13].
Therefore, the main contribution of this paper, compared to
our previous work, is to optimize TMO for the full features
extraction chain. To our knowledge, this is the first work
targeting this problem on HDR content.

Notice that optimizing a TMO considering keypoint de-
tection and description concurrently is not trivial, as the
corresponding design objectives are generally different and
somehow contrasting. For instance, an optimal TMO for
detection aims to produce covariant feature points, while
TMOs optimal for description should guarantee some form
of invariance to transformations over a local neighborhood. In
addition, optimal detection requires an accurate localization
of keypoint position, while optimal description is a patch-
level process. In our previous work [19], we have showed
that TMOs that are optimal for detection are not necessarily
so when the full matching chain is considered.

In this paper, we address this problem and design an optimal
tone mapping operator (OpTMO) to enhance the detection and
matching of features extracted from HDR scenes captured
under complex real-world illumination transitions. To this
end, we initially introduce a tone mapping function which
can be locally modulated by spatially varying (pixel-wise) its
parameters as a function of the HDR content characteristics.
Afterwards, we propose a guidance model to map HDR-based
local characteristics features (detection and description-based)
to a low-dimensional TMO parameter space, by means of a
support vector regressor (SVR) [28]. In order to train this
SVR-based guidance model, we further address the problem
of a missing standard dataset. To this end, we compute the
ground-truth parameter maps on a dataset of HDR scenes
captured under drastic illumination variations. Specifically, we
obtain per pixel ground-truth TMO parameters by solving
an optimization problem using a stochastic gradient descent
(SGD) [29] approach, which simultaneously ensures: 1) stable
keypoint detection; and 2) keypoint description robust to illu-
mination changes. Since these two objectives are, in general,
non differentiable, we also propose a proxy cost function
which enables to compute the required derivatives and obtain
an optimal solution.

We formulate the proposed optimization framework to op-
timize tone mapping with respect to a popular corner detector
and a gradient-based descriptor. Nevertheless, the very same
design principles can be used with other detectors/descriptors.
In this paper, however, the selection of detector, descriptor and
the SVR-based regressor model has been motivated by state-
of-the-art baselines [1,2]. We compare our proposed model
with state-of-the-art TMOs using different features extraction
schemes. We evaluate the performance of OpTMO at both
detection and description levels. The results show consistent
gains in term of overall matching scores [30] and mean average
precision [13] across different illumination conditions. In
addition, our results show that the choice of detector/descriptor
is not critical, i.e., the obtained tone mapped images lead

to improved matching performance even if a different detec-
tion/description approach is used.

In a nutshell,
∙ We propose a novel, locally adaptive, image-matching-

optimal TMO which is guided by the SVR based predic-
tor model. The proposed model collectively addresses the
detection and description stages of the features extraction
pipelines.

∙ We introduce an efficient method to generate appropriate
training samples for learning the prediction model. Addi-
tionally, we propose a differentiable surrogate objective
function which builds on the detection and description
level characteristics simultaneously.

∙ We evaluate our proposed TMO against the state-of-the-
art methodologies. Furthermore, we show an applicative
scenario of object localization.

The paper is organized as follows. In Section II, we provide
a brief overview of the background information. In Section III,
we detail our proposed approach. We present experimental
results and analysis in Section IV. Finally, conclusions are
drawn in Section V, along with future research directions.

II. BACKGROUND AND RELATED WORK

A. HDR Imagery for Computer Vision

The literature of HDR imaging applied to computer vision
problems is not very vast. It is only recently that HDR imaging
has been considered in computer vision applications such as
keypoint detection [11,12,31], image matching [19], video
surveillance [32,33] and photogrammetric applications [34].
Suma et al. [20] presented the added value of using HDR
imagery and evaluated the performance of different TMOs
in the context of photogrammetric applications. Rerabek et
al. [35] considered the impact of HDR content on privacy
protection. In [36], Korshunov et al. evaluated TMOs for
face recognition applications. [31] investigated the enhanced
number of local invariant features on detailed architectural
scenes in HDR over LDR images. In [37], an interesting
scenario of enhanced people detection and tracking in indoor
HDR scenes is presented.

One commonality amongst all these studies is the use of
existing perception-based TMOs. These techniques have been
directly used to convert HDR images to LDR. In [11,19], we
observe that the performance of such operators varies with
the content as TMOs are scene-dependent [3]. In general,
in those studies, no single TMO has been found to be the
best for any of the considered computer vision tasks. In [27],
we further investigated this problem and studied strategies for
designing an optimal TMO for keypoint detection task. Our
results confirmed that optimizing TMO parameters with re-
spect to task-specific measures can improve features extraction
performance.

B. Tone Mapping Operators

Tone mapping operators enable to compress the dynamic
range of an HDR image to LDR, and have been mainly
developed to display HDR pictures on conventional LDR



3

displays [21]. TMOs are broadly classified into global ap-
proaches, where a compression function is applied globally
to all the image pixels [21,38], and local techniques, where a
tone-mapped pixel depends on the values of neighboring pix-
els [22,23]. In general, global TMOs such as DragoTMO [38],
which maps the HDR content based on adaptive logarithmic
scaling, preserve the overall perceived contrast of the original
scene. Conversely, local TMOs, such as ChiuTMO [39] and
BilateralTMO (BTMO) [23], are better in conveying local
structure by normalizing the estimated luminance component
using filters (e.g., Gaussian or the edge preserving bilateral).
Other popular local TMOs includes ReinhardTMO and Man-
tiukTMO [21,22], which yield high visual quality output with
appealing brightness and contrast.

Traditionally, the performance of these TMOs have been
widely studied from a perceptual point of view [25,40,41],
generally for display applications. However, in this paper, we
discuss TMO for the fundamental computer vision problem of
image matching where the input is traditionally assumed to be
an LDR image.

Fine tuning of parameters to enhance the perceived visual
quality of tone mapped image has been previously explored in
the TMO literature [3,42]. Mostly, such parameters were tuned
either by a trial-test or grid-search based approach to yield
favorable outputs for a wide variety of scenes [21–23,39]. Al-
though some works even propose to automate the parameters
selection [43], the tuned values are applied globally over the
scene. However, these methods cannot be used for optimizing
a TMO for tasks such as local features extraction where the
parameters needs to be adapted spatially to maximize the
desired local responses such as extremal cornerness response
for keypoint detection or detailed gradient-level information
for descriptors. This is especially important to cope with
local illumination changes. Note that most existing features
extraction algorithms fail in practice under drastic non-affine
transformations such as day/night change [44].

C. Local Invariant Feature Extraction
Feature extraction algorithms play a critical role in several

computer vision pipelines. Essentially, these algorithms com-
prise two stages, i.e., keypoint detection and descriptor ex-
traction. Keypoint detection methods look for covariant salient
locations in a scene that can be repeatedly detected when the
latter is undergoing drastic geometric and photometric trans-
formations [18,45,46]. Later, descriptor extraction algorithms
are applied to extract discriminative invariant signatures from
these selected keypoint locations [13,47–51]. In this paper, we
build an illumination invariant model that provides pixel-wise
optimal parameter maps for the full features extraction chain.

a) Keypoint Detection: the literature on keypoint de-
tection algorithms has been extensively explored in the past
decades. Keypoint detection algorithms, in general, have been
categorized in corner and blob detectors [13]. In this paper, we
consider the most popular and widely used keypoint detection
schemes: Harris [46], FAST [52], BRISK [53], SURF [54]
and SIFT [18]. These methods are computationally fast and
are widely used for real time applications such as object
localization and tracking.

b) Descriptor Extraction: descriptor extraction algo-
rithms have gone hand-in-hand with keypoint detection and
have been thoroughly studied (see, e.g., [13]). In this paper,
we consider the following features extraction schemes as
previously used in [19,20]: BRISK [53] and FREAK [55]
(corner based), SIFT [18] and SURF [54] (blob based).
BRISK [53] is a computationally efficient scheme made up
of a fast multi-scale detector and a binary descriptor. Its
detection module is an extension of corner-based detectors
such as FAST or Harris. The BRISK descriptor is a binary
string computed by brightness comparisons on circular sam-
pling patterns around the detected regions. We also consider
FREAK [55] which is composed of a Harris corner detector
and a binary descriptor. Similar to BRISK, FREAK also uses
a concentric rings arrangement, but the sampling grid is non-
uniform as inner circular rings have exponentially more points.
The third extraction scheme is SIFT [18] which is a classical
algorithm consisting of a blob keypoint detector (based on
difference of Gaussians) and a gradient-based descriptor. The
SIFT descriptor is a 128-dimensional histogram formed by
concatenation of the image gradients computed on 4× 4 grid
spatial neighborhood around the detected keypoint. Lastly, we
use SURF [54] features extraction scheme which is composed
of a computationally efficient blob type detector mainly based
on the Hessian matrix approximation, along with a descriptor
computed as the sum of the Haar wavelet response, around
the point of interest.

D. Learning models for TMO and image matching

In the case of image matching, a key problem in learning
a tone mapping is generating a proper training set. In [1],
we were the first to address this problem and designed an
optimization model which generated parameter maps optimal
for a keypoint detection task. However, the generalization
of such optimization model for an image matching task is
not straightforward as each stage targets different objective.
Specifically, there are two major challenges: (1) designing a
differentiable objective function encompassing both key stages
of the features extraction pipeline, (2) acknowledging the
keypoint localization dependency of the description stage.

Similar problems can be observed in designing learning-
based features extraction pipelines. In [44], authors propose an
end-to-end features extraction system by learning each stage
individually with their respective similarity-based objectives.
However, they train the models in a sequential manner, i.e., no
combined/collective objective is designed addressing each
stage. This approach is appropriate to learn the features extrac-
tion pipeline. Conversely, our target is to obtain optimal TMO
parameters while maximizing the efficiency of such pipelines.
Hence, a similar paradigm of sequential objectives cannot be
directly applied in our problem. Furthermore, the detection
and description stages accuracy measures, namely repeatability
rate (RR) [45] and mean average precision (mAP) [13], are
two non-differentiable entities and hence, cannot be directly
employed as objective functions.

Therefore, in this paper, we, firstly, employ an alternate
approach to use a proxy differential objective function to
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Fig. 1: Optimal Tone Mapping Design. The tone mapping function is
modulated by the SVR-based guidance model, which predicts optimal
parameter maps using the characteristic features.

mimic the desired behaviors. Secondly, we define an objective
function with two weighted terms subjected to maximize
the stability of detection response maps while enhancing the
similarity of the descriptors. Additionally, we also propose to
address the keypoint localization by applying a constraint on
the description term.

III. OPTIMAL TONE MAPPING FOR IMAGE MATCHING

Fig. 1 outlines the general framework of our proposed
optimal TMO for image matching. It primarily consists of a
tone mapping function 𝜙 which maps the linear-valued HDR
content of an image 𝐼 to an output LDR 𝐼 ′. Secondly, the
framework consists of a guidance model where a learned
SVR predicts an optimal parameter map 𝜃 based on local
HDR content characteristics. In the following subsections, we
discuss the design of our proposed framework and how to
generate training data for the SVR.

A. Optimal Tone Mapping Design

Let 𝜙 be a tone mapping function which maps the linear-
valued HDR content of an image 𝐼 to an output LDR 𝐼 ′. In
general, for each image pixel 𝑥, the TMO operates as:

𝐼 ′(𝑥) = 𝜙(𝐼(𝑥),𝜃), (1)

where 𝐼(𝑥) ∈ ℜ, 𝐼 ′(𝑥) ∈ [0, 255]. The 𝜃 represents a set of
parameters, given as 𝜃 = {𝜃1, 𝜃2, .., 𝜃ℎ} where ℎ is the number
of parameters.

The parameter count ℎ typically varies depending on the
TMO [21,22,38,39]. One example is ChiuTMO [39], where
𝜃 contains one parameter only, i.e., the variance of the
Gaussian kernel which control the estimation of global lighting
component from the scene. Other examples include sharpening
constant in ReinhardTMO [21] and range and spatial variance
in bilateral filtering based TMO [27]. Conventionally, each of
these parameters is just a scalar value and is often tuned glob-
ally by cumbersome trial-test procedures to produce visually
pleasing output images.

In this paper, we not only propose to exploit the potential of
local tuning of these parameters for image matching problem
but also to automate them by proposing a learning mechanism.

We assume the function 𝜙 as an extension of existing tone
mapping functions which can be modulated spatially by adapt-
ing their parameter 𝜃 locally (pixelwise). We will define these
adaptive parameters as parameter maps, as shown in Fig. 2.

The basic idea of this work is to facilitate the local adaption
of the function 𝜙 at sparse keypoint locations so as to further
ease their identification, and also to preserve the unique
gradient-based local signature in the surrounding of a region,
so as to aid the extraction of invariant descriptors.

To automate the prediction of these optimal set of parameter
maps, we propose to learn a model by employing SVR [28],
which minimizes the non-linear problem of predicting 𝜃 by
linearly separating the input samples in a high-dimensional
space by using kernel mapping. The SVR model is learned
while complying with the following three desired constraints:
(1) to distinguish and localize a keypoint from its neigh-
borhood locations; (2) to preserve local gradient orientation
patterns around the keypoint; and (3) to bring invariance (as
much as possible) to non-affine lighting variations in physical
world scenes.

B. Generation of Training Set

In this section, we address the problem of generating an
adequate ground truth for training the SVR-based model. We
aim to find such ground truth parameter maps 𝜃, which result
in efficient image matching (i.e., mAP score) for a scene which
undergoes drastic lighting variations, as shown in Fig. 2. In
this section, we, therefore, formulate an objective function 𝑓 ,
which we minimize over the 𝜃 to yield the optimal parameter
maps. The proposed total energy 𝑓 represents the difference in
the image matching pairs. We quantify this difference in terms
of both keypoint detection and descriptor extraction stages,
depicted as ‘Detection Response’ and ‘Description’ in Fig. 2.
Finally, we propose to optimize the objective using the SGD
based optimization method to obtain the optimal 𝜃.

In the following, we first discuss the formulation of the
objective function 𝑓 . Then, we detail the considerations with
respect to image matching components in view of designing
the objective function 𝑓 . Finally, we detail the SGD-based
method to optimize the objective to obtain the optimal 𝜃.

1) Objective Function: We aim to optimize 𝜃 to tone map
an image for the full features extraction pipeline. Therefore,
the objective function should consolidate each stage of the
features extraction pipeline i.e., to locate and extract the fea-
tures. Henceforth, we introduce two energy terms dedicated to
keypoint localization (𝐸𝑑𝑒𝑡) and descriptor extraction (𝐸𝑑𝑒𝑠),
respectively and define combined objective function as:

minimize
𝜃

𝑓(𝜃) = 𝐸𝑑𝑒𝑡(𝜃) + 𝐸𝑑𝑒𝑠(𝜃), (2)

where each energy term is computed over a scene consisting
of 𝑁 HDR images with lighting variations as shown in Fig. 2
(a). We denote 𝑃 =

{︀
(1, 2), (2, 3), . . .

}︀
the set of 𝐾 =

(︀
𝑁
2

)︀
pair combinations of 𝑁 images. The 𝐸𝑑𝑒𝑡 term aims to ensure
the covariance of the corner response maps. Conversely, the
𝐸𝑑𝑒𝑠 term helps in retaining the invariance of the discrimina-
tive patterns around the key locations in the image pairs when
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undergoing drastic transformations. Both terms are detailed as
follows:

2) 𝐸𝑑𝑒𝑡: To ensure efficient matching, we observe that it
is important to enforce the similarity in detection response
maps [27]. This is mainly because highly similar response
maps increase the probability of detection of keypoints at
similar locations and thereby enhance the probability of correct
matches.

We define the detection similarity term 𝐸𝑑𝑒𝑡, by summing
the penalty computed from each pair in the set 𝐾, as:

𝐸𝑑𝑒𝑡 =
𝜆𝑑𝑒𝑡

𝐾

∑︁
{𝑖,𝑗}∈𝑃

𝒞1(ℛ𝑖(𝜃),ℛ𝑗(𝜃)). (3)

For each sample pair {𝑖, 𝑗} ∈ 𝑃 , we penalize the response
maps dissimilarity by a logistic cost function given as:

𝒞1(𝑖, 𝑗) = log(1 + exp(𝜖𝑐 −
⟨︀
ℛ𝑖 · ℛ𝑗

⟩︀
), (4)

where 𝜖𝑐 is the penalty control factor, ℛ𝑖 and ℛ𝑗 are the
response maps corresponding to the images 𝑖, 𝑗 and ⟨·⟩ denotes
the scalar product. The selection of ℛ is detailed later in this
section.

Inspired by the max-margin formulations applied to re-
trieval [15] or classification tasks [56], we use the logistic
function as the penalty in our detection term. It is a smooth
differential operator and ideally penalizes less if there is high
similarity and vice-versa. Note that the term 𝐸𝑑𝑒𝑡 is somewhat
similar to the one we proposed in the detector optimal TMO
in [1]. But, in this paper, we include an additional factor 𝜆𝑑𝑒𝑡

which weights the penalization corresponding to detection.
a) Selection of ℛ: From handcrafted [45] to deep-

learning [44] era, the concept of corner-like keypoint detection
methods has gained popularity for low-latency vision tasks due
to high speed, less computational complexity and competitive
accuracy. By definition, corners exhibit low correlation with
neighboring pixels in all directions. The most basic and widely
adopted corner detectors [46,57,58] localize the extrema pri-
marily by computing the per pixel gradient autocorrelation
matrix, given as:

𝑀 =

[︃
𝐼2𝑥 𝐼𝑥𝑦

𝐼𝑦𝑥 𝐼2𝑦

]︃
, (5)

where each component represents the directional derivative.
Thereafter, different methods are proposed in the literature
to localize the extrema “keypoints” [45]. In this paper, we
use [46] which describes the response for each pixel x without
directly computing the eigenvectors of 𝑀 as:

ℛ(x) = 𝑑𝑒𝑡{𝑀(x)} − 𝑘 · 𝑡𝑟{𝑀(x)}2, (6)

where 𝑘 is tuned empirically.
Similar to the baseline [1], we employ the detector response

in Eq. (6), mainly because it is based on the popular structural
matrix 𝑀 , which is simpler to differentiate than alternative
approaches, thus aiding in backpropagation. Note that alternate
detection methods could also be used, but our choice has been
made entirely based on the computation complexity and ease
of use in backpropagation.

3) 𝐸𝑑𝑒𝑠: The energy term 𝐸𝑑𝑒𝑠 aims to penalize the dis-
similarity of the descriptors extracted from the tone mapped
images. Previously in [2], we proposed a densely sampled
patch-based method where a model is learned to predict global
parametric values for an individual patch. Hence, not only the
method optimized 𝜃 for a patch globally, but it also lacked the
consideration of keypoint localization. In contrast, the image
matching pipeline additionally relies on the localization of the
descriptors. Hence, in this paper, we argue that it is important
to compute the gradient orientation impact per pixel and to
focus on its locations prior to designing a descriptor-based
penalty function. It not only helps in preserving the salient lo-
cations but also avoids any “look-alike” redundant matches [2].
Therefore, we propose to constraint the penalization to the
dissimilarity of those descriptors that belong to some potential
keypoint region. We define 𝐸𝑑𝑒𝑠 as:

𝐸𝑑𝑒𝑠 =
𝜆𝑑𝑒𝑠

𝐾

∑︁
{𝑖,𝑗}∈𝑃

𝒞2(𝒟𝑖(𝜃)−𝒟𝑗(𝜃)), (7)

where 𝒞2 is the Euclidean distance and 𝜆𝑑𝑒𝑠 is a weighting
factor. To apply the constraint in practice, we compute the
descriptor 𝒟 after the keypoint localization which is obtained
by applying the softargmax operation 𝒮 [59] on the resulting
response map. In general terms, 𝒮 is given as

𝒮 =
∑︁
𝑖

exp(𝛽𝑧𝑖)∑︀
𝑗 exp(𝛽𝑧𝑗)

· 𝑖 (8)

where 𝑧𝑖 is the pixel location and 𝛽 is a hyper-parameter
for defining the shape parameter. The softargmax operation
is a differentiable function to obtain local optima and helps
in avoiding the cluttering in response maps. Cluttering refers
to a phenomenon when several keypoints are located close to
each other [2].

To compute an accurate keypoint localization, we define the
final gradient orientation around each pixel location as follows:

𝒟 =

{︃
ℎ(𝜈|𝑝), if 𝒮(ℛ) ≥ Λ

0, otherwise
(9)

where ℎ(𝜈|𝑝) is the gradient orientation feature map explained
later in Eq. (10) and Λ is the maximum softargmax value in
a 16 × 16 neighborhood window of the considered pixel. It
simply means that if the softargmax response score for the
considered pixel location is maximum in its neighborhood
window, only then the gradient orientation map is taken into
account to contribute in the final descriptor-based penalty term
in Eq. (7).

a) Selection of ℎ: A common image matching approach
relies on the similarity of features extracted from patches
corresponding to detected keypoint locations. One widely
used descriptor extraction algorithm is the Scale Invariant
Feature Transform (SIFT) [18] which is a concatenation of
16 unnormalized cells i.e., [c1, ...c16], where each cell can be
compactly defined as [60,61]:

ℎ(𝜈|𝑝)[c] =
∫︁

𝒢𝛿(𝜈−∠∇𝑝(𝑦))𝒢�̂�(𝑦−𝑐)‖∇𝑝(𝑦)‖𝑑(𝑦), (10)

where c is the center location of the cell in the restricted
square patch 𝑝 of size 16 × 16. The independent variable 𝜈
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Fig. 2: Generation of Training Set. Ground-truth parameter maps are
generated by minimizing the total energy determined from a set of
images of the same scene, undergoing lighting variations, using the
procedure in Section III-B.

represents the gradient orientation ranging in [0, 2𝜋]. More-
over, 𝒢 represents the Gaussian kernel with standard deviation
�̂� and an angular dispersion parameter 𝛿. Once histograms are
computed, they are normalized and concatenated into a single
128-dimensional descriptor. Finally, the distance between the
resulting descriptor can measured using the ℓ2 metric.

4) Stochastic Gradient Descent Implementation Details:
We optimize the objective function in Eq. (2) using Stochastic
Gradient Descent (SGD) [29]. It is a fast and robust optimiza-
tion technique to estimate the incremental gradient descent by
its stochastic approximation using a randomly chosen sample
from the initial set. To implement the SGD optimization,
we follow the backpropagation procedure. We initially build
the required partial derivative framework with the objective
function given in Eq. (2). It is more formally expressed as

∇𝒞{𝑖,𝑗}(𝜃) =
{︁ 𝜕𝒞1
𝜕ℛ𝑙

· 𝜕ℛ𝑙

𝜕𝜙𝑙
· 𝜕𝜙𝑙

𝜕𝜃
+

𝜕𝒞2
𝜕ℛ𝑙

· 𝜕ℛ𝑙

𝜕𝜙𝑙
· 𝜕𝜙𝑙

𝜕𝜃

}︁⃒⃒⃒⃒
𝑙=𝑖,𝑗
(11)

Then, following the SGD rule, we iteratively estimate 𝜃 by
randomly selecting sample (𝑖, 𝑗) from the set 𝑃 . Finally, we
compute the gradient of the objective in Eq. (2), that is:

𝜕𝑓

𝜕𝜃

⃒⃒⃒⃒
𝜃𝑡

=
1

𝐾

∑︁
{𝑖,𝑗}∈𝑃

𝜕𝒞
𝜕𝜃

⃒⃒⃒⃒
𝜃𝑡

(12)

where

𝒞 = 𝜆𝑑𝑒𝑡 · 𝒞1(ℛ𝑖,ℛ𝑗) + 𝜆𝑑𝑒𝑠 · 𝒞2(𝒟𝑖,𝒟𝑗), (13)

with the single (𝑖, 𝑗) selected image pair. Thereafter, at each
iteration 𝑡, SGD update rule is given as:

𝜃𝑡+1 = 𝜃𝑡 − 𝛾𝑡 · ∇𝒞{𝑖,𝑗}𝑡(𝜃𝑡), (14)

where 𝛾𝑡 is a learning rate that can be made to decay with 𝑡
as 𝛾𝑡 = 𝛾0/(𝑡+1), and the gradient for the objective function
in Eq. (2) is replaced by the gradient of a randomly chosen
sample pair {𝑖, 𝑗} at time 𝑡, i.e.,

∇𝒞{𝑖𝑡,𝑗𝑡}(𝜃𝑡) ,
𝜕𝒞(ℛ𝑖𝑡 ,ℛ𝑗𝑡 ,𝒟𝑖𝑡 ,𝒟𝑗𝑡)

𝜕𝜃

⃒⃒⃒⃒
𝜃𝑡

. (15)

For SGD-based optimization, we start from a randomly
initialized set of 𝜃 which are updated iteratively using the
update rule in Eq. (14). In total, the model comprises 3 hyper-
parameters: 𝛾0, 𝜆𝑑𝑒𝑡, 𝜆𝑑𝑒𝑠. To estimate these hyperparameters,
we follow the standard approach used in [62] and take a small
set of pairs from 𝑃 and perform a simple cross-validation
using the grid search method in the log scale. For the SGD
related optimization and convergence proofs along with the
asymptotic analysis, we refer the reader to [29].

This proposed mechanism for finding the optimal parame-
ters 𝜃 for a function 𝜙 using SGD is generic, i.e., one can
easily tune the parameter maps of any TMOs that can be
expressed as Eq.(1). In this work, we propose to learn the local
spatial and range variance of the bilateral filtering based tone
mapping which is described in the following subsection. Note
that our proposed OpTMO will be a learned local adaption of
bilateral filtering based tone mapping BTMO [23,27].

C. Selected Tone Mapping Operator

Many tone mapping approaches aim at separating scene
illumination, which can display large dynamic range varia-
tions, from the reflectance of objects, which instead has lower
dynamic range characteristics [27,39]. Following this idea, we
consider a tone mapping function 𝜙, expressed as: 𝜙 = 𝐼 ·𝐿−1.
The illumination component 𝐿 is estimated by an adaptive
version of bilateral filtering [63] and is given as:

𝐿(𝑥,𝜃) =
1

𝑊
·
∑︁
𝑦∈Ω

𝒢𝜃1(𝑥)(‖𝑥−𝑦‖)·𝒢𝜃2(𝑥)(‖𝐼(𝑥)−𝐼(𝑦)‖)𝐼(𝑦),

(16)
where 𝒢 is a Gaussian kernel. The parameter map vector 𝜃
has two components, 𝜃1 and 𝜃2, also known as spatial and
range variance. For each pixel location 𝑥, 𝑦 is a pixel in the
neighborhood Ω of 𝑥. The normalization factor is given as:

𝑊 =
∑︁
𝑦∈Ω

𝒢𝜃1(𝑥)(‖𝑥− 𝑦‖) · 𝒢𝜃2(𝑥)(‖𝐼(𝑥)− 𝐼(𝑦)‖). (17)

D. Support Vector Regressor Training

SVR [28] is a learning-based algorithm to estimate the
unknown functions which map the input samples into a
high dimensional space where the data becomes linearly
separable. Consider the sample set of characteristic features
ℱ = {𝑓1, . . . ,𝑓𝑛} and the corresponding output denoted by
𝒴 = {𝜃𝑘(1), . . . , 𝜃𝑘(𝑛)} where 𝑘 = 1, 2 in our case. To build
our predictor model, we want feature samples which capture
distinctive information for both descriptor and detector. To
that end, we build our feature sample 𝑓𝑖 by concatenat-
ing two parts: a) the gradient-based SIFT pattern [18], 64
dimensional feature; and b) the 5 × 5 grid-based detector
response feature [1], 25 dimensional feature. This forms a
total dimension of 89. The features 𝑓𝑘 are computed from the
original HDR linear values, without any processing. This is
not contradictory with the need to perform a TMO as, locally,
HDR images generally display limited dynamic range [12].
Finally, for each training sample, we get the following input-
output corresponding pairs {(𝑓1, 𝜃𝑘(1)), ..., (𝑓𝑛, 𝜃𝑘(𝑛))} and



7

0 200 400 600 8001,0001,200

30

40

50

#Keypoints (𝑁 )

A
vg

R
ep

ea
ta

bi
lit

y
R

at
e

Corner(Harris)
Blob(SURF)

0 10 20 30 40 50 60 70

20

40

60

80

𝜖 error threshold

A
vg

R
ep

ea
ta

bi
lit

y
R

at
e

Corner(Harris)
Blob(SURF)

Fig. 4: Repeatability Rates (RR) computed for OpTMO using a corner
(Harris) and a blob (SURF) keypoint detector.

formulate our prediction problem using SVR. To fit the de-
sired nonlinear SVR prediction function, the corresponding
optimization problem is solved using the dual maximization
approach. For further details on SVR, we refer the reader
to [28].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset

We consider the HDR dataset presented in our previous
work [1], which is composed of 8 different HDR scenes as
shown in Fig. 3. The Light Room, Project Room and Poster
have been used for evaluating HDR for keypoint detection
problems [11,64] 1. 4 outdoor scenes have been captured at
famous locations in Paris: Notre-Dame, Louvre, Invalides and
Grande Arche, at different hours of the day with a Canon 700D
camera. The Camroom indoor scene is shot with a Canon Mark
III camera in the presence of powerful 2K Watt reflectors.
HDR images have been created by fusing multiple exposure
LDR images using the algorithm in [65]. All scenes have been
geometrically calibrated for image matching evaluation.

B. Evaluation Metrics

We evaluate the keypoint detection and descriptor extraction
performance on the tone mapped images using the standard
measures of Repeatability Rate (RR) and Matching Score
(MS) respectively, as detailed in [13,30]. For the evaluation
of the full image matching, we compute the mean average
precision (mAP) scores [13].

RR is a measure of detector efficiency, defined as

𝑟𝑟𝑒𝑓 (𝜖)

min(𝑛𝑟𝑒𝑓 , 𝑛𝑡𝑒𝑠𝑡)
, (18)

where 𝑟𝑟𝑒𝑓 is the number of keypoints detected in the reference
image which are repeated in the test image, and 𝑛𝑟𝑒𝑓 and 𝑛𝑡𝑒𝑠𝑡

are the number of detected keypoints in the reference and test
image, respectively. A keypoint is considered to be repeated
in the test image if: a) it is detected as a keypoint in the test
image, and b) it lies in a circle of radius 𝜖 centered on the
projection of the reference keypoint onto the test image.

MS is defined as the fraction of correct matches to the total
number of correspondences in the image pair. To define a
match, three different matching strategies have been discussed

1Light Room and Project Room dataset can be downloaded from
http://webpages.l2s.centralesupelec.fr/perso/giuseppe.valenzise/download.htm

in [13]. In nearest neighbor (NN) matching, a descriptor A
finds its matches B only if A is the nearest neighbor to B and
if the distance between them is below a threshold. Nearest
neighbor distance ratio (NNDR) extends NN by introducing
a threshold to the ratio of the distance descriptors. More
precisely, a descriptor finds a good match if the ratio between
its distance from the first closest match and its distance from
the second closest match is less than a given threshold 𝑡ℎ.
These distances depend on the descriptor type, i.e., Hamming
distance metric is used for binary descriptors and Euclidean
distance is used for non-binary descriptors. In this paper, we
have used NNDR matching strategy to compare the perfor-
mance of our TMO with other techniques.

To define a correct match, feature location is taken into
account. Two descriptors yield a true positive match if they
correspond to two keypoints/regions which are repeated [13] in
the reference and query images. Similarly, a match is labeled
as a false positive if the corresponding keypoints are not
repeated.

MS gives only the estimate of correct matches, while in
practice, many incorrect matches may occur. Therefore, for
completeness, we also evaluate the performance using mAP
score. To this end, we generate a Precision-Recall (P-R) curve
by varying the matching strategy parameter 𝑡ℎ from 0 to 1.
Recall is defined as the fraction of true positives over total
correspondences and precision is given as the ratio of true
positives to the total number of matches. Once the P-R curves
are generated for each scene, we then compute the mAP scores
by determining the area under the curves.

C. Evaluation Setup

We test our proposed OpTMO for image matching task on
8 HDR scenes (shown in Fig. 3) at detection and description
levels and compare with state-of-the-art TMOs. The HDR
dataset is composed of a total of 52 images. For detection
and description stage, we formulated a total of 280 test image
pairs respectively from the 8 scenes.

We compare the proposed OpTMO with classical
perception-based TMOs, including: BTMO [23], Chi-
uTMO [39], DragoTMO [38], ReinhardTMO [21] and Man-
tiukTMO [22]. We consider these TMOs as they have been
previously applied for HDR evaluation studies [20,27] for
similar keypoint detection task. In addition, we also consider
our previously proposed DetTMO [1] and DesTMO [2], which
are optimized methods for detection and description only,
respectively.

SVR Training and Implementation: We use the SVR
implementation of LibSVM [66] using the Radial Basis Func-
tion (RBF) kernel. The optimal values of SVR parameters,
the regularization cost and epsilon, are obtained by 10-fold
cross validation from the range of [2−5, 215] and [2−10, 25],
respectively.

To train and validate the SVR model, we build the training
set with 5000 sample feature set for each test scene. This train-
ing set is drawn from other scenes excluding the corresponding
test scene. For instance, to test the Project Room scene, we
build the training set by randomly selecting samples from all
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Light-Room Project-Room Poster CamRoom Grande-Arche Louvre Notre-Dame Invalides

Fig. 3: Sample images from HDR dataset, composed of 8 scene from different indoor/outdoor locations, taken with different artificial/natural
lighting variations.
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Fig. 5: Keypoint Detection I: Average Repeatability Rates (AvgRR) computed on different TMOs using various keypoint detection schemes.
The average is calculated over all test scenes.

other 7 scenes. For each training sample, we randomly select
a pixel location and compute characteristic features around
the selected location, while following the features extraction
procedure described in Section III-D. A window of 16×16 is
selected around the pixel location for computing the gradient
based SIFT pattern part of the feature 𝑓𝑖, whereas a 5×5 grid
based detector response is used for the second part of 𝑓𝑖.

D. Keypoint Detection

We evaluate all the considered TMOs using Harris [46],
FAST [52], BRISK [53], SURF [54] and SIFT [18] (as detailed
in Section II-C). We selected these detection methods based
on state-of-the-art studies in evaluating the performance of
TMOs [2,11,64,67] and also due to their popularity in real
time applications [68].

The RR is the performance measure as given in Eq. (18).
RR [13] is sensitive to the number of detected keypoints
and the error rate 𝜖. For instance, large variations in the
number of keypoints across different scenes might lead to
biased average scores. Therefore, we fix the keypoint detection
to the strongest 𝑁 keypoints as suggested in prior TMO
evaluation studies [11,12,19]. The impact of N and 𝜖 over
average RR score is shown in Fig. 4. Overall increase in
number of keypoints leads to an increase in average RR,
but the growth slows down after a certain number, partially

due to the detection of cluttered keypoints. On the other
hand, increase in the average RR with the increasing 𝜖 is in
coherence with the findings of [45]. In this paper, we choose
the values 𝑁 = 500 and 𝜖 = 10.

Implementation: We use the HDR Toolbox [42] for
the implementation of the considered TMOs. Moreover, we
use the Matlab’s Computer Vision toolbox for Harris, FAST,
BRISK and SURF, and Vlfeat for SIFT.

Comparison: We perform a thorough evaluation of
our proposed OpTMO quantitatively using the RR measure.
In Fig. 5, we initially show the performance of our OpTMO
and other state-of-the-art TMOs in terms of RR averaged over
all test scenes. For the sake of completeness, we also report
the average RR obtained using HDR linear photometric values
(HDRLin), without any tone mapping. Our results clearly show
that the proposed OpTMO outperforms all the perception-
based TMOs. In addition, the significant drop in performance
with HDRlin demonstrates that HDR linear values are highly
sub-optimal for keypoint detection task, similar to what is
found in previous studies [11,19].

In Fig. 6, we expand our experimental test bench for each
scene and compare the performance of our OpTMO with the
globally optimized BTMO [27] and our previously proposed
detector-optimal DetTMO [1]. The per scene gains of OpTMO
over BTMO prove that local modulation of parameters sig-
nificantly improves the keypoint stability. In addition, we
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observe that the gain in performance between local and global
optimization depends significantly on content characteristics.
Especially for indoor scenes, which have been acquired by
varying locally the illumination and introducing stark shadows,
local parameter tuning enables to obtain important RR gains.
We also notice that OpTMO achieves similar (within 2-4%
per scene) RR as DetTMO, which is optimized for keypoint
detection only and thus provides an upper bound in the
achievable repeatability.

In order to further confirm these observations, we report
a head-to-head comparison of OpTMO versus BTMO and
DetTMO, respectively, in Fig. 7, for two different detectors:
Harris (corner) and SURF (blob). OpTMO has higher RR
whenever a point (representing a specific scene and illumina-
tion condition) is above the 45∘ line. As expected, we observe
that this is often the case for BTMO, while for DetTMO the
two methods have very similar performances. As mentioned
above, the loss in keypoint repeatability compared to DetTMO
is expected, and is mainly due to two reasons. On one hand,
the additional descriptor-level cost term in Eq. (7) changes the
objective function with respect to detector repeatability only
(as in DetTMO). On the other hand, the use of the softargmax
localization measure in Eq. (8) reduces cluttering of keypoints
in our OpTMO. This is illustrated on a detail of the “Project-
Room” scene in Fig. 8. For instance, cluttered keypoints are
detected near the beaver’s eyes in DetTMO, whereas OpTMO
handles such detections efficiently. Interestingly, the composite
objective function in Eq. (2) enables to achieve RR almost as
good as DetTMO, but with a significantly improved descriptor
matching and thus overall image matching performance, as
shown in the next section.

Finally, we observe from Fig. 7 that these conclusions are
valid for both Harris and SURF detectors, in spite of the
fact that OpTMO is trained with respect to a classical corner
response function (Eq. (6)). This demonstrates experimentally
that images tone mapped with the proposed approach lead to
increased detection performance even when the actual used
detector is different from the specific response characteristics
captured by the proxy cost function used for training.
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Fig. 6: Keypoint Detection II: Average Repeatability Rates (RR)
computed using BTMO [27], DetTMO [1] and the proposed OpTMO
for each test scene using Harris keypoint detector.
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Fig. 7: Keypoint Detection I. The head to head comparison between
(a) OpTMO vs BTMO and, (b) OpTMO vs DetTMO. Each point
represent an image pair with different lighting conditions from the
HDR dataset. The points represented using o depict the Harris corner
detector and � represents the SURF blob detector.
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Fig. 8: Keypoint Detection IV. Harris corner keypoints on the
DetTMO and proposed OpTMO. The cluttered keypoints in DetTMO
are highlighted using the red squares.

E. Descriptor Matching

We perform a thorough evaluation of our proposed OpTMO
for descriptor matching using BRISK [53], FREAK [55],
SIFT [18] and SURF [54] descriptors. We use the matching
score (MS) as performance measure, as described in Sec-
tion IV-B, considering the NNDR matching criteria with a
threshold value 𝑡ℎ = 0.5.

Implementation: We use the Matlab’s Computer Vision
toolbox for FREAK, BRISK and SURF, and Vlfeat for SIFT,
with their default parameter settings.

Comparison: In Fig. 9, we compare the average OpTMO
MS with respect to state-of-the-art TMOs. Overall, we attain
significant gains in terms of MS using all features extraction
methods. With 𝑡ℎ = 0.5 (default value [13,18]), the gains are
considerable for gradient-based features schemes such as SIFT
and SURF, which is expected by design given the definition
of the descriptor signature in Eq. (9).

To further analyze these results quantitatively, in Fig. 10 we
report per scene comparison between the competing TMOs
that are observed from Fig. 9. We observe that for each scene
(indoor or outdoor) our OpTMO outperforms all the other
TMOs. As in Section IV-D, we observe considerable gains
with respect to traditional BTMO, confirming the potential
of local parameter optimization. In comparison to DetTMO,
we observe that gains are not as high as what are obtained
with BTMO. This can be explained by the higher RR of the
DetTMO (Fig. 6) which improves the probability of correct
matches. Interestingly, we also observe that in many scenes
DetTMO and DesTMO perform equally well, e.g., Invalides
and Project-Room scenes. This is mainly because DesTMO is
not optimal for detection, which entails a higher number of
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Fig. 9: Descriptor Matching I computed on different TMOs using SURF, SIFT, FREAK, BRISK descriptor extraction schemes. The average
is calculated over all test scenes.

false matches.
Finally, we show the per image-pair analysis in Fig. 11

to further analyze the behavior of individual test pairs. We
observe that our OpTMO improves the MS over DesTMO
across the whole dataset (i.e., the gains are not concentrated
on specific image pairs). In fact, there is not a single case
where there is a significant drop in OpTMO’s performance
against the descriptor-optimal DesTMO, which again confirms
the advantages of simultaneously optimizing the TMO for
keypoint detection and description. In addition, the OpTMO
produces consistent gains even if a binary descriptor such as
FREAK is employed, in spite of the use of a gradient-based
cost function in Eq. (9).

Note that MS is sensitive to the choice of 𝑡ℎ. Therefore,
in the following section, we perform a global image matching
evaluation using mAP to overcome the impact of the threshold.

F. Image Matching

We evaluate the full image matching chain by computing
mean average precision (mAP) scores over the complete
dataset. We obtain the mAP rates by averaging the area-under-
the-curve of PR curves [13]. The results per TMO are reported
in Fig. 12. We observe that for every descriptor extraction
scheme our proposed model outperforms all the other TMOs.
High mAP scores imply that our model obtains more correct
matches and reduce the probability of false matches. An
illustration of matching results is given in Fig. 13, showing that
the proposed full-chain optimal tone mapping improves the
matching efficiency in drastic lighting variations. Notice that
ReinhardTMO and MantiukTMO provide poor image match-
ing results compared with the proposed approach, although
they provide better visually looking images. From Fig. 13, we
observe that optimizing only for detector response (DetTMO)
might produce a higher number of false matches. On the other
hand, optimizing with respect to descriptor matching only
(DesTMO) cannot ensure high matching efficiency due to the
lower keypoint repeatability. Instead, efficient image matching
can only be ensured by optimizing the TMO with respect to
the full features extraction chain, as in the proposed OpTMO.
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Fig. 10: Descriptor Matching II. Matching Score comparison be-
tween BTMO [27], OpTMO, DetTMO [1] and DesTMO [2] over
all the scenes in the HDR dataset using SURF features extraction
scheme.

0 20 40 60 80
0

20

40

60

80

M
S

−
O

pT
M

O
 (

%
)

MS−DesTMO (%)
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The points represented using o corresponds to FREAK features
detection scheme and � corresponds to SURF scheme.

G. Applications

Localization of objects is a high-precision and pivotal task
in many computer vision applications, e.g., to find region of
interest for fine-grained recognition challenges. For localiza-
tion, first a homography matrix is computed by finding the
best matching correspondences between the target and the
test image. Then, the desired object is localized based on
the estimated geometric relationship. In Fig. 14 and Fig. 15,
we show a similar applicative scenario of localization of
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selected objects such as structures in images undergoing
both lighting and rotational transformations. We compare the
performance of our proposed image-matching optimal TMO
and the widely used ReinhardTMO over three scenes, namely
Louvre, ProjectRoom and Notre Dame. In Fig. 14, we first find
the corresponding matches between the two scenes using the
SURF scheme for each TMO. Then, based on those resulting
matches, we estimate the homography as proposed in [69].
We observe that our model gives more correct corresponding
matches in all three scenes as compared to ReinhardTMO.
In challenging outdoor scenes such as Louvre where there is
a direct impact of sunshine, we observe that ReinhardTMO
results in all incorrect matches, mainly concentrated in the
brightest regions. In Fig. 15, we overlay the results on the test
tone mapped images to show where exactly our desired object
should be located based on the obtained correspondences. In
Louvre and ProjectRoom scenes, we observe that tone mapped
images using our proposed model result in correct localization
of the desired object in the test image, as compared to Rein-
hardTMO. In the Notre Dame scene, the impact of illumination
on the target region is smaller, and we are able to find correct
overlaying results using both tone mappings.
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Fig. 12: Image Matching I. mAP % scores for the 9 different LDR
modalities using 4 feature extraction schemes. Scores are averaged
over 8 lighting change datasets.

Computation Time: In Fig 16, we compare the execution
time (i.e. to tone map an HDR image) of the most competing
state-of-the-art TMOs namely, BTMO, DetTMO, DesTMO
and OpTMO. The computational time of our proposed method
is not very far from the DesTMO. Note that the current
implementation has been carried on a Intel Xeon CPU 4
cores processor, 16 Gb RAM windows 7 machine and has not
been parallelized. An efficient parallelized implementation can
further sped up the execution.

V. CONCLUSIONS

In this paper, we propose a new learning-based adaptive tone
mapping framework for efficient image matching under drastic
changes of lighting conditions. To this end, we first generate
training samples by proposing a bi-objective function captur-
ing both the detection and description stages of the features

Fig. 13: Image Matching II. Day/Night matching using SURF.
Row I: 2 HDR images from Invalides scene are displayed after log
scaling [38]. Correct and incorrect matches are shown with yellow
and red lines, respectively. Green lines represent the special case of
mismatch due to repetitive structure. Row II: the feature matching
using our proposed OpTMO (21 correct and 3 incorrect matches).
Row III: using DetTMO (13 correct and 6 incorrect matches).
Row IV: using DesTMOusing (11 correct and 3 incorrect matches).
Row V using Reinhard TMO (3 correct and 11 incorrect matches).
Row VI: using MantiukTMO (3 correct and 4 incorrect matches).

BTMO
DetTMO
DesTMO
OpTMO

2.13
2.35

2.61
2.69

Fig. 16: Computation time in sec (log scale). The time is computed
by running all TMOs for an image size (512× 512) on a Intel Xeon
CPU 4 cores processor, 16 Gb RAM windows 7 machine.

extraction pipeline. Later, we train a Support Vector Regressor
using local characteristics to learn a model which predicts
spatially varying TMO parameters. We evaluate the proposed
OpTMO on a HDR dataset of indoor/outdoor scenes where
it outperforms state-of-the-art TMOs across different image
matching algorithms. Finally, we demonstrate the performance
of our method over other TMOs in a simple localization based
application scenario.

Our proposed task-optimal TMO can be applied to different
detection/description approaches. Hence, it can be directly
fused with any existing local feature based applications such
as structure from stereo, scene reconstruction, object tracking,
recognition and photogrammetric applications. In the future,
instead of learning the tone mapping parameter, we will focus
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Fig. 14: (Match & Locate) Row I: Pair of HDR images from Louvre, ProjectRoom and Notredame scenes, with one reference and other
being a selected region undergone lighting change and rotation. Row II: the feature matching using our proposed OpTMO. Row III: using
Reinhard TMO.

(a) OpTMO (b) Reinhard TMO (c) OpTMO (d) Reinhard TMO (e) OpTMO (f) Reinhard TMO

Fig. 15: (Match & Locate) Results of matching images with different illumination and matched-regions (shown in Figure 14), where the
shaded area is the matched image region. Results are shown for OpTMO and ReinhardTMO.

on directly learning a tone mapping function for the image
matching problem.
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