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Abstract: In earthquake engineering, the fragility curve is defined as the con-
ditional probability of failure of a structure, or its critical components, at given
values of seismic intensity measures (IMs). For simulation-based fragility curve
estimations, this conditional probability of failure is usually computed with log-
normal assumption. The artificial neural network (ANN) is used to improve the
computational efficiency of the simulation-based fragility analysis. An ANN
metamodel is built from 100 finite element soil-structure-interaction simula-
tion results. The most relevant IMs are selected based on semi-partial correla-
tion coefficients. The ANN metamodel is trained with the selected IMs, and a
large number of Monte Carlo simulations are performed with this metamodel.
Fragility curves are computed with both parametric (log-normal model) and non-
parametric methods for the estimation of the risk of failure of an electrical cabinet
in a reactor building studied in the framework of the KARISMA benchmark.

1 Introduction
In the seismic probabilistic risk assessment methodology, fragility curves are computed as the
conditional probability of failure of a structure, or critical components, for a given value of a
seismic intensity measure (IM) such as the peak ground acceleration (PGA). The total probabil-
ity of failure of the plant is computed by the convolution of the fragility curves with the hazard
curves, combined in fault tree and event tree analysis [4]. Fragility curves can be calculated
by Monte Carlo simulation, to propagate the uncertainties in seismic ground motions, struc-
tural material properties, etc. These uncertainties are categorized into two groups [6]: aleatory
uncertainties, which reflect the inherent randomness of variables or stochastic processes, and
epistemic uncertainties due to lack of knowledge about the model and its parameters.
Mathematically, fragility curves are calculated as the conditional probability that the damage
measure (DM) exceeds a critical threshold, for a given seismic IM:

Pf (α) = P(y > ycrit|α) (1)

where y is the DM, such as inter-story drift, ycrit is the failure threshold and α represents the
seismic IM. This conditional probability can be evaluated pointwise for different α values.
However, this requires a large set of numerical simulations with finite element method (FEM),
and it is often difficult and computationally very expensive to perform such analyses due to the
complexity of the mechanical model.
The log-normal fragility model was proposed in [6] to reduce the computational cost. Less



numerical simulations are required with this model because only two parameters, the median
capacity Am and the logarithmic standard deviation β , need to be determined. The estimation of
Am and β can be realized with linear regression or maximum likelihood estimation. However,
the log-normal model assumes a constant β over the whole range of seismic IMs, which may
not be appropriate in practice [1].
Another way to improve the computational efficiency consists in building a metamodel to cali-
brate the statistical relation IM-DM. Metamodels have been widely used in structural reliability,
but have started to be applied to seismic fragility curve estimation only very recently [9]. This
is mainly because the simplification of the continuous stochastic ground motion process by a
small set of representative IMs cannot provide a satisfactory description of the randomness of
the ground motion, and therefore cannot ensure the performance of the metamodels [12]. The
simplest metamodel for seismic IM-DM relation is the power law function [3]. Other more com-
plicated functional models were later proposed in [10]. Considering these works, a non-linear
regression metamodel seems more suitable to adequately compute the non-linearity in the IM-
DM relation.
In this study, we focus on the application of an artificial neural network (ANN) for the compu-
tation of fragility curves. This paper is organized as follows: after a brief recall of simulation-
based fragility analysis methods and ANN, the methodology for ANN-based fragility curve
estimation is presented and illustrated with a case study for Kashiwazaki-Kariwa nuclear power
plant (NPP), studied in the context of the KARISMA benchmark [5]. Only randomness from
seismic ground motions is considered here.

2 Simulation-based Fragility Analysis
2.1 Non-parametric Method
Monte Carlo (MC) simulation is the most fundamental approach for the computation of the
fragility curves. In this method, N seismic records for the same value of the IM α are collected.
Scaling of the signals has to be performed if the number of ground motions is not sufficient.
Structural analyses for all N seismic motions are carried out, and the probability of failure with
seismic level α is calculated as the number of signals that exceed the failure threshold ycrit,
divided by the total number N of seismic motions:

PMC(α) =
1
N

N

∑
i=1
1[ycrit− yi(α)6 0] (2)

where 1[ycrit− yi(α) 6 0] is the indicator function, which equals 1 if ycrit− yi(α) 6 0, other-
wise it equals 0. One inconvenience of the MC estimation method is that a large number of
simulations N may be needed for good accuracy of the MC estimation, especially when the
probability of failure to be estimated is small. Therefore, the pointwise evaluation can be very
time-consuming, in particular with a complex structure model.

2.2 Parametric Methods
Parametric methods adopt a log-normal assumption of the capacity A of the structures:

A = Amε (3)

where Am denotes the median capacity of the structure, ε is a log-normal random variable (RV)
with median 1 and a constant logarithmic standard deviation β , which is independent of the
range of the seismic IMs. In this way, the conditional probability of failure is calculated by

Pf (α) = Φ(
lnα− lnAm

β
) (4)



where Φ(·) is the cumulative distribution function of the standard normal distribution. One can
also distinguish the aleatory uncertainty βR from the epistemic uncertainty βU . In this way, the
total uncertainty is computed by

β
2 = β

2
R +β

2
U (5)

The epistemic uncertainty βU defines a family of confidence intervals of the fragility curves.
The γ (∈ [0,1]) non-exceedance confidence interval is calculated by

P̃f (α,γ) = Φ(
lnα− lnAm +βU Φ

−1(γ)

βR
) (6)

Parameters Am and β can be determined with linear regression or maximum likelihood estima-
tion.

Linear Regression The linear regression (LR) method is based on the IM-DM model pro-
posed in [3]:

lny = c lnα + lnb+ ε (7)

where b and c are regression parameters, and the residual ε following the normal distribution
N(0,σ). The parameters b, c and σ can be determined from the LR results of data sets (lnαi,
lnyi); Am, β in Eq. (4) are then computed as Am = c

√
ycrit/b and β = σ/c respectively.

Maximum Likelihood Estimation Different from linear regression, the maximum likelihood
estimation (MLE) models the structural responses with binary Bernoulli variables. For a numer-
ical experiment i, xi = 1 if the failure occurs, otherwise xi = 0. Therefore, the likelihood function
is written [8]

L =
N

∏
i=1

[Pf (αi)]
xi[1−Pf (αi)]

1−xi (8)

The values of Am and β are determined by maximizing the likelihood function, which is equiv-
alent to minimizing − lnL:

[Am,β ] = argmin
Am,β

(− lnL) (9)

3 Artificial Neural Networks
Inspired by biological neural networks in human brains, ANNs have been widely applied as
non-linear regression models since the mid 1980s. The structure of a classic, three-layer, feed-
forward ANN is illustrated in Figure 1. Mathematically, this ANN consists of activation func-
tions (linear and non-linear sigmoid functions ϕ) and a set of weighting parameters w adjusted
to minimize the difference between the ANN predictions ŷ and the targets y:

w∗ = argmin
w

(E(x;w)) (10)

E(x;w) =
1
2

N

∑
i=1

(ŷi(x;w)− yi)2 (11)

where N denotes the total number of ANN training examples, and x is the ANN input vector.
The ANN is trained based on the gradient vector g (the derivative of E(x;w) with respect to the
weights w) computed by the back-propagation algorithm [2]. In order to prevent overfitting, the
available data set is divided into training, validation and testing subsets. Cross-validation and
early stopping can be applied during the ANN training to obtain the optimal weights.



Figure 1: Illustration of a three-layer ANN

As any regression model, there exist uncertainties in the ANN predictions. The delta method
is adopted in this study for the computation of the prediction intervals (PIs), because of its
computational efficiency. Assuming that the ANN training error is normally distributed, this
method relies on the linear Taylor expansion of the ANN model and the estimation of the PIs
of the corresponding linear model [7]. This method does not calculate strictly accurate PIs
(because the Hessian matrix is approximated by the product of the Jacobian matrices.), but it is
fast and gives satisfactory estimations of the PIs in practical applications. Mathematically, the
PIs are computed with ANN training errors and the gradient vector ∂ ŷ/∂w:

σ
2 =

∑
N
i=1(ŷ

i− yi)2

N−Q
(12)

hi =
∂ ŷi

∂w
=

∂ ŷi

∂E(x;w)

∂E(x;w)

∂w
=

1
ŷi− yi

∂E(x;w)

∂w
=

g
ŷi− yi (13)

where Q denotes the dimension of the ANN weighting parameters, g can be calculated by
the back-propagation algorithm. The Jacobian matrix J of the ANN training data is, hence,
constructed as

J =
[
h1 h2 · · · hi · · · hN] (14)

where J is a Q×N matrix, with hi a Q×1 sub-matrix. Consequently, the (1− γ) PIs are calcu-
lated as

ŷ±qγ/2,N−Qσ

√
1+hT (JJT )−1h (15)

where qγ/2,N−Q is the (1−γ/2) quantile of a student distribution with N−Q degrees of freedom
and the upper index T denotes the matrix transpose.

4 Application of ANN to KARISMA Benchmark
4.1 Kashiwazaki-Kariwa FEM Model
In 2007, the Japanese Kashiwazaki-Kariwa NPP was affected by the Niigataken-Chuetsu-Oki
(NCO) earthquake with the magnitude Mw = 6.6 and the epicenter distance 16 km. In this study,
we are interested in the reliability of an electrical cabinet located on the fifth floor of the Unit 7
of the NPP. The FEM simulations are carried out with the Code Aster, a finite element analysis
open-source software developed by EDF group. The finite element model for the Unit 7 consists
of 92 000 degrees of freedom with 10 700 nodes and 15 600 elements, including bar, beam, and
different shell elements. The constitutive law of the materials is considered as linear. The NPP



model is embedded 23 meters in the soil (Figure 2), which is accounted for in the soil-structure
interaction (SSI) analysis.
Given the scenario of the NCO earthquake, 100 triples of 3D synthetic ground motions are
generated at the bedrock and used for the uncertainty propagation. In order to obtain enough
failure counts for the fragility analysis, the synthetic seismic motions at the bedrock are scaled
with a factor of three. The seismic signals are then reconvoluted onto the free surface using a 1D
column of soil. The degradation of the soil during the earthquake is considered by the equivalent
linear method [11] based on the 1D column. 100 triples of ground motions and 100 degraded
soil profiles are thus obtained from the equivalent linear method results. The impedances of the

Figure 2: Kashiwazaki-Kariwa nuclear power plant (left) [5] and numerical model of Unit 7 (right)

soil and the seismic forces should have been computed for each soil profiles. However, the high
complexity of the embedded foundation makes it hard to achieve: it takes 24 hours to compute
the impedances and the seismic forces for one soil profile. A compromise is made between the
computational cost and the accuracy. The 3D seismic signals at the bedrock are regrouped into
4 classes according to their PGA values: [0, 0.5g), [0.5g, 1.0g), [1.0g, 1.5g), [1.5g, +∞). The
degraded soil profiles are averaged within each class, and 4 soil profiles are obtained to represent
four different degradation levels. The SSI analyses are performed with the 100 ground motions
on the free surface, and the impedances and seismic forces calculated from the 4 soil profiles.
The anchorage failure of the electrical cabinet is considered in this study. The capacity is given
by the spectral acceleration around 4Hz, the natural frequency of the cabinet. The maximum
value of the floor spectral accelerations in horizontal directions is defined as the DM y.

y = max
i=X ,Y

∫ 4.5

3.5
Se

a,i( f )d f (16)

where Se
a,i denotes the spectral acceleration of the electrical equipment in the i direction (i can

be direction X or Y ).

4.2 Selection of Relevant IMs
After the 100 damage measures have been obtained from FEM simulations, these results, com-
bined with the IMs of the ground motions on the free surface, are available for the construction
and the training of the ANN metamodel. In this study, seismic IMs are used as inputs of the
metamodel. Before the training of the ANN, it is important to select the IMs that are the most
relevant to the structural damage measure. This step, named feature selection, is crucial in the
metamodel construction phase, because the redundant information carried by the IMs reduces
the accuracy of the ANN model [2]. In addition, a large input dimension increases the number of
the ANN weights to be determined, which requires more training cases to avoid the overfitting
of the network. Based on experience, 8 preliminary IMs (Table 1) are chosen as candidates for



the feature selection. The geometric means of IMs in horizontal directions are used as scalar IMs
for 3D ground motions. The intensity measures are assumed to follow log-normal distributions.

Table 1: Definitions of classic seismic intensity measures
Intensity Measure Definition Comment

PGA max |a(t)| a(t): seismic acceleration
PGV max |v(t)| v(t): seismic velocity
PGD max |u(t)| u(t): seismic displacement

PSa( f0) Spectral acceleration (damping 5%) f0=4Hz: natural frequency
ASA

∫ 4.5
3.5 PSa( f )d f f : frequency

Tp argmaxT PSa(
1
T ) T = 1/ f

CAV
∫ tmax

0 |a(t)|dt tmax: total seismic duration
IA

π

2g
∫ tmax

0 a(t)2dt g = 9.81m/s2

A filter approach for the feature selection is applied in this study, with a forward selection algo-
rithm driven by the semi-partial correlation coefficients (SPCCs). As all the IMs are correlated,
SPCC is used as a relevance measure to eliminate the redundant information. For this purpose,
as shown in Figure 3, the non-selected IMs (X2) are projected into the orthogonal space of the
selected ones (X1). The SPCC calculates, in fact, the cosine value of the angle between the
projection and the DM. The forward selection is executed in the log-log space to benefit from
the properties of the normal distributions. The orthogonal projections can be easily realized by
means of Cholesky decomposition. The forward selection algorithm adopted here is as follows:

Figure 3: SPCC: cos(θ) Figure 4: Results of forward selection

1. Define the input and the output of the algorithm: they are respectively the feature set
S0 = {X1, · · · ,X8} (8 IMs) and the ordered feature set S∗, and initialize the output set S∗0 = /0.

2. Begin the iteration i (i starts from 0): for each feature X j in Si, compute the relevance
measure SPCC between X j and the Output Y , conditional to S∗i , and select the feature with the
largest SPCC value:

j∗ = argmax
j

SPCC(X j,Y |S∗i ) (17)

RSP
i = SPCC(X j∗,Y |S∗i ) (18)

As S∗0 = /0 initially, for i = 0, SPCC is actually the correlation coefficient.
3. Subtract the selected X j∗ from the feature set: Si	X j∗ → Si+1, and add X j∗ into the output

set: S∗i ⊕X j∗ → S∗i+1.



4. Set i = i+1 and return to Step 2 until all the IMs are selected in S∗.
From the forward selection result (Figure 4), ASA and IA are selected as the relevant features
because the RSP for the other IMs are less than 0.05, so that they can be regarded as non-
influential if ASA and IA have already been considered.

4.3 ANN Training
The ANN is trained with the selected seismic intensity measures, i.e. ASA and IA. 100 input-
output data sets obtained from the FEM simulation results are used. Cross-validation and early
stopping are applied in order to prevent overfitting. The 100 data sets are divided into two
groups: 80 data sets for the 4-fold cross-validation and 20 data sets for testing. The 80 data sets

Figure 5: ANN training results

are evenly divided into 4 folds, with 20 in each fold. When the cross-validation is executed, one
fold is chosen as the validation set, and the other three folds are used to train the ANN. The
training is stopped when the validation error reaches its minimum. This procedure is repeated 4
times to cover all the 4 folds as the validation set. The ANN is trained in log-log space. The ANN
with the smallest 4-fold cross-validation error is chosen for the final metamodel. The number
of neurons in the hidden layer used in this study is 4. The results of the ANN training, as well
as the point clouds of the ANN outputs ŷ of the 20 test data are shown in Figure 5 and Figure 6.
The prediction intervals are computed with the delta method described in Section 3. The point
clouds are plotted for ASA, which is the most relevant IM in this study. From Figure 5, one can
conclude that the training results are satisfactory. Most of the results in the ‘prediction-target’
space are located in the neighborhood of the diagonal line (dashed line). The ANN prediction
results for the 20 test data sets in Figure 6 show that the global prediction quality is satisfactory:
the ANN predictions remain globally coherent with the FEM results. In fact, with a regression
model like ANN, it is somehow not possible to obtain the exact prediction results as the targets.
In addition, one phenomenon to emphasize is that the variability, more precisely, the dispersion



Figure 6: ANN test point cloud (left) and associated prediction intervals (right)

of the ANN predictions (blue points) is reduced compared to the target results (red points). The
reduction of the variability on the ANN predictions will reduce the uncertainty β of the fragility
curve. Therefore, the uncertainty of the ANN predictions, should be taken into account to obtain
a correct β , in particular for the fragility curves determined with ASA.

4.4 Computation of Fragility Curves with ANN
After being trained, the ANN can be used to carried out fast-running simulations. For this goal,
a large number of seismic indicators have to be generated to represent the seismic motions.
IMs are assumed to follow log-normal distributions according to seismological models such as
ground motion prediction equations (GMPE). With statistical results from the GMPE, seismic
IMs can be generated directly as the inputs of the ANN. One advantage of using the IMs as the
inputs is that no synthetic seismic accelerations are in need with this approach.
In this study, the following statistical properties of the log-normal distributions of ASA and IA
are obtained from the 100 groups of seismic signals on the free surface (Table 2). As ASA is
the most relevant IM, the fragility curves in this study are plotted with ASA.

Table 2: Statistics of ASA and IA on the free surface
IM Median Logarithmic standard deviation Correlation coefficient (ASA-IA)

ASA [g] 2.28 0.417
0.846

IA [m/s] 13.13 0.842

With the large number of simulation results provided by the ANN, both parametric and
non-parametric methods can be applied for the computation of fragility curves. This also
allows confirming the validity of the log-normal assumption in fragility analysis. Moreover, it
is important to consider the ANN prediction uncertainty, because the regression of the ANN
metamodel reduces the variability of the DMs, and thus β of the fragility curves. The residual
uncertainty of the ANN βResi should be integrated additionally in order to obtain a correct β .
In fact, there exist two sources of this residual uncertainty βResi. From the fact that the selected
features can not totally represent the variability of ground motions, there exist some missing
variables characterizing the earthquake motions, which are not identified and not used as the
inputs of the ANN. On the other hand, it is also because the ANN cannot represent exactly the
real model. Both sources are considered as epistemic uncertainties in this study.

Log-normal Based Fragility Analysis 10 000 ASA-IA samples are generated with the statis-
tics in Table 2 for the computation of the fragility curves with log-normal assumption. The gen-



eration of ASA-IA can be realized by applying the Cholesky decomposition on the covariance
matrix. 10 000 ANN simulations are run with these samples, which provides the 2D response
surface in Figure 7. Based on the 10 000 IMs-DM, the fragility curves are computed with LR
and MLE. A constant residual uncertainty is assumed for the log-normal based methods, which
is coherent with the constant β in the log-normal assumption. The βResi is computed as follows:

lny = ln ŷ+ εResi = lnb+ c lnα + ε + εResi (19)

where εResi is the ANN regression error. The second equality in Eq. (19) is due to the
application of Eq. (7) to ŷ. Both ε and εResi follow normal distributions N(0,σ) and N(0,σResi),
respectively. Therefore, βResi is defined as σResi/c and βR is calculated from the data (α, ŷ)

with parametric methods. The total β is computed by β =
√

β 2
R +β 2

Resi. Confidence intervals
of fragility curves are computed with Eq. (6), replacing βU by βResi.

Non-parametric Fragility Analysis The pointwise fragility analysis can be carried out by
conditional sampling for a given ASA. In this study, at every given ASA, 10 000 IA values
are generated. In the pointwise method, the residual uncertainty depends on the seismic inten-
sity level. The integration of the residual uncertainty in the pointwise fragility analysis can be
realized with a second MC level: the ANN residual can be sampled given the results of the
delta method (Eq. (15)), and the residual is added to the ANN prediction ŷ for counting the
failure number. Confidence intervals are computed with the PI intervals of the ANN. The final

Figure 7: ANN response surface Figure 8: Fragility curves with ANN

fragility curves are plotted in Figure 8. Fragility curves are computed with three methods: lin-
ear regression method (blue curves), maximum likelihood estimation (greed curves) and direct
Monte Carlo estimation (red curves). The curves drawn with solid lines (‘composite curves’)
are the mean fragility curves that consider both the uncertainties from IMs and the residual un-
certainty. Recall that in our study only the earthquake randomness is modeled. The dashed lines
are families of the confidence intervals computed with three methods. In this study, the residual
uncertainty, considered as the epistemic uncertainty, is the source of the families of confidence
intervals. Regarding the composite fragility curves, although there exist some differences be-
tween the log-normal based fragility curves and the MC estimation, the log-normal assumption
performs well in this study. In addition, at high ASA level, the confidence intervals computed
with pointwise estimation are larger than the ones with the log-normal based methods. This is
due to the fact that a non-constant epistemic uncertainty has been applied for the MC curves:
it increases with the ASA level, while a constant epistemic uncertainty has been used for the
methods with the log-normal assumption.



5 Conclusion
The methodology of the application of ANN metamodels to the computation of fragility curves
has been explored in this study. The ANN metamodel is utilized to build a statistical relation
between the seismic intensity measures and the structural response. Once built and trained, the
ANN metamodel allows carrying out a large number of simulations for both parametric and
non-parametric fragility analyses, at negligible computational cost. Based on FEM simulation
results, this methodology consists of three parts:

1. Selection of the most relevant seismic intensity measure features and training of the ANN.
2. Seismic intensity sampling and simulation with ANN.
3. Computation of fragility curves and their confidence intervals, with both parametric (log-

normal assumption) and non-parametric methods.
This methodology has been applied to an industrial case study, i.e. Kashiwazaki-Kariwa nuclear
power plant in Japan to evaluate the robustness of an electrical cabinet. The mean fragility curve
and a family of confidence intervals have been computed.
Future work will address the adaptive learning of the ANN, which can improve the quality of
the training data set, while requiring less FEM simulations to obtain an ANN with accuracy.
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