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Abstract— In this paper, we present a new direct om-
nidirectional visual gyroscope for mobile robotic platforms.
The gyroscope estimates the 3D orientation of a camera-robot
by comparing the current spherical image with that acquired
at a reference pose. By transforming pixel intensities into a
Mixture of Photometric Potentials, we introduce a novel image-
similarity measure which can be seamlessly integrated into a
classical nonlinear least-squares optimization scheme, offering
an extended convergence domain. Our method provides accu-
rate and robust attitude estimates, and it is easy-to-use since it
involves a single tuning parameter, the width of the photometric
potentials (Gaussian functions, in this work) controlling the
power of attraction of each pixel. The visual gyroscope has been
successfully tested on spherical image sequences generated by
a twin-fisheye camera mounted on the end-effector of a robot
arm and on a fixed-wing UAV.

I. INTRODUCTION

A. Motivation and related work
Cameras provide informative clues about the shape and

appearance of the surrounding environment, and they are
pervasively used today in mobile robotics, because of their
small form factor, reduced weight, and low cost. A classical
problem in robotics is the estimation of the orientation of
a camera between a reference and a query image. Visual
compasses estimate the yaw angle of the camera-robot, visual
gyroscopes provide the full attitude (roll, pitch and yaw
angles), while visual odometers exploit the entire sequence
of images between the reference and query, for estimating
the robot’s pose (position and attitude) [1].

With the advent of omnidirectional cameras, the field of
view and workspace of an autonomous robot have been
enlarged. Omnidirectional images can be obtained by com-
bining a catadioptric system [2] or a fisheye lens [3] with a
perspective camera. In particular, the mirrors and lenses can
be arranged so that the full sphere around a single viewpoint
is covered by a unique matrix of photosensitive sensors [4].
Spherical images can be also obtained with motorized cam-
eras (see [5] for a survey), or by mounting a set of identical
perspective cameras on the surface of a regular polygon,
as in the Immersive Media 2360 Dodeca and in the Point
Grey Ladybug 5 cameras, or on the surface of a sphere, as
in the Panono 360◦ camera. Some work has been recently
done on new spherical representations for image processing
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(“Spherepix” data structure) [6] and attitude estimation [7].
Technology companies have also shown a growing interest in
the market of consumer omnidirectional cameras (see, e.g.
the 360◦ video stabilization method in [8] or the upright
adjustment algorithm for spherical panoramas in [9]), which
will likely entail a resurgence of interest in robot-vision
applications.

The design of omnidirectional visual gyroscopes is a
well-entrenched subject in mobile robotics. The methods
in [10]–[13] all rely on image features (e.g. the image pro-
jection of 3D parallel lines, vanishing points, SIFT features)
for camera attitude estimation. However, feature extraction,
matching and tracking are nontrivial image-processing steps
which are sensitive to noise and illumination changes. An-
other limitation of feature-based methods is that they gen-
erally rely on strong assumptions about the structure of the
3D environment: for example, the methods in [11], [12] only
work in man-made environments where parallel lines are
abundant (“Atlanta world” assumption).

To overcome these issues, the pixel intensity of the overall
image, interpreted as a 2D signal, can be exploited for
estimating the attitude of a camera-robot. In fact, pro-
cessing redundant information leads to superior accuracy
and robustness. This approach is referred to as direct or
global, and two families of strategies have emerged in the
literature: “appearance-based” methods in the standard image
domain [14], and methods based on harmonic analysis in the
spatial frequency domain. By interpreting the rows of the
panoramic cylinder as unidimensional signals, the authors
in [15] computed the Fourier components of the image and
used them for visual navigation. Other researchers have
exploited the Fourier transform defined on the two-sphere
and on the special Euclidean/orthogonal groups for 2D [16]
and 3D rigid-motion estimation [17]. Along these lines,
in [18] we proposed a weakly-calibrated omnidirectional
visual compass based on the phase correlation method in
the 2D Fourier domain, and we showed that it compares
favorably with [12] and a brute-force photometric approach.

It is finally worth mentioning here the recent emergence
of hybrid solutions [19], [20] which inherit some of the
advantages of the feature-based and direct methods.

B. Original contributions, organization and notation

In this paper, we propose a direct omnidirectional visual
gyroscope which relies on a novel representation of spherical
image intensities based on the Mixture of Photometric Poten-
tials (MPP). This representation is founded on [21], where
2D photometric Gaussian mixtures were used to extend the
convergence domain of a dense visual-servoing algorithm.
Thanks to the simple analytical form of an MPP, an image-



similarity measure built upon it can be minimized via a
classical Gauss-Newton or Levenberg-Marquardt optimiza-
tion algorithm (in conjunction with an M-estimator, for in-
creased robustness). The proposed visual gyroscope has some
attractive properties. It is accurate, even with low-resolution
spherical images, it has a large convergence domain, and it
is easy to tune. In fact, for a fixed image resolution, the
user has to select a single positive parameter controlling the
width of the photometric potentials (Gaussian functions in
this paper), and thus the “degree of influence” of each pixel
on its neighbors. Unlike the majority of existing methods,
our visual gyroscope works in unstructured environments,
and it requires no image processing (e.g. spatial gradients
are not needed). Finally, extensive real-world experiments
suggest that it is robust to illumination changes and partial
image occlusions.

The rest of this paper is organized as follows. In Sect. II,
we present the mathematical model of a spherical camera
used in this work. In Sect. III, we show how to represent
spherical image intensities as a mixture of photometric poten-
tials. In Sect. IV, we introduce a cost function based on the
MPP representation and describe the visual gyroscope. The
results of real-world experiments conducted with a Ricoh
Theta S camera mounted on the end-effector of an industrial
robot and on a fixed-wing UAV are discussed in Sect. V.
Finally, in Sect. VI, the main contributions of the paper are
summarized and some possible directions for future research
are outlined.

Notation: Throughout this work, we use the symbol Rn

to denote the n-dimensional Euclidean space, R
m×n the

space of m × n matrices, In×n the n × n identity matrix,
and SO(3), SE(3) the 3D special orthogonal and special
Euclidean groups, respectively. Given a square nonsingular
matrix A, we use A−1 to denote its inverse and det(A) its
determinant. Finally, ‖x‖ indicates the Euclidean norm of
x ∈ R

n, [w]× the skew-symmetric matrix associated with
vector w ∈ R

3, and � the equality by definition. �
II. MODELING OF THE SPHERICAL CAMERA

It is well-known that some classes of fisheye cameras
are approximately equivalent to a central catadioptric sys-
tem [22]. They can then be modeled by using the unified
central projection model, which involves two successive pro-
jections [23]: first, on a unit sphere and, then, perspectively,
on the image plane.

In this paper, we will focus on spherical cameras including
two identical (“twin”) fisheye lenses facing in opposite
directions, but whose axes are aligned (as in the Ricoh
Theta and Samsung Gear 360 cameras, and as in [24]).
Two sets of intrinsic parameters are then considered, one for
each fisheye camera, Pcj =

{
αuj , αvj , u0j , v0j , ξj

}
, j ∈

{1, 2}, where αuj and αvj are the focal lengths in pixels in
the horizontal and vertical direction, respectively, (u0j , v0j )
are the coordinates of the principal point in pixels, and ξj
is the distance between the unit sphere’s first projection
center and the perspective second projection center of fisheye
camera j. Finally, extrinsic parameters are introduced to
describe the 3D rotation between the reference frames Fc1

and Fc2 of the two fisheye cameras (see Fig. 1). By using
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Fig. 1. A twin-fisheye camera, the Ricoh Theta: (a) Schematic representa-
tion (top view): To guarantee the single-viewpoint property, we assume that
the translation vector between the frames Fc1 and Fc2 is zero (a non-zero
baseline is shown in the figure for illustration purposes only), and that the
camera frame Fc coincides with Fc1 ; (b) Top view of the actual camera
without housing.

an axis-angle representation with unit vector w1,2 ∈ R
3 and

angle θ1,2 of the rotation, we collect the extrinsic parameters
as the components of the axis-angle vector r1,2 = θ1,2 w1,2.
Note that thanks to the Rodrigues’ formula, the rotation
matrix c2Rc1 ∈ SO(3) between Fc1 and Fc2 , can be easily
computed from w1,2 and θ1,2.

The ten intrinsic and three extrinsic parameters of the
spherical camera can be simultaneously estimated from cor-
ner points extracted from images of a known calibration rig
(see Sect. V-A). Once the calibration parameters have been
determined, assuming that the reference frame Fc of the cam-
era coincides with Fc1 , the twin-fisheye to spherical warping
is straightforward since any point cXS = [cXS ,c YS ,c ZS ]T

lying on the unit sphere S2 can be expressed in Fc2 via
c2Rc1 , and projected, with parameters Pcj , j ∈ {1, 2}, into
that part of the image which corresponds to the fisheye lens
in which it is visible. Note that since the spherical projection
of a 3D point cX = [cX, cY , cZ]T in Fc onto a point
cXS belonging to the spherical image, can be expressed as
cXS = cX/‖cX‖, without loss of generality, we can restrict
ourselves to a sphere with unit radius. In particular, we can
assume that cXS lies directly on the surface of the sphere
of the unified central projection model [23].

In this work, a spherical image is represented as a
uniformly-spaced set of points (pixels) on the surface of
a sphere (i.e. in a geodesic sense). For the discrete set of
points cXSi, i ∈ {1, 2, . . . , P}, to be uniformly spaced on
the surface of the sphere, we start with a convex regular
icosahedron (a polyhedron with 20 equilateral triangle faces
and 12 vertices, see Fig. 2(a)). Its faces undergo a number
of subdivisions N which is proportional to the desired
resolution of the spherical image [25]. Note that the vertices
of a convex regular icosahedron are evenly distributed over
a unit sphere circumscribing the polyhedron, and that this
property is still valid for an icosahedron whose faces have
been recursively split (see Figs. 2(b)-2(d)). For N subdivision
levels, the corresponding polyhedron has P = 1

2 (20×4N)+2
vertices and 20× 4N faces.
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Fig. 2. The recursive subdivision of an icosahedron provides a sphere
of uniform triangulation (image adapted from Kooima et al., IEEE Trans.
Vis. Comput. Gr., Sep. 2009). (a) Icosahedron; (b), (c) and (d), icosahedron
subdivided one, two, and three times, respectively. At each subdivision, each
face is split into four equilateral triangles, followed by a re-projection of
the vertices onto the unit sphere. In (b), the generic vertex cXSi is shown.

III. MIXTURE OF PHOTOMETRIC POTENTIALS (MPP)

Our goal in this paper, is to design a visual gyroscope
which estimates the orientation between a spherical image IS
acquired by the camera at the current time t, and a reference
spherical image I∗S . The relative orientation between IS and
I∗S will be represented by the axis-angle vector r = θw,
where ‖w‖ = 1. Since r minimizes the difference between
IS(r) and I∗S , we can write the classical Sum-of-Squared-
Differences (SSD) cost function:

CSSD(r) = ‖IS(r) − I∗
S‖, (1)

where the pixel intensities of the grayscale images IS(r) and
I∗S at points cXSi, i ∈ {1, 2, . . . , P}, have been collected
as the components of the vectors IS(r), I∗

S ∈ R
P , respec-

tively. While intuitive and easy to relate to the rotational
degrees of freedom (DOFs) of the camera (in the case
of hemispherical images, cf. [26]), CSSD(r) is known to
have, in practice, a narrow convergence domain associated
with its minima. This is a major drawback which justifies
the introduction of a new spherical-image representation.
We propose here to adapt the notion of 2D photometric
Gaussian mixture (originally introduced in [21] for visual
servo control with a perspective camera), to enlarge the basin
of convergence of our visual gyroscope. In this way, near-full
coverage of SO(3) will be achieved (see Sect. V).

Recall that the mixture density function G(x) of m mul-
tivariate heteroscedastic Gaussian probability density func-
tions (pdfs) is defined as [27, Ch. 3]:

G(x) =
m∑

i=1

wi φ(x; μi, Σi), (2)

where

φ(x; μi, Σi) =

1√
(2π)n det(Σi)

exp(−1

2
(x− μi)

T Σ−1
i (x− μi)),

(3)

denotes the Gaussian pdf of a random vector x ∈ R
n with

mean vector μi ∈ R
n and positive-definite covariance matrix

Σi ∈ R
n×n, i ∈ {1, . . . ,m}, and,

m∑
i=1

wi = 1, wi ≥ 0, i ∈ {1, . . . ,m}. (4)

Owing to this definition, G(x) in (2) is the convex combina-
tion of m Gaussian pdfs with mixing weights w1, . . . , wm.

Inspired by (2) and extending the representation in [21]
to spherical images (n = 3), we define the Mixture of
Photometric Potentials (MPP) at reference point cXSg as
(see Fig. 3):

GS(cXSg, IS) =

P∑
i=1

IS(cXSi)
1

λ3
g (2π)

3/2
exp
(− (DcXS)2

2λ2
g

)
,

(5)

where DcXS = arccos
(c
XT

Sg
cXSi

)
is the geodesic dis-

tance between cXSg and cXSi on the unit sphere S2 and
IS(cXSi) ≥ 0 denotes the normalized image intensity at
point cXSi such that

∑P
i=1 IS(cXSi) = 1 (cf. equation (4)).

The expansion parameter λg > 0 can be used to adjust the
width of the Gaussians appearing in (5).

Before proceeding with the design of a visual gyroscope
based on the MPP representation (see Sect. IV), it is worth
pointing out here two important differences between equa-
tion (2) and (5):

• In (5), we set μi =
cXSi and Σi = λ2

g I3×3, ∀ i, i.e. we
restricted ourselves to a homoscedastic isotropic mix-
ture [27, Sect. 3.3]. The squared Mahalanobis distance
(x − μi)

T Σ−1
i (x − μi) appearing in (3) reduces to a

squared weighted geodesic distance in our case.
• While intuition is borrowed from probability and statis-

tics, there is nothing stochastic about the spherical-
image representation in (5). In fact, we do not exploit
the fact that GS(cXSg, IS) might represent a pdf.

Remark 1 (Generality of the MPP representation):
Note that (5) is an instance of a more general spherical-
image representation. In fact, the Gaussians appearing in (5)
are used to control the power of attraction (or radius of
influence) of each pixel cXSg in the image, and they can
be replaced by other (infinitely-supported) kernel functions
used in non-parametric statistics [28]. �

S2

cXSi

IS(cXSi)

cXSg

GS(cXSg, IS)

1

Fig. 3. Graphical illustration of the MPP (5) at point cXSg . Note that
the figure only provides an intuitive description of the MPP representation,
since the Gaussian functions in (5) live in a 4D space and they cannot be
visualized.



IV. VISUAL GYROSCOPE BASED ON THE
MPP REPRESENTATION

Let cRc∗ ∈ SO(3) represent the unknown rotation between
the reference image I∗S and the current image IS that our
visual gyroscope intends to estimate. By leveraging (5), we
can introduce the following MPP at point cXSg:

GS(cXSg, IS , cRc∗) �
P∑

i=1

HS(cXSg,
cXSi, IS , cRc∗)

=
P∑

i=1

IS(cXSi)
1

λ3
g (2π)

3/2
exp(− (DcXS)2

2λ2
g

),

where cXSg = cRc∗c∗XSg , cXSi = cRc∗c∗XSi and
‖c∗XSg‖ = ‖c∗XSi‖ = 1. We can then replace the SSD
cost function in (1) with,

CMPP(r) � ‖CMPP(r)‖ = ‖GS(IS , cRc∗(r)) − GS(I∗S)‖,
(6)

where GS(IS , cRc∗(r)), GS(I∗S) ∈ R
P respectively stack

the values of GS(cXSg, IS , cRc∗(r)) and GS(I∗S) at the P
pixels of the spherical images, and cRc∗(r) indicates that
the rotation matrix has been computed from the axis-angle
vector r. An estimate r̂ of r can be obtained by numerically
minimizing (6) with the Gauss-Newton algorithm. If we ini-
tialize this iterative algorithm with r(0) (step 0), to compute
r(k+1) from r(k) we need to find c(k+1)

Rc∗ by composing
the rotation matrices determined from r(k) and the increment
Δr(k), i.e.

c(k+1)

Rc∗ = c(k+1)

Rc(k)(Δr(k)) c(k)

Rc∗(r(k)) , (7)

with k ∈ {0, 1, . . .}. On the other hand, Δr(k) can be
determined from the first-order Taylor expansion of CMPP(r)
about r̂,

CMPP( r̂ ) � CMPP(r
(k)) +

∂ CMPP(r
(k))

∂ r(k)
Δr(k). (8)

In fact, by setting (8) to zero, we have,

Δr(k) = − γ

ñ
∂ CMPP(r

(k))

∂ r(k)

ô†
CMPP(r

(k)), (9)

where [ · ]† denotes the (Moore-Penrose) left pseudo-inverse
and γ is a positive gain. Thus, equation (7) allows one to
update the estimated orientation of the camera at each step
k until convergence. Note that since GS(I∗S) is constant, the
P × 3 Jacobian matrix in (9) is,

∂ CMPP(r
(k))

∂ r(k)
=

∂ GS(IS , c
(k)

Rc∗)
∂ r(k)

. (10)

If we apply the chain rule to (10) and combine like factors,
we obtain:

∂ CMPP(r
(k))

∂ r(k)
=

⎡⎢⎢⎢⎢⎢⎣
...(

P∑
i=1

∂ HS
∂ c(k)XSg

)
∂ c(k)

XSg

∂ r(k)

...

⎤⎥⎥⎥⎥⎥⎦. (11)

It now remains to compute the two partial derivatives ap-
pearing on the right-hand side of (11). The partial derivative
of HS with respect to c(k)

XSg , a 1× 3 vector, is given by:

∂ HS
∂ c(k)XSg

=
IS(c

(k)

XSi)

λ5
g (2π)

3/2
Dc(k)

XS exp(− (Dc(k)

XS)2

2λ2
g

)

·
c(k)

XT
Si»

1− (c(k)XT
Sg

c(k)XSi)2
,

where c(k)

XSg = c(k)

Rc∗c∗XSg , c(k)

XSi =
c(k)

Rc∗c∗XSi.
The partial derivative of c(k)

XSg with respect to r(k), a
3× 3 matrix, can be obtained from the well-known formula
relating the velocity of a 3D point to the spatial velocity of
a camera, considering zero translational speed,

c(k)

ẊSg = −ωc × c(k)

XSg =
[
c(k)

XSg

]
× ωc ,

where ωc ∈ R
3 denotes the angular velocity of the camera

frame Fc, which corresponds to the increment Δr(k) in the
notation of this section. In conclusion, we have that:

∂ c(k)

XSg

∂ r(k)
=
[
c(k)

XSg

]
×.

Remark 2 (Spherical-image processing): The proposed
MPP representation is computationally inexpensive, since it
does not involve any image-processing step. For example,
differently from the existing direct methods, one need not to
compute the spatial gradient of the spherical image (which
is known to be a challenging task [6]). �

Remark 3 (Tuning of the visual gyroscope): The choice
of the expansion parameter λg , the only tuning parameter
of the gyroscope (for N fixed), depends on the appearance
of the 3D environment where the camera-robot moves.
While there do not exist general guidelines, it has been
experimentally observed that for N ≥ 3, the bigger λg ,
the larger the convergence domain of the Gauss-Newton
algorithm (see Sect. V-B for more details). �

Remark 4 (Levenberg-Marquardt algorithm):
To improve the convergence performance, one might
replace the Gauss-Newton algorithm with the Levenberg-
Marquardt optimization scheme. In this case, the update
law (9) becomes:

Δr(k) = − γ
(
JTJ + ν diag(JTJ)

)−1
JTCMPP(r

(k)),

where J � ∂ CMPP(r
(k))/∂ r(k), diag(JTJ) is the diagonal

matrix given by the diagonal entries of JTJ and ν > 0 is a
damping factor. A large value of ν (e.g. ν = 1) yields the
gradient-descent method, while a small value (e.g. ν = 10−3)
results essentially in the Gauss-Newton update. �

V. EXPERIMENTAL VALIDATION

A. Calibration of the spherical camera
The proposed visual gyroscope has been experimentally

validated using the Ricoh Theta S camera. Spherical im-
ages are created by two fisheye lenses mounted back to
back, collecting light at a view angle that far exceeds 180◦

(cf. Fig. 1). The light is allocated to the two image sensors
using two 90◦ prisms. In our experiments, we considered
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Fig. 4. Calibration of the Ricoh Theta camera: (a) The calibration rig
consists of six checkerboard patterns glued inside two half cubes; (b) Dual-
fisheye image of the calibration rig. The camera is held by a robot arm.

1280 pixels × 720 pixels images in the dual-fisheye format1
(i.e. two hemispheric images, see Fig. 4(b)). We applied
a mask to these images in order to select those areas
that change over time and that are thus informative for
our gyroscope. For the calibration, we modeled the Ricoh
Theta as a stereo system with two fisheye cameras having
the same center of projection. As shown in Fig. 4(a),
our calibration rig consists of six checkerboard patterns
glued inside two half cubes. A variant of the calibration
algorithm proposed in [29] was considered: we set the
translation parameters between the two fisheye cameras to
zero and estimated the rotation parameters only. This yielded
Pc1 = {577.7741, 576.1130, 958.6632, 316.8989, 1.9878},
Pc2 = {567.8953, 565.1663, 321.5507, 319.4833, 1.9392},
and r1,2 = [−0.0082, 3.1319,−0.0108]T rad.

B. Industrial robot

In order to have pure rotations about the optical center,
the camera was mounted on the end-effector of a 6 DOF
Stäubli TX60 robot located in a 10.05 m × 7.03 m × 2.70 m
room with neon lighting (see Fig. 5). We used the Tsai
& Lenz’s algorithm in the ViSP-library2 implementation,
to extrinsically calibrate the camera with respect to the
robot end-effector, i.e. to compute eMc ∈ SE(3), the rigid
transformation between the camera frame Fc and the end-
effector frame Fe. The calibration rig was observed by the
camera from six different poses (see Fig. 4(b)), leading to:

eMc =

⎡⎢⎢⎣
−0.0136 0.9997 0.0222 − 0.0401

0.0142 − 0.0220 0.9996 0.0000

0.9998 0.0139 − 0.0139 0.2372

0 0 0 1

⎤⎥⎥⎦,
where the translation is expressed in meters. In our tests, we
considered 5 Collection Points (CPs) located on the same
plane parallel to the ground (the camera center being 60 cm
above the base of the Stäubli robot). At each CP, the camera
was rotated of 360◦ about the vertical axis, with a step size
of 2.5◦, yielding 144 images. The distance between CP0
and CP1, CP2, CP3 and CP4 is 40, 120, 240 and 400 cm,
respectively. The encoders of the Stäubli robot provided us
with an accurate ground truth for the validation of our visual
gyroscope.

1The full image dataset, called SVMIS, is available at: http://mis.
u-picardie.fr/˜g-caron/pub/data/SVMIS_dataset.zip

2https://visp.inria.fr

1) Yaw-angle estimation (1 DOF): To study the shape
of the cost function CMPP and to easily evaluate the impact
of the expansion parameter λg and of the subdivision level
N , on the magnitude of the angular estimation error, we
rotated the camera about a single axis, the (vertical) x-axis
of Fc (see Fig. 5). In our first series of tests, we focused
on CP2 and ran the Levenberg-Marquardt algorithm (with
γ = 1) in conjunction with a redescending M-estimator
with Cauchy’s score function [30, Sect. 4.8] to minimize
CMPP(r) (as stopping criterion, we set a 10−6 threshold on
the stability of residuals). For the sake of uniformity, CMPP(r)
was normalized between 0 and 1 (henceforth denoted by
CMPP(r)): in fact, max(CMPP(r)) varied over a large range
(up to three orders of magnitude). Fig. 6 shows the width
of the convergence domain of CMPP(r) for different values
of N and λg . In particular, Fig. 6(a) reports the MPP cost
function for N = 2 and λg = 0.01 without the M-estimator,
Fig. 6(b) for N = 3 and λg = 0.4 and Fig. 6(c) for
N = 5 and λg = 0.3 with M-estimator. The width of the
convergence domain is 115◦, 312.5◦ and 360◦, respectively
(see the vertical dashed lines). Note that for λg = 0.01,
the MPP cost function essentially reduces to the SSD cost
function in (1). More insight into the shape of CMPP(r) is
provided by Figs. 6(d)-6(e) which report the width of the
convergence domain against λg for N ∈ {2, 3, . . . , 6} (the
values of λg considered are marked with a cross). The values
of CMPP(r) for λg > 1 are not shown in the figures, since
we observed no changes with respect to the case of λg = 1.
Some conclusions can be drawn from Fig. 6:

• The bigger N , the smoother CMPP(r) and the larger the
convergence domain,

• The bigger λg , the larger the convergence domain:
however, the effect vanishes for λg > 0.5 (and N > 2),

• The M-estimator has a “linearizing effect” on CMPP(r)
(the effect is more pronounced for large λg’s). As a
consequence, the convergence radius might increase
(especially for λg ∈ [0.2, 0.4]). However, for small N ,

x
y

z

xy

z

eMc

Fc

Fe

Camera

Fig. 5. The Ricoh Theta mounted on the end-effector of the Stäubli TX60
robot. eMc is the rigid transformation between the camera frame Fc and
the end-effector frame Fe.
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Fig. 6. [1 DOF Stäubli] Normalized cost function CMPP(r) for: (a) N = 2, λg = 0.01, without the M-estimator; (b) N = 3, λg = 0.4 with the
M-estimator; (c) N = 5, λg = 0.3 with the M-estimator (the width of the convergence domain is indicated by the vertical dashed lines). (d), (e) Width
of the convergence domain of CMPP(r) against λg for N ∈ {2, . . . , 6} without and with M-estimator, respectively.

the M-estimator perturbs CMPP(r) as well, which might
result in a loss of estimation accuracy (see the “bumps”
in Fig. 6(a)),

• Under ideal conditions (i.e. no image noise), CMPP(r)
is perfectly symmetrical about the origin.

The estimation accuracy and computational complexity of
our gyroscope are evaluated in Fig. 7. In the experiments,
we set λg = 0.325, γ = 1, and considered two candidate
initial conditions, r(0) ∈ {0, π}, retaining the one that
minimizes CMPP(r). This strategy is simple but effective to
reject outliers, and it noticeably reduces the estimation error.
Fig. 7(a, top) reports the mean and standard deviation of
the magnitude of the angular estimation error, and Fig. 7(a,
bottom) the mean CPU time in seconds for N ∈ {2, 3, 4, 5}
with (“M”) or without M-estimator (we ran the gyroscope
on a MacBook Pro with 2.4 GHz Intel Core i7 processor
and 8 GB RAM). Fig. 7(b) complements Fig. 7(a, top)
by displaying the empirical cumulative distribution function
obtained from the magnitude of the angular estimation error
for N ∈ {2, 3, 4, 5}. The vertical bars in Fig. 7(b) show
the ratio of the elements of the error vector whose value is
smaller than 0.5◦, 1◦, 2◦, 5◦ and 10◦. For instance, if a 5◦-
error is allowed, about 75% of the estimates are acceptable
for N = 3 and about 95% for N = 4. The latter result
is all the more remarkable, since for N = 4 the gyroscope
uses two 37 pixels × 37 pixels grayscale images (one per
fisheye lens). Obviously, the bigger N , the more accurate
the gyroscope, to the detriment of the computation time.

In fact, since P = 1
2 (20× 4N)+ 2 (cf. Sect. II), the runtime

grows exponentially with N . The gyroscope turned out to
be also robust to occasional image occlusions caused by the
motion of the robot arm.

A final study was performed to evaluate the impact of
the translational motion on the estimation accuracy of the
gyroscope. We tuned the Levenberg-Marquardt algorithm
(with M-estimator) as in Fig. 7, and we estimated the angle
between image 71 at CP0 and all the other images in
CP0, CP1, . . . , CP4. Fig. 8 reports the mean and standard
deviation of the magnitude of the angular estimation error
for a growing distance from CP0 and for N ∈ {3, 4, 5}. The
translational motion has a negligible effect on the estimation
error: however, for N = 5 (and higher) the gyroscope ap-
pears to be more sensitive to translations. For N ∈ {3, 4, 5},
the mean estimation error (over the 5 CPs) is 2.95◦, 2.49◦,
1.69◦, respectively.

2) Attitude estimation (3 DOFs): The gyroscope was also
used to estimate the three rotational DOFs of the Ricoh
Theta. To this end, we considered a single collection point,
CP2, where we obtained the maximum number of distinct 3D
orientations of the camera (94 overall), which did not violate
the mechanical constraints of the robot. We set λg = 0.275,
γ = 1, and initialized the Gauss-Newton algorithm (without
M-estimator) with r(0) = 0. Table I reports the statistics
of the estimation error ‖r − r̂‖ over the 94 images for
N ∈ {3, 4, 5}, and the corresponding mean CPU time and
mean number of iterations of the optimization algorithm.
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Fig. 7. [1 DOF Stäubli] (a, top) Mean and standard deviation of the magnitude of the estimation error for N ∈ {2, 3, 4, 5} with (“M”) or without
M-estimator; (a, bottom) mean CPU time for N ∈ {2, 3, 4, 5} (note the logarithmic scale on the vertical axis); (b) Empirical cumulative distribution
function obtained from the magnitude of the angular estimation error for N ∈ {2, 3, 4, 5}.

N 3 4 5

Mean error [deg.] 7.55 4.15 3.69
Stand. dev. of the error [deg.] 3.18 1.77 1.72
Mean CPU time [s] 0.38 3.92 57.16
Mean number of iterations 11.10 7.83 7.66

TABLE I
[3 DOFs Stäubli] Statistics of ‖r− r̂‖, mean CPU time and mean number

of iterations of the gyroscope over the 94 images.

C. Fixed-wing UAV

In a final battery of tests, we mounted the Ricoh Theta
on a Parrot Disco FPV drone and recorded an MP4 video,
included in the SVMIS dataset, at 30 fps (see Fig. 9(b)).
The Disco is a single-propeller, battery-powered UAV with
a wingspan of 1.15 m, a weight of 0.75 kg and a flight
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Fig. 8. [1 DOF Stäubli] Mean and standard deviation of the magnitude of
the estimation error for a growing distance from CP0 and for N ∈ {3, 4, 5}.

autonomy of 45 minutes. We chose a front elevated position
for the camera on the drone, in order to have a view of
the surrounding environment as unobstructed as possible,
and to not overly perturbe its center of mass. The Disco
was remotely controlled over an open field near Amiens,
France. It reached a maximum altitude of 106 m and a
maximum speed over ground of 85.9 km/h. The total flight
time was 6’41” and the total distance traveled 4.2 km (see
Fig. 9(a)). The gyroscope was initialized and parametrized
as in Sect. V-B.2. In the absence of a reliable ground truth
(the output of the Ricoh Theta’s embedded IMU was too
inaccurate for a quantitative study), we decided to perform a
qualitative evaluation of our method. To this end, we chose
the reference image reported in Fig. 9(c) (time 4’41” of the
video sequence): this equirectangular image was generated
from the corresponding dual fisheye and it is displayed at
full resolution for ease of visualization. Fig. 9(d) reports the
current image (time 5’11”) without correction, and Fig. 9(e)
after correction using the attitude of the drone estimated by
the gyroscope for N = 3. The reference and current images
were taken at an altitude of 50.1 m and 58.3 m, respectively,
and they are 108 m apart (as the crow flies). In spite of this,
the gyroscope yielded a satisfactory compensation: in fact,
Fig. 9(e) and Fig. 9(c) have a very similar appearance in
terms of skyline and light-source direction (sun’s position).
A comparable compensation level was observed in 88% of
the frames of the 6’41” sequence, as it is evident in the video
available in the attachment accompanying this paper and at
the address below3. The poor results (12% of the frames) are
attributable to local minima of the MPP cost function.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a direct omnidi-
rectional visual gyroscope which leverages a new and
compact representation of spherical images based on

3http://mis.u-picardie.fr/˜g-caron/pub/data/
SVMIS_video.zip
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Fig. 9. (a) GPS trajectory of the Disco drone (local geodetic frame); (b) The Ricoh Theta onboard the drone; (c) Reference equirectangular image (cf. the
magenta disk in (a)); (d) Current equirectangular image without correction (cf. the cyan disk in (a)); (e) Current equirectangular image after correction
using the attitude of the drone estimated by the visual gyroscope.

the Mixture of Photometric Potentials (MPP). Experimental
evidence obtained with a twin-fisheye camera mounted on
two robotic platforms, indicates that the proposed gyroscope
is accurate, easy to tune and robust to illumination changes.

While a computation time of less than 1 second per image
for N = 3 is promising, our gyroscope is not, at present,
in the realm of real-time applications: however, we are
confident that a machine-specific optimized implementation
will overcome this limitation. We are also looking at adap-
tative tuning schemes of the parameters λg and N (possibly
in conjunction with inertial measurements), and at suitable
monotonic functions which might reshape the MPP cost
function to provide global convergence.
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