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Abstract— In this paper, a quadrotor optimal coverage 
planning approach in damaged area is considered. The 
quadrotor is assumed to visit a set of reachable points 
following the shortest path while avoiding the no-fly 
zones. The problem is solved by using a two-scale 
proposed algorithm. In the first scale, an efficient tool for 
cluttered environments based on optimal Rapidly-
exploring Random Trees (RRT) approach, called multi-
RRT* Fixed Node (RRT*FN), is developed to define the 
shortest paths from each point to their neighbors. Using 
the pair-wise costs between points provided by the first-
scale algorithm, in the second scale, the overall shortest 
path is obtained by solving the Traveling Salesman 
Problem (TSP) using Genetic Algorithms (GA). Taking 
into consideration the limited onboard energy, a second 
alternative based on the well-known Vehicle Routing 
Problem (VRP) is used. This latter is solved using the 
savings heuristic approach. The effectiveness of this 
proposed two-scale algorithm is demonstrated through 
numerical simulations and promising results are 
obtained. 1 

I. INTRODUCTION 

Nowadays, autonomous robots have been efficiently 
employed in military as well as in civil missions and 
especially in cases representing a real risk for humans as for 
instance: fire emergencies, natural disasters, Nuclear-
Biological-Chemical (NPC) contaminations, etc. In such 
events, localization, search and rescue missions in damaged 
areas are usually lengthy involving large staff and 
sophisticated equipment. Therefore, the implication of robots 
brings a notable benefit where the challenge then is to ensure 
an efficient, optimal and scalable coverage planning in a 
highly constrained space. 

A broad range of motion planning strategies has been 
extensively studied. Most of them focus on the optimality 
guarantees and the obstacles avoidance capabilities. 
Sampling-based search methods such as: Expansive Space 
Trees (EST) [1], Probabilistic Roadmap Methods (PRM) [2] 
and Rapidly exploring Random Trees (RRT) have been used 
to find collision-free trajectories in cluttered environments [3-
5].  
 
RRT based algorithms are efficient to single-query motion 
planning problems in constrained workspace. However, a 
feasible solution is obtained only and no optimal solution is 
ensured. Therefore, an alternative optimal RRT (RRT*) 
method is proposed in order to tackle this problem by 
introducing incremental rewiring of the graph [6]. 
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Nonetheless, this is inconsistent with their nature, single-
query, and so becomes very expensive especially in high 
dimensions. In addition, for multi-target path planning 
problem, this technique requires a huge memory to store the 
complete nodes. Recently, an extended promising algorithm 
is proposed that retains the same probabilistic guarantees on 
optimality and completeness as the RRT* while reducing the 
required memory for storing nodes in the tree. This technique 
is called Fixed Nodes RRT* (RRT*FN) [7].  

Most of the existing path planning strategies steer to find a 
feasible optimal path from a starting point to one target point. 
However, some robotic applications such as coverage or 
security patrolling require other path planning techniques, 
which are capable to find a set of optimal paths from one 
starting point to many target points. In this paper, we 
contribute by introducing and studying an optimal coverage 
planning strategy in constrained planar map using a quadrotor 
UAV. This map is considered as a set of Points Of Interests 
(POIs) cluttered by obstacles of different natures and shapes 
as for instance: radar detection areas, forbidden areas, 
hazardous zones, physical obstacles, etc. These points are 
automatically generated or manually specified. On each POI, 
the quadrotor covers a region called Region Of Interest 
(ROI).  Thus, the challenge is to follow the shortest path that 
links all the POIs while avoiding the obstacles. Our strategy 
is composed of two main scales:  

1- The multi-directional RRT*FN based algorithm is 
developed to compute the inter-costs from each POI 
to its neighbors following the optimal paths with 
obstacles avoidance. 

2- The traveling Salesman Problem (TSP) is resolved 
via genetic algorithms (GA) to compute the overall 
shortest route that allows the quadrotor to visit all the 
POIs once and then return to the starting point. 
Besides, due to the limited onboard energy, the 
Vehicle Routing Problem (VRP) is considered. This 
latter is solved using a modified savings heuristic 
approach. 

The efficiency of the approach is demonstrated through 
extensive numerical simulations considering many scenarios.  

The remaining of the paper is organized as follows: problem 
statement is presented in Section II. Then, the algorithms are 
introduced in Section III. The POIs generation and the map 
decomposition are highlighted in Section IV. The application 
of the proposed algorithm as well as simulation results are 
shown in Section V. Finally, some concluding remarks are 
made in the last section. 

II. PROBLEM STATEMENT 
A- Preliminary 

The paper addresses a coverage path planning algorithm 
using a quadrotor that autonomously navigates in a 2D 
cluttered area. The quadrotor visits the overall specified and 
reachable points and moves then to the starting point 
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following the shortest path while avoiding obstacles. Due to 
the limited onboard energy, the quadrotor may perform 
several rounds in order to complete the mission. The 
proposed algorithm can be used even for large dimension and 
complex shaped areas. Involving a quadrotor equipped with 
sensor for coverage mission is certainly a promising 
application. This flying sensor can play the same role as a set 
of static sensors providing fast and adaptable low cost 
solution. Moreover, unlike mobile robots, quadrotors have 
less operating constraints and their dynamic response makes 
them more efficient in such applications.  
 
We firstly give an overview about the environment 
considered in this study. The considered map is composed of 
a set of non-connected no-fly zones of different shapes and 
sizes and a free connected space. The map also contains a set 
of non-connected target areas that are defined by the user and 
need to be covered by visiting a set of scattered points 
namely the Points Of Interest (POIs). At each point, the 
quadrotor covers a region, called Region Of Interest (ROI), 
whose size and shape are defined according to the range of 
the sensor and the altitude of the quadrotor. The union of 
ROIs may cover the target zones totally or partially according 
to the nature of the mission, the nature and the shape of the 
target zone, the range and the shape of the sensor’s range and 
the user’s specifications.  
 
Remark 1 : Assume that the overall mechanical structure of 
the quadrotor is enclosed by a fictive circle of radius 𝑟𝑟. 
Therefore, if we enlarge all the obstacles with radius 𝑟𝑟, then 
the quadrotor can be considered as compact flying point (see 
Fig. 1).  
Remark 2 : In fact, avoiding obstacles using the altitude 
requests more thrust, then more energy is consumed 
compared to the longitudinal and lateral motions, so the 3D 
navigation problem is reduced to 2D one, in order to reduce 
the consumed energy. 

Fig. 1. Optimal path planning problem with obstacles avoidance 
in 2D map using quadrotor. 

B- Mathematical formulation 
Let 𝔇𝔇 ⊆ ℝ2 be the overall state space of the path-planning 
problem. Let 𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  be the resulting set of permissible states 
considered as connected space domain. Therefore, 𝔇𝔇𝑜𝑜𝑜𝑜𝑜𝑜 ⊆
𝔇𝔇\𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  represents the states in collision with obstacles or 
no-fly zones. 𝔇𝔇𝑜𝑜𝑜𝑜𝑜𝑜 = ⋃ 𝜕𝜕𝛥𝛥𝑖𝑖𝑙𝑙

𝑖𝑖=1  may be non-connected space 
domain where 𝑙𝑙 denotes the number of sub-connected 
obstacles or non-fly zones (see Fig. 2). 𝜕𝜕𝛥𝛥𝑖𝑖  are a priori 
enlarged (see Remark 1). Let 𝔇𝔇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ⋃ 𝔇𝔇𝑇𝑇𝑖𝑖

𝑚𝑚
𝑖𝑖=1 ⊂ 𝔇𝔇 a set 

of 𝑚𝑚 non-connected target zones that may have complex 
geometric structures.  
Let 𝑝𝑝0 ∈ 𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 be the initial location (base-station) and 𝑃𝑃 =
�𝑝𝑝𝑖𝑖 ∈ 𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓|𝑖𝑖 = 1, … ,𝑁𝑁 − 1� be the unordered disjoint 
locations of the POIs. Each point belongs to a partition of 
permissible states ROI (see Fig. 2). In other words, 
 𝑊𝑊 = �𝑤𝑤𝑖𝑖 ⊆ 𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  |𝑝𝑝𝑖𝑖 ∈ 𝑤𝑤𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁 − 1�                  (1) 
represents the set of ROIs. Usually 𝑝𝑝𝑖𝑖  represents the 
geometric center of 𝑤𝑤𝑖𝑖  𝑖𝑖 = 1, … ,𝑁𝑁 − 1.  These POIs are 
distributed on the free space according to the specified 
mission using an automatic generation algorithm (see Section 
IV) or defined by the user. The ROIs may have different 
shapes and sizes according to the range of the onboard sensor 
such as square shape (of dimension 𝜌𝜌), rectangular (of width 
𝜌𝜌 and length 𝐿𝐿) or circular shape of radius 𝜌𝜌. These sizes may 
change in function of the altitude ℎ of the quadrotor. Notice, 
in the ideal case, for a complete coverage problem that 𝑊𝑊 =
𝔇𝔇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇/𝔇𝔇𝑜𝑜𝑜𝑜𝑜𝑜. 
Let 𝜎𝜎𝑖𝑖𝑖𝑖|𝑖𝑖=0,…,𝑁𝑁−1

𝑗𝑗=0,…,𝑁𝑁−1
𝑖𝑖≠𝑗𝑗

: [0, 1]⟼𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  be a feasible path and 

𝒫𝒫𝑖𝑖𝑖𝑖|𝑖𝑖=0,…,𝑁𝑁−1
𝑗𝑗=0,…,𝑁𝑁−1

𝑖𝑖≠𝑗𝑗

⊆ 𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  be the set of all nontrivial feasible 

paths that join a point 𝑝𝑝𝑖𝑖  by a point 𝑝𝑝𝑗𝑗. 
 
The optimal path planning problem is then arranged in two 
scales: 

• Scale 1 
 The first scale is the optimality inter-points. In other words, 
we seek to find an optimal path from point 𝑝𝑝𝑖𝑖  to point 𝑝𝑝𝑗𝑗, 𝑖𝑖 =
0, … ,𝑁𝑁 − 1 and 𝑗𝑗 = 0, … ,𝑁𝑁 − 1 while avoiding obstacles. 
This optimal planning problem is then defined as the search 
for the paths, 𝜎𝜎𝑖𝑖𝑖𝑖∗ , that minimizes a given cost 
function, 𝒥𝒥ij:𝒫𝒫ij ⟼ ℝ≥0, while connecting 𝑝𝑝𝑖𝑖  to 𝑝𝑝𝑗𝑗 through 
the free space. 
𝜎𝜎𝑖𝑖𝑖𝑖∗ = arg min�𝒥𝒥𝑖𝑖𝑖𝑖�𝜎𝜎𝑖𝑖𝑖𝑖�|𝜎𝜎𝑖𝑖𝑖𝑖(0) = 𝑝𝑝𝑖𝑖 ,𝜎𝜎(1) = 𝑝𝑝𝑗𝑗 ,∀𝑠𝑠 ∈
[0, 1], 𝜎𝜎𝑖𝑖𝑖𝑖(𝑠𝑠) ∈ 𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�                                                         (2) 
𝑖𝑖 = 0, … ,𝑁𝑁 − 1, 𝑗𝑗 = 0, … ,𝑁𝑁 − 1and 𝑖𝑖 ≠ 𝑗𝑗. 
where ℝ≥0 is the set of non-negative real numbers.  
Let 𝑐𝑐𝑖𝑖𝑖𝑖|𝑖𝑖=0,…,𝑁𝑁−1

𝑗𝑗=0,…,𝑁𝑁−1
𝑖𝑖≠𝑗𝑗

 be the cost of an optimal path 𝜎𝜎𝑖𝑖𝑖𝑖∗  from 𝑝𝑝𝑖𝑖  to 

𝑝𝑝𝑗𝑗 where 𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑗𝑗𝑗𝑗  and 𝜎𝜎𝑖𝑖𝑖𝑖∗ ≡ 𝜎𝜎𝑗𝑗𝑗𝑗∗ . 

The solution of this problem results in a matrix called inter-
cost matrix 𝒞𝒞 ∈ ℝN×N. Notice that this matrix is symmetrical 
while the diagonal elements are null (𝑐𝑐𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖 = 0, … ,𝑁𝑁 −
1). 

The solution of such a problem requires a multi-directional 
based path planning technique (see Fig. 2). Therefore, we 
propose a multi-directional RRT*FN based algorithm. This 
latter returns a global tree 𝒯𝒯 = (𝑉𝑉,𝐸𝐸) consisting of 𝑁𝑁 −
1 sub-trees. From these trees, we distinguish ∑ (𝑁𝑁 − 𝑖𝑖)𝑖𝑖=𝑛𝑛

𝑖𝑖=1  
shortest path 𝜎𝜎𝑖𝑖𝑖𝑖∗  with minimal costs 𝑐𝑐𝑖𝑖𝑖𝑖 . The cost quantities of 
the optimal paths can be interpreted as a travel distance, a 
travel time or the number of nodes. The fact that the 
quadrotor is considered, in our work, flying in a holonomic 

𝑟𝑟   

𝑟𝑟   

𝑅𝑅𝑅𝑅𝑅𝑅   

𝑅𝑅𝑅𝑅𝑅𝑅   Optimal path 

Fictive obstacle 

Obstacle 

𝑃𝑃𝑃𝑃𝑃𝑃   

𝑦𝑦   𝜌𝜌 

ℎ   

𝑥𝑥   



  

way, the cumulative Euclidean distance between nodes is 
suitable as metric of optimality.  

 
Fig. 2. Example of path planning: 2D map with three POIs 
𝑃𝑃 = {𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3}, three ROIs 𝑊𝑊 = {𝑤𝑤1,𝑤𝑤2,𝑤𝑤3}, three non-
connected obstacles 𝔇𝔇𝑜𝑜𝑜𝑜𝑜𝑜 = ⋃ 𝜕𝜕𝛥𝛥𝑖𝑖𝑖𝑖=3

𝑖𝑖=1  and multi-directional 
optimal paths. Bold green line represents the shortest path. 

• Scale 2 
Herein, we seek to determine the minimum distance circuit 
starting from 𝑝𝑝0, passing through all points 𝑝𝑝𝑖𝑖|𝑖𝑖=1,…,𝑁𝑁−1once 
and only once and then return back to the starting point. The 
objective is to find a permutation ℘ of the sequences: 
𝑠𝑠0, 𝑠𝑠1, … , 𝑠𝑠𝑁𝑁−1,  that minimizes the sum of distances, 
𝐷𝐷 = ∑ 𝑑𝑑(𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑖𝑖+1)𝑁𝑁−2

𝑖𝑖=0 +𝑑𝑑(𝑠𝑠𝑁𝑁−1, 𝑠𝑠0)                                      (3) 
where the inter-distances 𝑑𝑑�𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗� are defined from the first 
scale problem. Notice that the sequences 𝑠𝑠𝑖𝑖 are chosen from 
the set of POIs 𝑃𝑃. This problem is known as Traveling 
Salesman Problem (TSP), which is a well known NP-hard 
optimization problem. We propose to use Genetic Algorithms 
(GA) in order to solve this problem and to get an optimal 
path according to the considered cost function.  
 
It is impossible to achieve long missions in one round 
because of the limited onboard energy. Therefore, multiple 
rounds are suggested. Herein, we seek to determine the 
minimal set of circuits starting from 𝑝𝑝0, passing through all 
points 𝑝𝑝𝑖𝑖|𝑖𝑖=1,…,𝑁𝑁−1once and only once and then turn back to 
the starting point taking in consideration the total energy 
without redundancy of point’s passage. The main objective is 
to take in consideration the fact that the quadrotor must 
recharge or change batteries several times during the 
coverage mission, which is a more realistic scenario. 
 
Let’s assume that the aerial vehicle flies at moderate speed 
without aggressive maneuvers neither strong disturbances 
and at a constant altitude. This allows us to consider constant 
energy consumption. Then, the energy consumption can be 
measured in terms of time. Let us consider that the quadrotor 
has autonomy of 𝐶𝐶 minutes called capacity. The flight time 
needed to cover one point is denoted by 𝑞𝑞𝑖𝑖∀𝑖𝑖 =  1, 2, . . . ,𝑛𝑛 −
1. Notice that 𝐶𝐶 > 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞𝑖𝑖 . The goal is to find the minimum 
set of routes that visit all POIs while minimizing the traveling 
distance (shortest path) and respecting the constraint of 
limited energy.  The new constraint is stated as follows 
𝐶𝐶 ≥ 𝑇𝑇𝑅𝑅 = ∑ 𝑞𝑞𝑘𝑘

𝑁𝑁𝑅𝑅−2
𝑘𝑘=1 + ∑ 𝑡𝑡(𝑝𝑝𝑘𝑘𝑅𝑅 ,𝑝𝑝𝑘𝑘+1𝑅𝑅 )𝑁𝑁𝑅𝑅−2

𝑘𝑘=0 + 𝑡𝑡�𝑝𝑝𝑁𝑁𝑅𝑅−1
𝑅𝑅 , 𝑝𝑝0𝑅𝑅�(4) 

where 𝑇𝑇𝑅𝑅 is one route required time, 𝑞𝑞𝑘𝑘 is the time required 
to cover one point 𝑝𝑝𝑘𝑘𝑅𝑅 in the route 𝑅𝑅 that contains 𝑁𝑁𝑅𝑅 point. 
𝑡𝑡(𝑝𝑝𝑘𝑘𝑅𝑅 , 𝑝𝑝𝑘𝑘+1𝑅𝑅 ) is the duration to flight between two successive 
points in the route where 𝑡𝑡�𝑝𝑝𝑁𝑁𝑅𝑅−1

𝑅𝑅 , 𝑝𝑝0𝑅𝑅� denotes the required 
time to turn back to the base-station. These points 𝑝𝑝𝑘𝑘𝑅𝑅 are 
selected arbitrary from the set of points 𝑃𝑃. 
 
This problem can be considered as a Capacitated-Vehicle 
Routing Problem (C-VRP). To solve this problem, we have 
adapted the Capacitated-VRP savings method to include the 
maximal traveling time constraint 𝑇𝑇𝑅𝑅 . 
 

III. ALGORITHMS DESCRIPTION 

As stated in the previous section, our approach is composed 
of two separate scales. The first scale is used to obtain the 
pair-wise costs that allow the second scale to find the overall 
optimal path. 
A. First scale RRT based algorithm 
For this first scale, we propose to use the RRT based 
approach. This latter performs efficient searches even in high 
dimensional spaces. For the sake of clarity, a pseudo-code of 
basic RRT based path planning is summarized in     
Algorithm 1. The algorithm grows a tree of feasible 
trajectories from the initial state 𝑝𝑝0 and returns a collision-
free trajectory that reaches the goal 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑤𝑤𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 . This basic 
algorithm attempts to find a first feasible solution as quickly 
as possible. Explicitly, from the initial state 𝑝𝑝0, at each 
iteration, a random sample 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  that belongs to the free 
workspace 𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is chosen (line 3). The main routines used 
are:  

- Nearest function (line 4): finds the nearest node 
𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  in the tree to 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 . 

- Steer function (line 5): finds, in the free domain, the 
single reachable state 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 located at a random distance 
𝐷𝐷𝑟𝑟  from 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , which is closest to 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 . 

If the path from the 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  to 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 is collision free (line 6), 
 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛  is added to the tree 𝜏𝜏 as a child of 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  (line 7). The 
algorithm holds until iteration 𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  or when a first path is 
found (line 9).  
Algorithm 1: Basic path planner 
Function: 𝜏𝜏 =RRT(𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑝𝑝0, 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)  
1: 𝜏𝜏 ←InitializeTree(); 
2: repeat  
3:    𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ←RandomState�𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� 
4:    𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ←Nearest(𝜏𝜏, 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 
5:    𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 ←Steer(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 
6: If ObstacleFree(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛), then 
7:    𝜏𝜏 ←InsertNode(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛, 𝜏𝜏) 
8: end if 
9: until �𝑖𝑖 + +> 𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙||𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑤𝑤𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔� 
10: Return 𝜏𝜏 
Using RRT, no optimal solution is ensured as no metric is 
used to measure the optimality of the trajectories. Therefore, 
RRT* algorithm is introduced in [6] with theoretical 
guarantees of optimality. RRT* converges to the optimal 
solution as the number of samples reaches infinity. This is by 
incrementally rewiring the tree as lower cost trajectories 
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become available with the addition of new nodes to the tree. 
RRT* uses additional functionality compared to RRT: 

- Cost function: provides the total cost from the initial state 
to a node in the tree.  

- Rewiring procedure: rewires the local neighborhood of 
the newly added node such that the cost to the initial state 
decreases.  

Instead of considering the nearest node as the parent of 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 , 
we take a set of nodes 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  in the local neighborhood, of 
radius 𝐷𝐷𝑛𝑛 of 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 . Then ChooseParent routine selects the 
best parent for 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛. 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 is connected to the parent, which 
minimizes the total cost from the initial state as first instance 
where RRT* optimizes the  complete trajectory. As a second 
instant of optimization, the local neighborhood of 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛  is 
optimized with the ReWire routine. If the assignment of 
𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛  as the parent node of the nodes in 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  decreases the 
total cost from 𝑝𝑝0 to 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , then the ReConnect 
function removes the edge between 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  and it’s parent 
node and creates an edge between 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  and 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛, the new 
parent node.  
 
Because there is no prior limits of the number of nodes in tree 
generated by the RRT* algorithm, the multi-directional 
RRT* consumes many computational capacities where 
supplementary memory is required to store the added nodes. 
The number of nodes can be fixed to alleviate this problem. 
Therefore, an extension of RRT*, called RRT* Fixed Nodes 
(RRT*FN), that employs a node removal procedure from the 
skeleton of the RRT*is used. The philosophy of the strategy 
comes from the fact that: If a node does not have children, it 
also means that it is not on a path reaching the goal state. This 
approach is summarized by Algorithm 2 with the main rules: 

- The tree is grown as the RRT* until a maximum number 
of nodes 𝑀𝑀 is reached where the algorithm must be 
restarted if a feasible path to the goal region is not 
reached. 

- A new node is added, if and only if there exists, at least, 
one node in the tree with one or no child (this node is 
deleted from the tree) and the cost to the present state 
from the initial state has decreased.  

- In the case of multiple nodes present without children, 
one of them is selected randomly.  

The main functionality of this algorithm besides those 
ensured by RRT* is the removal procedure. We distinguish 
ordinary and forced removal functions that are: 
- ReWire function (line 14): If a node in Pnear (line 11) is 

the only child of another node in Pnear and the 
cumulative path cost to this child node is lower through 
pnew , then the child node is reconnected as a child 
to pnew (line 42) and the parent is deleted (line 40).  

- ForcedRemoval function (line 15): There are cases, 
where a node cannot be added since there is no nodes 
with only one child to remove in Pnear. In order to 
alleviate this situation, a global ForcedRemoval 
searches the whole tree for nodes without children and 
removes one randomly. For more details about the 
algorithm the reader may refer to [7]. 

Remark 3 : RRT* and RRT*FN do not terminate when the 
goal region is reached, but the algorithm still executed for 

the number of iterations assumed for the convergence. This 
is done to improve the path’s total length.  
Algorithm 2: RRT*FN  path planner 
Function: 𝜏𝜏 =RRT*FN(𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑝𝑝0, 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ,𝑀𝑀)  
1: 𝜏𝜏 ←InitializeTree(); 
3: repeat 
4:  If 𝑀𝑀 < NodesAdded(𝜏𝜏) then  
5:    𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜 ← 𝜏𝜏 
6:   end if 
7:  𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ←RandomState�𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� 
8:  𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ←Nearest(𝜏𝜏, 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 
9:   𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 ←Steer(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 
10:  If ObstacleFree(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛),then 
11:    𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ←Neighbors(𝜏𝜏, 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛) 
12:    𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ←ChooseParent(𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛) 
13:    𝜏𝜏 ←InsertNode(𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 , 𝜏𝜏) 
14:    𝜏𝜏 ←ReWire (𝜏𝜏,𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛) 
15:    𝜏𝜏 ←ForcedRemoval(𝜏𝜏,𝑤𝑤𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) 
16:   end if 
17:  If NoRemovalPerformed(), then 
18:    𝜏𝜏 ←RestoreTree() 
19: until �𝑖𝑖 + +> 𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� 
20 : Return 𝜏𝜏 
Function: 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚=ChooseParent(𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛)  
21: 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ← 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛; 
22: 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ←Cost(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)+𝑐𝑐(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛) 
23:for 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛do 
24:  𝑥̀𝑥  ←Steer(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛) 
25:  If ObstacleFree(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑥̀𝑥) and 𝑥̀𝑥 = 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 , then 
26:    𝑐𝑐̀ ←Cost(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)+𝑐𝑐(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛) 
27:    If 𝑐𝑐̀ <Cost(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛) and 𝑐𝑐̀ < 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚then 
28:       𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ← 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  
29:       𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ← 𝑐𝑐̀ 
30:   end if 
31:  end if 
32: end for 
33 : Return 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚  
Function: 𝜏𝜏 =ReWire(𝜏𝜏 ,𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚, 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛)  
34:for 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛\𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚do 
35:  𝑥̀𝑥  ←Steer(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 
36:  If ObstacleFree(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑥̀𝑥) and 𝑥̀𝑥 = 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , and 
37:    Cost(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛)+𝑐𝑐(𝑥̀𝑥) <Cost(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) then 
38:    If OnlyChild(Parent(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)) and  
39:      𝑀𝑀 <NodesAdded(𝜏𝜏) then 
40:      RemoveNode(Parent(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)) 
41:     end if 
42:    𝝉𝝉 ←ReConnect (𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝜏𝜏) 
43:  end if 
44: end for 
45: Return 𝜏𝜏  
Finally, the multi-directional RRT*FN searches the optimal 
paths from each point to their neighbors (point-to-points 
problem). At each iteration, Algorithm 3 uses the same tree 
as the Algorithm 2 to find the optimal paths from a one 
starting point to multiple goal points located in multiple 
disjoint regions. However, the tree is still growing until the 
entire goal regions are reached while the algorithm must be 



  

restarted even if one feasible path to one goal state is not 
reached (line 22). The algorithm returns a complete tree as 
well as a vector of costs, from the starting point to the goal 
points (line 25). 
Algorithm 3: Multi-RRT*FN  path planner 
Function: (𝜏𝜏, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = Multi-RRT*FN(𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑝𝑝0, 𝑊𝑊,𝑀𝑀)  
1:𝜏𝜏 ←InitializeTree(); 
2: 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑊𝑊 
3:repeat 
4:  If 𝑀𝑀 < NodesAdded(𝜏𝜏) then  
5 :    𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜 ← 𝜏𝜏 
6:  end if 
7:  𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ←RandomState�𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� 
8:  𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ←Nearest(𝜏𝜏, 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 
9:  𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 ←Steer(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 
10:  If ObstacleFree(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛) then 
11:    𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ←Neighbors(𝜏𝜏, 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛) 
12:    𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ←ChooseParent(𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛) 
13:    𝜏𝜏 ←InsertNode(𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 , 𝜏𝜏) 
14:    𝜏𝜏 ←ReWire (𝜏𝜏,𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛) 
15:    𝜏𝜏 ←ForcedRemoval(𝜏𝜏, 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) 
16:  end if 
17:  If NoRemovalPerformed(), then 
18 :    𝜏𝜏 ←RestoreTree() 
19:  𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ←ReachedROI(𝜏𝜏) 
20:  𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟/𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  
21:until �𝑖𝑖 + +> 𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� 
22:If 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≠ ∅, then 
23:  Goto line 4 
24:𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =CostDist(𝑝𝑝0,𝑊𝑊, 𝜏𝜏) 
25 : Return 𝜏𝜏, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

B. Second scale: GA based TSP algorithm 
As mentioned in Section II, this paper addresses an optimal 
path planning problem for a quadrotor that has to pass by a 
finite number of points and return back to the initial point. 
The locations of POIs are known a-priori in a bounded two-
dimensional space. This problem is well-known as the TSP 
NP-hard optimization problem where a broad range of 
algorithms and solutions are employed as for instance [8]. 
Herein, the heuristic algorithm based on Genetic Algorithms 
(GA) is proposed to deal with this problem under the name 
TSP-GA (see Algorithm 4).  It uses the inter-costs 𝒞𝒞 provided 
by Algorithm 3. PopEvaluation computes the fitness 
function for each member of the population (line 10). Then 
new individuals of the population are created using mutation 
to add randomization to the process, similar to that of the 
natural genome (GeneticOperator) (line 12). Finally, 
BestRoute points out the total optimal cost 𝐶𝐶𝑡𝑡  as well as the 
optimal order of points 𝑂𝑂 (line 11).  
Algorithm 4:  GA-TSP optimal path 
Function: (Τ,𝑂𝑂,𝐶𝐶𝑡𝑡) =GA-TSP(𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ,𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇 ,𝑁𝑁𝑝𝑝, 𝑝𝑝0,𝑃𝑃,𝑊𝑊,𝑀𝑀)  

%Scale one 
1: 𝐿𝐿 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ (𝑃𝑃) 
2 :(𝑇𝑇(1),𝒞𝒞(1)) = Multi-RRT*FN(𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑝𝑝0, 𝑊𝑊,𝑀𝑀)  
3: 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑊𝑊/𝑤𝑤1 
4:for 𝑖𝑖 = 1 to 𝑖𝑖 = 𝐿𝐿 − 1do 

5:  (𝑇𝑇(𝑖𝑖 + 1),𝒞𝒞(𝑖𝑖 + 1)) = Multi-RRT*FN(𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑝𝑝𝑖𝑖 , 
𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑀𝑀) 
6:   𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟/𝑤𝑤𝑖𝑖+1 
7:end for 

%Scale two 
8: InitializePop(𝑁𝑁𝑝𝑝) 
9:for 𝑖𝑖 = 0 to𝑖𝑖 = 𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇 do 
10:  PopEvaluation(𝑁𝑁𝑝𝑝,𝐷𝐷) 
11:  (𝑂𝑂,𝐶𝐶𝑡𝑡) ←BestRoute() 
12:  GeneticOperator() 
13:end for 
14:Return 𝑂𝑂,𝐶𝐶𝑡𝑡. 

C. Second scale: Savings based VRP algorithm 
The major constraint in quadrotor-based coverage planning is 
the limited onboard energy. Therefore, we develop a 
methodology, based on the well-known Vehicle Routing 
Problem (VRP), to minimize the flight path considering 
energy limitation. VRP finds the minimal set of shortest 
routes for either single or multiple starting points. In this 
case, the quadrotor leaves from a starting point (base station) 
and returns back to that point after finishing each assigned 
tour to download collected data and of course recharge 
batteries until achieving the overall mission. We proceed by 
the method developed in [9] and called savings-VRP 
approach. Notice that the standard savings algorithm 
considers finding the set of shortest paths while guarantying 
the load capacity constraint. In our adapted algorithm, the 
load capacity is transformed into flight time capacity. This 
flight time capacity contains in addition to the required time 
to cover each point, the traveling time from a point to another 
point as expressed by (4). The savings is a heuristic algorithm 
that often yields a relatively good solution. The basic savings 
concept expresses the cost savings obtained by joining two 
routes into one route as illustrated in Fig. 3, where point 0 
represents the base station. 

 
Fig. 3. Saving principle. 

Initially in Fig. 3(a) locations 𝑖𝑖 and 𝑗𝑗 are visited on separate 
routes. An alternative to this is to visit the two locations on 
the same route, for example in the sequence 𝑖𝑖 − 𝑗𝑗 as 
illustrated in Fig. 3(b). Because the traveling required 
durations are given, the savings that result from driving the 
route in Fig. 3(b) instead of the two routes in Fig. 3(a) can be 
calculated. Denoting the traveling time between two given 
points 𝑖𝑖 and 𝑗𝑗 by 𝑡𝑡𝑖𝑖𝑖𝑖 and the time required for covering 𝑞𝑞𝑖𝑖, the 
total time 𝑇𝑇𝑎𝑎 in Fig. 3(a) is: 
𝑇𝑇𝑎𝑎 = 𝑡𝑡0𝑖𝑖 + 𝑞𝑞𝑖𝑖 + 𝑡𝑡𝑖𝑖0 + 𝑡𝑡0𝑗𝑗 + 𝑞𝑞𝑗𝑗 + 𝑡𝑡𝑗𝑗0                                   (5) 
Similarly, the total traveling time 𝑇𝑇𝑏𝑏  in Fig. 3(b) is: 
𝑇𝑇𝑏𝑏 = 𝑡𝑡0𝑖𝑖 + 𝑞𝑞𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑞𝑞𝑗𝑗 +  𝑡𝑡𝑗𝑗0                                            (6) 
By combining the two routes, one obtains the savings 𝑆𝑆𝑖𝑖𝑖𝑖: 
𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑎𝑎 − 𝑇𝑇𝑏𝑏 = 𝑡𝑡𝑖𝑖0 + 𝑡𝑡0𝑗𝑗 − 𝑡𝑡𝑖𝑖𝑖𝑖                                           (7) 
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Relatively large values of 𝑆𝑆𝑖𝑖𝑖𝑖indicate that it is attractive, with 
regard to time traveling, to visit points 𝑖𝑖 and 𝑗𝑗 on the same 
route such that point 𝑗𝑗 is visited immediately after point 𝑖𝑖. 
This approach is described by Algorithm 5. 
Algorithm 5: Savings-VRP optimal path 
1: execute Algorithm 4 until line 7 
2: Calculate the savings 𝑆𝑆𝑖𝑖𝑖𝑖  for every pair �𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑗𝑗�. 
3: Creates the "savings list" in descending order.  
4: For the savings 𝑆𝑆𝑖𝑖𝑖𝑖  under consideration, include link 
(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑗𝑗) in a route following the rules of savings principle 
(see [9]). 
5: If the savings list has not been exhausted, return to line 4, 
process the next entry in the list; otherwise, stop.  
6: Any points that have not been assigned to a route during 
Step 4 must each be served by a vehicle route that begins at 
the base-station 𝑝𝑝0 visits the unassigned point and returns to 
𝑝𝑝0. 

IV. Space decomposition and POIs generation 
The POIs may be moved, removed or added in specific 
locations by the user on the map. However, the main 
objective of this section is to generate automatically the set of 
POIs that allow the quadrotor to cover the overall target 
zones. Many strategies are used such as the map 
decomposition techniques where each target zone is 
decomposed into unified sub-regions, of equal size, called 
cells. These latter may cover partially or totally, precisely or 
approximately the overall target area. Therefore, the center of 
each cell that represents one ROI is considered as POI. Each 
ROI is covered when the quadrotor crosses it. This 
decomposition is related essentially to the shape and the size 
of the sensor’s range. Usually, the nature of the mission 
defines the type of the used sensor such as infrared camera, 
gas sensor, chemical sensor, ultrasonic sensor, etc. A good 
review about the directional sensors is made in [10]. 
Therefore, we distinguish many regular and irregular shapes. 
  
In fact, all the existing algorithms considering circular and 
rectangular cells have limited efficiency especially in the 
presence of complex shaped obstacles where the borders are 
generally ignored by the algorithm. The presence of the 
human operator is thus necessary to find the best locations of 
POIs nearby the obstacles and moves them to more 
advantageous positions. Moreover, the POIs are generated 
after obtaining the grid covering the map according to the 
shape of the sensor’s range. Therefore, we seek to find a 
generic and scalable technique that allows to generate directly 
the POIs and still be applied whatever the shape and the size 
of the range.  
 
We propose to discretize the closed bounded non-connected 
domains 𝔇𝔇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  using triangulation methods. This is 
referred to a mesh generation that provides a collection of 
vertices and edges constituting triangles covering-up the 
whole map. Unlike, the existing approaches, the vertices 
represent the set of POIs 𝑃𝑃. It is better than the choice of the 
centers of the cells. Then, any sensor can be used.  The most 
available meshing software is just used as “black boxes” and 
difficult to be integrated with other codes. In reference [11] a 
simple and high quality-meshing open source was developed. 

It gives a specific attention to the borders of obstacles as 
well as the target zones with adaptation possibility of POIs 
density. These points are used directly whatever the shape or 
the size of the sensor. The density of points may be adjusted 
as well as the coverage rate using a scale factor. For the 
complete MATLAB code and further significations about this 
meshing algorithm, the reader may refer to [11]. 

V. RESULTS AND DISCUSSION 

Before presenting the obtained results, we iterate firstly, our 
overall approach in order to achieve a coverage mission using 
quadrotor.  It is summarized in six steps as follows: 
1- Definition of the map by fixing the target zones (shape 

and boundaries) and obstacles. 
2- Definition of the mission and the sensor (range, altitude). 
3- Apply the mesh generation algorithm and get target zone 

decomposition. 
4- From the discretized map, get the localization of the 

resulting POIs (vertices in the mesh model). The user can 
add, remove or move some POIs. 

5- Apply Algorithm 4 (scale 1), based on multi-RRT*FN 
strategy, using the obtained POIs in order to obtain the 
pair-wise cost matrix and the real optimal connection 
graph.   

6- Apply Algorithm 4 (scale 2) considering the matrix cost, 
to find the shortest path that relates the overall points and 
then turn to the initial point. If the onboard energy is not 
enough for the mission, a Savings-VRP can be used 
(Algorithm 5) to find the minimal set of shortest paths. 

 
 In this example of application, we assume usage of an AR-
drone quadrotor for coverage planning of bounded and 
constrained area to demonstrate the effectiveness of our 
proposed approach. In order to reduce the consumed energy, 
the quadrotor is supposed flying at a constant altitude and 
seek to avoid the obstacles using only the lateral and 
longitudinal motions. Besides, bottom camera is used as 
sensor for photos shooting. The captured pictures have 
rectangular form (range of the sensor).  
 
The workspace is considered in this case of study as a 2D 
bounded map 𝔇𝔇(𝑥𝑥,𝑦𝑦) = [0𝑚𝑚 5𝑚𝑚] × [0𝑚𝑚 5𝑚𝑚]. The map is 
composed of one target region, 𝔇𝔇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝔇𝔇(𝑥𝑥,𝑦𝑦). In this 
target region, we distinguish one connected obstacle. The 
quadrotor can be enclosed by a circle of radius 𝑟𝑟 = 0.25 𝑚𝑚. 
Therefore, the obstacle is enlarged by a distance of 𝑟𝑟 =
0.25𝑚𝑚. Therefore, the resulting fictive obstacle is 
𝔇𝔇𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥, 𝑦𝑦) = 𝜕𝜕𝛥𝛥1. This obstacle is delimited by the 
following coordinates (𝑥𝑥, 𝑦𝑦): (1,1), (3.5,1), (4.5,2),
(4.5,3) and (2.5,3), thus 𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝔇𝔇\𝔇𝔇𝑜𝑜𝑜𝑜𝑜𝑜. The overall 
algorithms are running using Matlab tool where four 
scenarios are proposed. 
Scenario 1:  
In this first scenario, we assess the performance and the 
efficiency of the RRT based algorithms, namely RRT, RRT* 
and RRT*FN, through a deep comparison. Thus, the 
quadrotor starts from an initial state: 𝑝𝑝0(𝑥𝑥, 𝑦𝑦) =
(0.5 𝑚𝑚, 0.5 𝑚𝑚) and flies toward the goal state  𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑥𝑥, 𝑦𝑦) =
(4𝑚𝑚, 4 𝑚𝑚)𝑇𝑇. Herein, 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  represents the unique POI,   𝑃𝑃 =

https://www.google.fr/search?site=webhp&q=discretized&spell=1&sa=X&ved=0ahUKEwjH-JzFzuTRAhVD2xoKHZZHD9wQBQgZKAA


  

�𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�, that represents the center of the ROI  𝑤𝑤𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  
delimited by a square of width 𝐿𝐿 = 1 𝑚𝑚. The parameters used 
in the algorithms are: 

1. Max of iterations: 𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 4000 
2. Max of nodes: 𝑀𝑀 = 2000 
3. Radius of local neighborhoods: 𝐷𝐷𝑛𝑛 = 1,5𝑚𝑚 

The obtained results are summarized in Table 1 for the 
overall strategies where the corresponding paths are depicted 
in Fig. 4 (a), Fig. 4 (b) and Fig. 4 (c) for RRT, RRT* and 
RRT*FN respectively. 

 
     (a) RRT                                (b) RRT* 

 
(c) RRT*FN 

Fig. 4. One goal point path planning problem. 
Table 1 : Summary of comparative analysis. 

 RRT RRT* RRT*FN 
Path cost (m) 6.4736 4.9492 4.9589 

Run time (sec) 2.9373 11.9042 13.1847 
Tree density 

(Number of nodes) 
2993 2993 2000 

Optimality No Yes Yes 
Obviously, from Fig. 4, RRT exhibits the worst performance 
with respect to optimality of the path. This is because no 
optimality criteria are considered. Both RRT* and RRT*FN 
converge towards an optimal path even though the rate of 
convergence is slower for the RRT*FN (13.1847 sec) where 
the final solution can be improved with respect to the number 
of iterations (see Table 1). We observe also that the trees 
looks denser, in the case of RRT*, than the case of RRT*FN.  
We should note that the required memory increases linearly 
as iterations increase in the case of RRT* (2993 nodes are 
generated). It adds nodes to improve the path without 
removing procedural. This latter makes the RRT*FN requires 
much less memory (fixed memory i.e. a fixed number of 
nodes M= 2000). RRT*FN still optimizes the path by adding 
better nodes and removing the ones with no children or one 
child.  
Scenario 2:  
In this second scenario, we show the result from the 
application of the multi-directional RRT*FN (see Algorithms 
3). Using the same parameters as those mentioned in 
Scenario 1, the algorithm finds all the optimal paths from the 

starting state 𝑝𝑝0(𝑥𝑥, 𝑦𝑦) = (0.5 𝑚𝑚, 0.5 𝑚𝑚) to the POIs P =
{𝑝𝑝1(0.25, 4.75) , 𝑝𝑝2(4.75, 2) , 𝑝𝑝3(2.5,4.75), 𝑝𝑝4(4.5, 3)} ∈
𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 . These POIs represent the centers of ROIs  𝑊𝑊 =
{𝑤𝑤1,𝑤𝑤2,𝑤𝑤3,𝑤𝑤4} that are delimited by squares of width 𝐿𝐿 =
1 𝑚𝑚. The obtained results are displayed in Fig. 5. 

 
Fig. 5.  Multi-RRT*FN based path planning.  

We observe that the algorithm grows a tree from the starting 
point (one root) and find multiple optimal paths in the same 
tree. The optimal paths have lengths as: c01 = 4.3918,  
c02 = 4.8831, c03 = 4.9831, c04 = 5.4956. 
Scenario 3:  
Considering the same map and the same set of POIs as in the 
previous scenarios, the quadrotor has to pass by all the points 
and then return back to the starting point by following the 
shortest path. To achieve this objective, Algorithm 4 is used. 
In this particular example, four sub-trees are grown where: 
Tree 1: starting point: 𝑝𝑝0       goal points: 𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3, 𝑝𝑝4 
Tree 2: starting point: 𝑝𝑝1       goal points: 𝑝𝑝2, 𝑝𝑝3, 𝑝𝑝4 
Tree 3: starting point: 𝑝𝑝2      goal points: 𝑝𝑝3, 𝑝𝑝4 
Tree 4: starting point: 𝑝𝑝3      goal points: 𝑝𝑝4 
Once, the inter-costs for the set of points 𝑃𝑃 are obtained, we 
start computing the shortest route that connects all the points. 
To do this, we use the second scale of Algorithm 4 by setting 
up the following conditions: 

1. GA population size: 𝑁𝑁𝑝𝑝 =60  
2. Max of iterations 𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇 = 4000 

As shown in Fig. 6 (a), good results are obtained. The global 
path, of cost 14.55𝑚𝑚, contains five sub-optimal paths of 
costs 𝑐𝑐02 = 4.58 𝑚𝑚, 𝑐𝑐24 = 0.99 𝑚𝑚, 𝑐𝑐43 = 2.59 𝑚𝑚, 𝑐𝑐31 =
2.24 𝑚𝑚, 𝑐𝑐10 = 4.34𝑚𝑚.  

 
(a) TSP problem                  (b) C-VRP problem   

Fig. 6.  Shortest path. 
In the case of limited energy, many rounds must be supposed. 
In this example, we assume that the quadrotor has a capacity 
of 35 seconds flying at moderate speed with average value of 
0.5 𝑚𝑚/𝑠𝑠𝑠𝑠𝑠𝑠. At each point, the quadrotor hovers about 3 
seconds. The obtained sequences and the shortest paths are 
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depicted in Fig. 6 (b) where the quadrotor passes by all the 
points in two rounds that are:  
Sequence 1 that links the points 𝑝𝑝0, 𝑝𝑝2 and 𝑝𝑝4  has a length of 
10.69 𝑚𝑚 and comprises three optimal sub-paths of 
costs: 𝑐𝑐02 = 4.58 𝑚𝑚, 𝑐𝑐24 = 0.99 𝑚𝑚 and 𝑐𝑐40 = 5.12 𝑚𝑚. 
Sequence 2 that links the points 𝑝𝑝0, 𝑝𝑝3 and 𝑝𝑝1  has a length of 
21.70 𝑚𝑚 and comprises of three optimal sub-paths 𝑐𝑐03 =
4.14 𝑚𝑚, 𝑐𝑐31 = 2.24 𝑚𝑚 and c10 = 4.62 m. This example is 
just to demonstrate the effectiveness of Algorithm 5. Because 
in real life, the quadrotors have an autonomy at least of 10 
minutes. 
Scenario 4:  
In this scenario, the quadrotor should cover completely the 
map described in the previous scenarios. For this reason, we 
have to generate the POIs in order to achieve the given 
mission. The discretized map model using mesh generation is 
displayed in Fig. 7. 

 
Fig. 7.  Map meshing model. 

The vertices of the triangles are considered as POIs. They are 
uniformly distributed on the map and represented by the 
yellow points (see Fig. 7). In order to cover totally this map, 
the quadrotor has to pass by all these points. The shortest path 
sequences is displayed in Fig. 8 (a). The footprints of the 
quadrotor passage are displayed in Fig. 8 (b). Notice that the 
quadrotor uses a camera with square range of width 𝐿𝐿 = 1 𝑚𝑚. 

 
            (a) Shortest path                (b) Camera footprints  

Fig. 8.  Coverage planning mission. 
This technique ensures a coverage planning. The quadrotor 
starts from the base station (black disk) and finishes at the 
blue point then turns back to the base station. The developed 
approach allows covering almost all the map with a coverage 
rate about 94%.  

VI. CONCLUSION & FUTURE IMPROVEMENTS 

We have presented a coverage path-planning algorithm for 
VTOL quadrotors flying in 2D workspace while avoiding 
obstacles. The algorithm is executed in two steps: the first 
one is a RRT*-FN based algorithm that uses removal 
procedurals to maintain a fixed number of nodes, limiting the 

size of memory. This algorithm allows finding optimal 
paths from one point to their neighbors. The second stage 
allows connecting these points following the shortest path 
using GA. We provided also a scalable solution with respect 
to the consumed energy using savings technique. For a 
complete coverage scenario, a discrete model of the map 
composed of a collection of vertices and edges is obtained 
through a mesh generation. Then, from this discretized map, 
we define the set of POIs. Regarding future work many 
extensions to this paper can be made: 
- Heuristics can be used to improve the convergence rate of 

our algorithm as in [4] by involving the Artificial 
Potential Fields. 

- The coverage mission cannot be completed if the 
quadrotor is stopped by a threat. Therefore, a team of 
quadrotors will be used to cover the target area in our near 
future work.  
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