
HAL Id: hal-01716915
https://hal.science/hal-01716915

Submitted on 29 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quadrotor-UAV optimal coverage path planning in
cluttered environment with a limited onboard energy

Yasser Bouzid, Yasmina Bestaoui, Houria Siguerdidjane

To cite this version:
Yasser Bouzid, Yasmina Bestaoui, Houria Siguerdidjane. Quadrotor-UAV optimal coverage path plan-
ning in cluttered environment with a limited onboard energy. 2017 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS 2017), Sep 2017, Vancouver, Canada. pp.979–984,
�10.1109/IROS.2017.8202264�. �hal-01716915�

https://hal.science/hal-01716915
https://hal.archives-ouvertes.fr

Abstract— In this paper, a quadrotor optimal coverage
planning approach in damaged area is considered. The
quadrotor is assumed to visit a set of reachable points
following the shortest path while avoiding the no-fly
zones. The problem is solved by using a two-scale
proposed algorithm. In the first scale, an efficient tool for
cluttered environments based on optimal Rapidly-
exploring Random Trees (RRT) approach, called multi-
RRT* Fixed Node (RRT*FN), is developed to define the
shortest paths from each point to their neighbors. Using
the pair-wise costs between points provided by the first-
scale algorithm, in the second scale, the overall shortest
path is obtained by solving the Traveling Salesman
Problem (TSP) using Genetic Algorithms (GA). Taking
into consideration the limited onboard energy, a second
alternative based on the well-known Vehicle Routing
Problem (VRP) is used. This latter is solved using the
savings heuristic approach. The effectiveness of this
proposed two-scale algorithm is demonstrated through
numerical simulations and promising results are
obtained. 1

I. INTRODUCTION

Nowadays, autonomous robots have been efficiently
employed in military as well as in civil missions and
especially in cases representing a real risk for humans as for
instance: fire emergencies, natural disasters, Nuclear-
Biological-Chemical (NPC) contaminations, etc. In such
events, localization, search and rescue missions in damaged
areas are usually lengthy involving large staff and
sophisticated equipment. Therefore, the implication of robots
brings a notable benefit where the challenge then is to ensure
an efficient, optimal and scalable coverage planning in a
highly constrained space.

A broad range of motion planning strategies has been
extensively studied. Most of them focus on the optimality
guarantees and the obstacles avoidance capabilities.
Sampling-based search methods such as: Expansive Space
Trees (EST) [1], Probabilistic Roadmap Methods (PRM) [2]
and Rapidly exploring Random Trees (RRT) have been used
to find collision-free trajectories in cluttered environments [3-
5].

RRT based algorithms are efficient to single-query motion
planning problems in constrained workspace. However, a
feasible solution is obtained only and no optimal solution is
ensured. Therefore, an alternative optimal RRT (RRT*)
method is proposed in order to tackle this problem by
introducing incremental rewiring of the graph [6].

Y. Bouzid, Y. Bestaoui are with IBISC, Universitéd’Evry, Université Paris-
Saclay, Evry, France; H. Siguerdidjane is with L2S,
CentraleSupélec,Université Paris-Saclay, Gif sur yvette, France
(Emails:Yasser.Bouzid@ufrst.univ-evry.fr)

Nonetheless, this is inconsistent with their nature, single-
query, and so becomes very expensive especially in high
dimensions. In addition, for multi-target path planning
problem, this technique requires a huge memory to store the
complete nodes. Recently, an extended promising algorithm
is proposed that retains the same probabilistic guarantees on
optimality and completeness as the RRT* while reducing the
required memory for storing nodes in the tree. This technique
is called Fixed Nodes RRT* (RRT*FN) [7].

Most of the existing path planning strategies steer to find a
feasible optimal path from a starting point to one target point.
However, some robotic applications such as coverage or
security patrolling require other path planning techniques,
which are capable to find a set of optimal paths from one
starting point to many target points. In this paper, we
contribute by introducing and studying an optimal coverage
planning strategy in constrained planar map using a quadrotor
UAV. This map is considered as a set of Points Of Interests
(POIs) cluttered by obstacles of different natures and shapes
as for instance: radar detection areas, forbidden areas,
hazardous zones, physical obstacles, etc. These points are
automatically generated or manually specified. On each POI,
the quadrotor covers a region called Region Of Interest
(ROI). Thus, the challenge is to follow the shortest path that
links all the POIs while avoiding the obstacles. Our strategy
is composed of two main scales:

1- The multi-directional RRT*FN based algorithm is
developed to compute the inter-costs from each POI
to its neighbors following the optimal paths with
obstacles avoidance.

2- The traveling Salesman Problem (TSP) is resolved
via genetic algorithms (GA) to compute the overall
shortest route that allows the quadrotor to visit all the
POIs once and then return to the starting point.
Besides, due to the limited onboard energy, the
Vehicle Routing Problem (VRP) is considered. This
latter is solved using a modified savings heuristic
approach.

The efficiency of the approach is demonstrated through
extensive numerical simulations considering many scenarios.

The remaining of the paper is organized as follows: problem
statement is presented in Section II. Then, the algorithms are
introduced in Section III. The POIs generation and the map
decomposition are highlighted in Section IV. The application
of the proposed algorithm as well as simulation results are
shown in Section V. Finally, some concluding remarks are
made in the last section.

II. PROBLEM STATEMENT
A- Preliminary

The paper addresses a coverage path planning algorithm
using a quadrotor that autonomously navigates in a 2D
cluttered area. The quadrotor visits the overall specified and
reachable points and moves then to the starting point

Y. Bouzid*, Y. Bestaoui, H. Siguerdidjane

Quadrotor-UAV Optimal Coverage Path planning in cluttered
environment with a limited onboard energy

mailto:Yasser.Bouzid@ufrst.univ-evry.fr

following the shortest path while avoiding obstacles. Due to
the limited onboard energy, the quadrotor may perform
several rounds in order to complete the mission. The
proposed algorithm can be used even for large dimension and
complex shaped areas. Involving a quadrotor equipped with
sensor for coverage mission is certainly a promising
application. This flying sensor can play the same role as a set
of static sensors providing fast and adaptable low cost
solution. Moreover, unlike mobile robots, quadrotors have
less operating constraints and their dynamic response makes
them more efficient in such applications.

We firstly give an overview about the environment
considered in this study. The considered map is composed of
a set of non-connected no-fly zones of different shapes and
sizes and a free connected space. The map also contains a set
of non-connected target areas that are defined by the user and
need to be covered by visiting a set of scattered points
namely the Points Of Interest (POIs). At each point, the
quadrotor covers a region, called Region Of Interest (ROI),
whose size and shape are defined according to the range of
the sensor and the altitude of the quadrotor. The union of
ROIs may cover the target zones totally or partially according
to the nature of the mission, the nature and the shape of the
target zone, the range and the shape of the sensor’s range and
the user’s specifications.

Remark 1 : Assume that the overall mechanical structure of
the quadrotor is enclosed by a fictive circle of radius 𝑟𝑟.
Therefore, if we enlarge all the obstacles with radius 𝑟𝑟, then
the quadrotor can be considered as compact flying point (see
Fig. 1).
Remark 2 : In fact, avoiding obstacles using the altitude
requests more thrust, then more energy is consumed
compared to the longitudinal and lateral motions, so the 3D
navigation problem is reduced to 2D one, in order to reduce
the consumed energy.

Fig. 1. Optimal path planning problem with obstacles avoidance
in 2D map using quadrotor.

B- Mathematical formulation
Let 𝔇𝔇 ⊆ ℝ2 be the overall state space of the path-planning
problem. Let 𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 be the resulting set of permissible states
considered as connected space domain. Therefore, 𝔇𝔇𝑜𝑜𝑜𝑜𝑜𝑜 ⊆
𝔇𝔇\𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 represents the states in collision with obstacles or
no-fly zones. 𝔇𝔇𝑜𝑜𝑜𝑜𝑜𝑜 = ⋃ 𝜕𝜕𝛥𝛥𝑖𝑖𝑙𝑙

𝑖𝑖=1 may be non-connected space
domain where 𝑙𝑙 denotes the number of sub-connected
obstacles or non-fly zones (see Fig. 2). 𝜕𝜕𝛥𝛥𝑖𝑖 are a priori
enlarged (see Remark 1). Let 𝔇𝔇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ⋃ 𝔇𝔇𝑇𝑇𝑖𝑖

𝑚𝑚
𝑖𝑖=1 ⊂ 𝔇𝔇 a set

of 𝑚𝑚 non-connected target zones that may have complex
geometric structures.
Let 𝑝𝑝0 ∈ 𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 be the initial location (base-station) and 𝑃𝑃 =
�𝑝𝑝𝑖𝑖 ∈ 𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓|𝑖𝑖 = 1, … ,𝑁𝑁 − 1� be the unordered disjoint
locations of the POIs. Each point belongs to a partition of
permissible states ROI (see Fig. 2). In other words,
 𝑊𝑊 = �𝑤𝑤𝑖𝑖 ⊆ 𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 |𝑝𝑝𝑖𝑖 ∈ 𝑤𝑤𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁 − 1� (1)
represents the set of ROIs. Usually 𝑝𝑝𝑖𝑖 represents the
geometric center of 𝑤𝑤𝑖𝑖 𝑖𝑖 = 1, … ,𝑁𝑁 − 1. These POIs are
distributed on the free space according to the specified
mission using an automatic generation algorithm (see Section
IV) or defined by the user. The ROIs may have different
shapes and sizes according to the range of the onboard sensor
such as square shape (of dimension 𝜌𝜌), rectangular (of width
𝜌𝜌 and length 𝐿𝐿) or circular shape of radius 𝜌𝜌. These sizes may
change in function of the altitude ℎ of the quadrotor. Notice,
in the ideal case, for a complete coverage problem that 𝑊𝑊 =
𝔇𝔇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇/𝔇𝔇𝑜𝑜𝑜𝑜𝑜𝑜.
Let 𝜎𝜎𝑖𝑖𝑖𝑖|𝑖𝑖=0,…,𝑁𝑁−1

𝑗𝑗=0,…,𝑁𝑁−1
𝑖𝑖≠𝑗𝑗

: [0, 1]⟼𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 be a feasible path and

𝒫𝒫𝑖𝑖𝑖𝑖|𝑖𝑖=0,…,𝑁𝑁−1
𝑗𝑗=0,…,𝑁𝑁−1

𝑖𝑖≠𝑗𝑗

⊆ 𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 be the set of all nontrivial feasible

paths that join a point 𝑝𝑝𝑖𝑖 by a point 𝑝𝑝𝑗𝑗.

The optimal path planning problem is then arranged in two
scales:

• Scale 1
 The first scale is the optimality inter-points. In other words,
we seek to find an optimal path from point 𝑝𝑝𝑖𝑖 to point 𝑝𝑝𝑗𝑗, 𝑖𝑖 =
0, … ,𝑁𝑁 − 1 and 𝑗𝑗 = 0, … ,𝑁𝑁 − 1 while avoiding obstacles.
This optimal planning problem is then defined as the search
for the paths, 𝜎𝜎𝑖𝑖𝑖𝑖∗ , that minimizes a given cost
function, 𝒥𝒥ij:𝒫𝒫ij ⟼ ℝ≥0, while connecting 𝑝𝑝𝑖𝑖 to 𝑝𝑝𝑗𝑗 through
the free space.
𝜎𝜎𝑖𝑖𝑖𝑖∗ = arg min�𝒥𝒥𝑖𝑖𝑖𝑖�𝜎𝜎𝑖𝑖𝑖𝑖�|𝜎𝜎𝑖𝑖𝑖𝑖(0) = 𝑝𝑝𝑖𝑖 ,𝜎𝜎(1) = 𝑝𝑝𝑗𝑗 ,∀𝑠𝑠 ∈
[0, 1], 𝜎𝜎𝑖𝑖𝑖𝑖(𝑠𝑠) ∈ 𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� (2)
𝑖𝑖 = 0, … ,𝑁𝑁 − 1, 𝑗𝑗 = 0, … ,𝑁𝑁 − 1and 𝑖𝑖 ≠ 𝑗𝑗.
where ℝ≥0 is the set of non-negative real numbers.
Let 𝑐𝑐𝑖𝑖𝑖𝑖|𝑖𝑖=0,…,𝑁𝑁−1

𝑗𝑗=0,…,𝑁𝑁−1
𝑖𝑖≠𝑗𝑗

 be the cost of an optimal path 𝜎𝜎𝑖𝑖𝑖𝑖∗ from 𝑝𝑝𝑖𝑖 to

𝑝𝑝𝑗𝑗 where 𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑗𝑗𝑗𝑗 and 𝜎𝜎𝑖𝑖𝑖𝑖∗ ≡ 𝜎𝜎𝑗𝑗𝑗𝑗∗ .

The solution of this problem results in a matrix called inter-
cost matrix 𝒞𝒞 ∈ ℝN×N. Notice that this matrix is symmetrical
while the diagonal elements are null (𝑐𝑐𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖 = 0, … ,𝑁𝑁 −
1).

The solution of such a problem requires a multi-directional
based path planning technique (see Fig. 2). Therefore, we
propose a multi-directional RRT*FN based algorithm. This
latter returns a global tree 𝒯𝒯 = (𝑉𝑉,𝐸𝐸) consisting of 𝑁𝑁 −
1 sub-trees. From these trees, we distinguish ∑ (𝑁𝑁 − 𝑖𝑖)𝑖𝑖=𝑛𝑛

𝑖𝑖=1
shortest path 𝜎𝜎𝑖𝑖𝑖𝑖∗ with minimal costs 𝑐𝑐𝑖𝑖𝑖𝑖 . The cost quantities of
the optimal paths can be interpreted as a travel distance, a
travel time or the number of nodes. The fact that the
quadrotor is considered, in our work, flying in a holonomic

𝑟𝑟

𝑟𝑟

𝑅𝑅𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅𝑅𝑅 Optimal path

Fictive obstacle

Obstacle

𝑃𝑃𝑃𝑃𝑃𝑃

𝑦𝑦 𝜌𝜌

ℎ

𝑥𝑥

way, the cumulative Euclidean distance between nodes is
suitable as metric of optimality.

Fig. 2. Example of path planning: 2D map with three POIs
𝑃𝑃 = {𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3}, three ROIs 𝑊𝑊 = {𝑤𝑤1,𝑤𝑤2,𝑤𝑤3}, three non-
connected obstacles 𝔇𝔇𝑜𝑜𝑜𝑜𝑜𝑜 = ⋃ 𝜕𝜕𝛥𝛥𝑖𝑖𝑖𝑖=3

𝑖𝑖=1 and multi-directional
optimal paths. Bold green line represents the shortest path.

• Scale 2
Herein, we seek to determine the minimum distance circuit
starting from 𝑝𝑝0, passing through all points 𝑝𝑝𝑖𝑖|𝑖𝑖=1,…,𝑁𝑁−1once
and only once and then return back to the starting point. The
objective is to find a permutation ℘ of the sequences:
𝑠𝑠0, 𝑠𝑠1, … , 𝑠𝑠𝑁𝑁−1, that minimizes the sum of distances,
𝐷𝐷 = ∑ 𝑑𝑑(𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑖𝑖+1)𝑁𝑁−2

𝑖𝑖=0 +𝑑𝑑(𝑠𝑠𝑁𝑁−1, 𝑠𝑠0) (3)
where the inter-distances 𝑑𝑑�𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗� are defined from the first
scale problem. Notice that the sequences 𝑠𝑠𝑖𝑖 are chosen from
the set of POIs 𝑃𝑃. This problem is known as Traveling
Salesman Problem (TSP), which is a well known NP-hard
optimization problem. We propose to use Genetic Algorithms
(GA) in order to solve this problem and to get an optimal
path according to the considered cost function.

It is impossible to achieve long missions in one round
because of the limited onboard energy. Therefore, multiple
rounds are suggested. Herein, we seek to determine the
minimal set of circuits starting from 𝑝𝑝0, passing through all
points 𝑝𝑝𝑖𝑖|𝑖𝑖=1,…,𝑁𝑁−1once and only once and then turn back to
the starting point taking in consideration the total energy
without redundancy of point’s passage. The main objective is
to take in consideration the fact that the quadrotor must
recharge or change batteries several times during the
coverage mission, which is a more realistic scenario.

Let’s assume that the aerial vehicle flies at moderate speed
without aggressive maneuvers neither strong disturbances
and at a constant altitude. This allows us to consider constant
energy consumption. Then, the energy consumption can be
measured in terms of time. Let us consider that the quadrotor
has autonomy of 𝐶𝐶 minutes called capacity. The flight time
needed to cover one point is denoted by 𝑞𝑞𝑖𝑖∀𝑖𝑖 = 1, 2, . . . ,𝑛𝑛 −
1. Notice that 𝐶𝐶 > 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞𝑖𝑖 . The goal is to find the minimum
set of routes that visit all POIs while minimizing the traveling
distance (shortest path) and respecting the constraint of
limited energy. The new constraint is stated as follows
𝐶𝐶 ≥ 𝑇𝑇𝑅𝑅 = ∑ 𝑞𝑞𝑘𝑘

𝑁𝑁𝑅𝑅−2
𝑘𝑘=1 + ∑ 𝑡𝑡(𝑝𝑝𝑘𝑘𝑅𝑅 ,𝑝𝑝𝑘𝑘+1𝑅𝑅)𝑁𝑁𝑅𝑅−2

𝑘𝑘=0 + 𝑡𝑡�𝑝𝑝𝑁𝑁𝑅𝑅−1
𝑅𝑅 , 𝑝𝑝0𝑅𝑅�(4)

where 𝑇𝑇𝑅𝑅 is one route required time, 𝑞𝑞𝑘𝑘 is the time required
to cover one point 𝑝𝑝𝑘𝑘𝑅𝑅 in the route 𝑅𝑅 that contains 𝑁𝑁𝑅𝑅 point.
𝑡𝑡(𝑝𝑝𝑘𝑘𝑅𝑅 , 𝑝𝑝𝑘𝑘+1𝑅𝑅) is the duration to flight between two successive
points in the route where 𝑡𝑡�𝑝𝑝𝑁𝑁𝑅𝑅−1

𝑅𝑅 , 𝑝𝑝0𝑅𝑅� denotes the required
time to turn back to the base-station. These points 𝑝𝑝𝑘𝑘𝑅𝑅 are
selected arbitrary from the set of points 𝑃𝑃.

This problem can be considered as a Capacitated-Vehicle
Routing Problem (C-VRP). To solve this problem, we have
adapted the Capacitated-VRP savings method to include the
maximal traveling time constraint 𝑇𝑇𝑅𝑅 .

III. ALGORITHMS DESCRIPTION

As stated in the previous section, our approach is composed
of two separate scales. The first scale is used to obtain the
pair-wise costs that allow the second scale to find the overall
optimal path.
A. First scale RRT based algorithm
For this first scale, we propose to use the RRT based
approach. This latter performs efficient searches even in high
dimensional spaces. For the sake of clarity, a pseudo-code of
basic RRT based path planning is summarized in
Algorithm 1. The algorithm grows a tree of feasible
trajectories from the initial state 𝑝𝑝0 and returns a collision-
free trajectory that reaches the goal 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑤𝑤𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 . This basic
algorithm attempts to find a first feasible solution as quickly
as possible. Explicitly, from the initial state 𝑝𝑝0, at each
iteration, a random sample 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 that belongs to the free
workspace 𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is chosen (line 3). The main routines used
are:

- Nearest function (line 4): finds the nearest node
𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 in the tree to 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 .

- Steer function (line 5): finds, in the free domain, the
single reachable state 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 located at a random distance
𝐷𝐷𝑟𝑟 from 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , which is closest to 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 .

If the path from the 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 to 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 is collision free (line 6),
 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 is added to the tree 𝜏𝜏 as a child of 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (line 7). The
algorithm holds until iteration 𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 or when a first path is
found (line 9).
Algorithm 1: Basic path planner
Function: 𝜏𝜏 =RRT(𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑝𝑝0, 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)
1: 𝜏𝜏 ←InitializeTree();
2: repeat
3: 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ←RandomState�𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�
4: 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ←Nearest(𝜏𝜏, 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
5: 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 ←Steer(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
6: If ObstacleFree(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛), then
7: 𝜏𝜏 ←InsertNode(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛, 𝜏𝜏)
8: end if
9: until �𝑖𝑖 + +> 𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙||𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑤𝑤𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�
10: Return 𝜏𝜏
Using RRT, no optimal solution is ensured as no metric is
used to measure the optimality of the trajectories. Therefore,
RRT* algorithm is introduced in [6] with theoretical
guarantees of optimality. RRT* converges to the optimal
solution as the number of samples reaches infinity. This is by
incrementally rewiring the tree as lower cost trajectories

𝜕𝜕Δ1

𝜕𝜕Δ2

𝜕𝜕Δ3

𝑝𝑝0

𝜎𝜎01∗

𝔇𝔇𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜕𝜕Δ1 ∪ 𝜕𝜕Δ2 ∪ 𝜕𝜕Δ3

𝑝𝑝1

𝑝𝑝2

𝑝𝑝3

𝜎𝜎03∗

𝜎𝜎02∗ 𝜎𝜎23∗

𝜎𝜎12∗

𝜎𝜎13∗

𝑤𝑤0
𝑤𝑤2

𝑤𝑤1

𝜕𝜕Δ1

𝑤𝑤3

become available with the addition of new nodes to the tree.
RRT* uses additional functionality compared to RRT:

- Cost function: provides the total cost from the initial state
to a node in the tree.

- Rewiring procedure: rewires the local neighborhood of
the newly added node such that the cost to the initial state
decreases.

Instead of considering the nearest node as the parent of 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 ,
we take a set of nodes 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 in the local neighborhood, of
radius 𝐷𝐷𝑛𝑛 of 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 . Then ChooseParent routine selects the
best parent for 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛. 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 is connected to the parent, which
minimizes the total cost from the initial state as first instance
where RRT* optimizes the complete trajectory. As a second
instant of optimization, the local neighborhood of 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 is
optimized with the ReWire routine. If the assignment of
𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 as the parent node of the nodes in 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 decreases the
total cost from 𝑝𝑝0 to 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , then the ReConnect
function removes the edge between 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and it’s parent
node and creates an edge between 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛, the new
parent node.

Because there is no prior limits of the number of nodes in tree
generated by the RRT* algorithm, the multi-directional
RRT* consumes many computational capacities where
supplementary memory is required to store the added nodes.
The number of nodes can be fixed to alleviate this problem.
Therefore, an extension of RRT*, called RRT* Fixed Nodes
(RRT*FN), that employs a node removal procedure from the
skeleton of the RRT*is used. The philosophy of the strategy
comes from the fact that: If a node does not have children, it
also means that it is not on a path reaching the goal state. This
approach is summarized by Algorithm 2 with the main rules:

- The tree is grown as the RRT* until a maximum number
of nodes 𝑀𝑀 is reached where the algorithm must be
restarted if a feasible path to the goal region is not
reached.

- A new node is added, if and only if there exists, at least,
one node in the tree with one or no child (this node is
deleted from the tree) and the cost to the present state
from the initial state has decreased.

- In the case of multiple nodes present without children,
one of them is selected randomly.

The main functionality of this algorithm besides those
ensured by RRT* is the removal procedure. We distinguish
ordinary and forced removal functions that are:
- ReWire function (line 14): If a node in Pnear (line 11) is

the only child of another node in Pnear and the
cumulative path cost to this child node is lower through
pnew , then the child node is reconnected as a child
to pnew (line 42) and the parent is deleted (line 40).

- ForcedRemoval function (line 15): There are cases,
where a node cannot be added since there is no nodes
with only one child to remove in Pnear. In order to
alleviate this situation, a global ForcedRemoval
searches the whole tree for nodes without children and
removes one randomly. For more details about the
algorithm the reader may refer to [7].

Remark 3 : RRT* and RRT*FN do not terminate when the
goal region is reached, but the algorithm still executed for

the number of iterations assumed for the convergence. This
is done to improve the path’s total length.
Algorithm 2: RRT*FN path planner
Function: 𝜏𝜏 =RRT*FN(𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑝𝑝0, 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ,𝑀𝑀)
1: 𝜏𝜏 ←InitializeTree();
3: repeat
4: If 𝑀𝑀 < NodesAdded(𝜏𝜏) then
5: 𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜 ← 𝜏𝜏
6: end if
7: 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ←RandomState�𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�
8: 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ←Nearest(𝜏𝜏, 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
9: 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 ←Steer(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
10: If ObstacleFree(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛),then
11: 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ←Neighbors(𝜏𝜏, 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛)
12: 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ←ChooseParent(𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛)
13: 𝜏𝜏 ←InsertNode(𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 , 𝜏𝜏)
14: 𝜏𝜏 ←ReWire (𝜏𝜏,𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛)
15: 𝜏𝜏 ←ForcedRemoval(𝜏𝜏,𝑤𝑤𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)
16: end if
17: If NoRemovalPerformed(), then
18: 𝜏𝜏 ←RestoreTree()
19: until �𝑖𝑖 + +> 𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�
20 : Return 𝜏𝜏
Function: 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚=ChooseParent(𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛)
21: 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ← 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛;
22: 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ←Cost(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)+𝑐𝑐(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛)
23:for 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛do
24: 𝑥̀𝑥 ←Steer(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛)
25: If ObstacleFree(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑥̀𝑥) and 𝑥̀𝑥 = 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 , then
26: 𝑐𝑐̀ ←Cost(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)+𝑐𝑐(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛)
27: If 𝑐𝑐̀ <Cost(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛) and 𝑐𝑐̀ < 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚then
28: 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ← 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
29: 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ← 𝑐𝑐̀
30: end if
31: end if
32: end for
33 : Return 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
Function: 𝜏𝜏 =ReWire(𝜏𝜏 ,𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚, 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛)
34:for 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛\𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚do
35: 𝑥̀𝑥 ←Steer(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)
36: If ObstacleFree(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑥̀𝑥) and 𝑥̀𝑥 = 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , and
37: Cost(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛)+𝑐𝑐(𝑥̀𝑥) <Cost(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) then
38: If OnlyChild(Parent(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)) and
39: 𝑀𝑀 <NodesAdded(𝜏𝜏) then
40: RemoveNode(Parent(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛))
41: end if
42: 𝝉𝝉 ←ReConnect (𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝜏𝜏)
43: end if
44: end for
45: Return 𝜏𝜏
Finally, the multi-directional RRT*FN searches the optimal
paths from each point to their neighbors (point-to-points
problem). At each iteration, Algorithm 3 uses the same tree
as the Algorithm 2 to find the optimal paths from a one
starting point to multiple goal points located in multiple
disjoint regions. However, the tree is still growing until the
entire goal regions are reached while the algorithm must be

restarted even if one feasible path to one goal state is not
reached (line 22). The algorithm returns a complete tree as
well as a vector of costs, from the starting point to the goal
points (line 25).
Algorithm 3: Multi-RRT*FN path planner
Function: (𝜏𝜏, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = Multi-RRT*FN(𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑝𝑝0, 𝑊𝑊,𝑀𝑀)
1:𝜏𝜏 ←InitializeTree();
2: 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑊𝑊
3:repeat
4: If 𝑀𝑀 < NodesAdded(𝜏𝜏) then
5 : 𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜 ← 𝜏𝜏
6: end if
7: 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ←RandomState�𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�
8: 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ←Nearest(𝜏𝜏, 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
9: 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 ←Steer(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
10: If ObstacleFree(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛) then
11: 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ←Neighbors(𝜏𝜏, 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛)
12: 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ←ChooseParent(𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛)
13: 𝜏𝜏 ←InsertNode(𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 , 𝜏𝜏)
14: 𝜏𝜏 ←ReWire (𝜏𝜏,𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛)
15: 𝜏𝜏 ←ForcedRemoval(𝜏𝜏, 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)
16: end if
17: If NoRemovalPerformed(), then
18 : 𝜏𝜏 ←RestoreTree()
19: 𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ←ReachedROI(𝜏𝜏)
20: 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟/𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
21:until �𝑖𝑖 + +> 𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�
22:If 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≠ ∅, then
23: Goto line 4
24:𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =CostDist(𝑝𝑝0,𝑊𝑊, 𝜏𝜏)
25 : Return 𝜏𝜏, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

B. Second scale: GA based TSP algorithm
As mentioned in Section II, this paper addresses an optimal
path planning problem for a quadrotor that has to pass by a
finite number of points and return back to the initial point.
The locations of POIs are known a-priori in a bounded two-
dimensional space. This problem is well-known as the TSP
NP-hard optimization problem where a broad range of
algorithms and solutions are employed as for instance [8].
Herein, the heuristic algorithm based on Genetic Algorithms
(GA) is proposed to deal with this problem under the name
TSP-GA (see Algorithm 4). It uses the inter-costs 𝒞𝒞 provided
by Algorithm 3. PopEvaluation computes the fitness
function for each member of the population (line 10). Then
new individuals of the population are created using mutation
to add randomization to the process, similar to that of the
natural genome (GeneticOperator) (line 12). Finally,
BestRoute points out the total optimal cost 𝐶𝐶𝑡𝑡 as well as the
optimal order of points 𝑂𝑂 (line 11).
Algorithm 4: GA-TSP optimal path
Function: (Τ,𝑂𝑂,𝐶𝐶𝑡𝑡) =GA-TSP(𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ,𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇 ,𝑁𝑁𝑝𝑝, 𝑝𝑝0,𝑃𝑃,𝑊𝑊,𝑀𝑀)

%Scale one
1: 𝐿𝐿 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ (𝑃𝑃)
2 :(𝑇𝑇(1),𝒞𝒞(1)) = Multi-RRT*FN(𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑝𝑝0, 𝑊𝑊,𝑀𝑀)
3: 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑊𝑊/𝑤𝑤1
4:for 𝑖𝑖 = 1 to 𝑖𝑖 = 𝐿𝐿 − 1do

5: (𝑇𝑇(𝑖𝑖 + 1),𝒞𝒞(𝑖𝑖 + 1)) = Multi-RRT*FN(𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑝𝑝𝑖𝑖 ,
𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑀𝑀)
6: 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟/𝑤𝑤𝑖𝑖+1
7:end for

%Scale two
8: InitializePop(𝑁𝑁𝑝𝑝)
9:for 𝑖𝑖 = 0 to𝑖𝑖 = 𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇 do
10: PopEvaluation(𝑁𝑁𝑝𝑝,𝐷𝐷)
11: (𝑂𝑂,𝐶𝐶𝑡𝑡) ←BestRoute()
12: GeneticOperator()
13:end for
14:Return 𝑂𝑂,𝐶𝐶𝑡𝑡.

C. Second scale: Savings based VRP algorithm
The major constraint in quadrotor-based coverage planning is
the limited onboard energy. Therefore, we develop a
methodology, based on the well-known Vehicle Routing
Problem (VRP), to minimize the flight path considering
energy limitation. VRP finds the minimal set of shortest
routes for either single or multiple starting points. In this
case, the quadrotor leaves from a starting point (base station)
and returns back to that point after finishing each assigned
tour to download collected data and of course recharge
batteries until achieving the overall mission. We proceed by
the method developed in [9] and called savings-VRP
approach. Notice that the standard savings algorithm
considers finding the set of shortest paths while guarantying
the load capacity constraint. In our adapted algorithm, the
load capacity is transformed into flight time capacity. This
flight time capacity contains in addition to the required time
to cover each point, the traveling time from a point to another
point as expressed by (4). The savings is a heuristic algorithm
that often yields a relatively good solution. The basic savings
concept expresses the cost savings obtained by joining two
routes into one route as illustrated in Fig. 3, where point 0
represents the base station.

Fig. 3. Saving principle.

Initially in Fig. 3(a) locations 𝑖𝑖 and 𝑗𝑗 are visited on separate
routes. An alternative to this is to visit the two locations on
the same route, for example in the sequence 𝑖𝑖 − 𝑗𝑗 as
illustrated in Fig. 3(b). Because the traveling required
durations are given, the savings that result from driving the
route in Fig. 3(b) instead of the two routes in Fig. 3(a) can be
calculated. Denoting the traveling time between two given
points 𝑖𝑖 and 𝑗𝑗 by 𝑡𝑡𝑖𝑖𝑖𝑖 and the time required for covering 𝑞𝑞𝑖𝑖, the
total time 𝑇𝑇𝑎𝑎 in Fig. 3(a) is:
𝑇𝑇𝑎𝑎 = 𝑡𝑡0𝑖𝑖 + 𝑞𝑞𝑖𝑖 + 𝑡𝑡𝑖𝑖0 + 𝑡𝑡0𝑗𝑗 + 𝑞𝑞𝑗𝑗 + 𝑡𝑡𝑗𝑗0 (5)
Similarly, the total traveling time 𝑇𝑇𝑏𝑏 in Fig. 3(b) is:
𝑇𝑇𝑏𝑏 = 𝑡𝑡0𝑖𝑖 + 𝑞𝑞𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑞𝑞𝑗𝑗 + 𝑡𝑡𝑗𝑗0 (6)
By combining the two routes, one obtains the savings 𝑆𝑆𝑖𝑖𝑖𝑖:
𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑎𝑎 − 𝑇𝑇𝑏𝑏 = 𝑡𝑡𝑖𝑖0 + 𝑡𝑡0𝑗𝑗 − 𝑡𝑡𝑖𝑖𝑖𝑖 (7)

𝑖𝑖 𝑗𝑗

0

𝑖𝑖 𝑗𝑗

0

(a) (b)

Relatively large values of 𝑆𝑆𝑖𝑖𝑖𝑖indicate that it is attractive, with
regard to time traveling, to visit points 𝑖𝑖 and 𝑗𝑗 on the same
route such that point 𝑗𝑗 is visited immediately after point 𝑖𝑖.
This approach is described by Algorithm 5.
Algorithm 5: Savings-VRP optimal path
1: execute Algorithm 4 until line 7
2: Calculate the savings 𝑆𝑆𝑖𝑖𝑖𝑖 for every pair �𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑗𝑗�.
3: Creates the "savings list" in descending order.
4: For the savings 𝑆𝑆𝑖𝑖𝑖𝑖 under consideration, include link
(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑗𝑗) in a route following the rules of savings principle
(see [9]).
5: If the savings list has not been exhausted, return to line 4,
process the next entry in the list; otherwise, stop.
6: Any points that have not been assigned to a route during
Step 4 must each be served by a vehicle route that begins at
the base-station 𝑝𝑝0 visits the unassigned point and returns to
𝑝𝑝0.

IV. Space decomposition and POIs generation
The POIs may be moved, removed or added in specific
locations by the user on the map. However, the main
objective of this section is to generate automatically the set of
POIs that allow the quadrotor to cover the overall target
zones. Many strategies are used such as the map
decomposition techniques where each target zone is
decomposed into unified sub-regions, of equal size, called
cells. These latter may cover partially or totally, precisely or
approximately the overall target area. Therefore, the center of
each cell that represents one ROI is considered as POI. Each
ROI is covered when the quadrotor crosses it. This
decomposition is related essentially to the shape and the size
of the sensor’s range. Usually, the nature of the mission
defines the type of the used sensor such as infrared camera,
gas sensor, chemical sensor, ultrasonic sensor, etc. A good
review about the directional sensors is made in [10].
Therefore, we distinguish many regular and irregular shapes.

In fact, all the existing algorithms considering circular and
rectangular cells have limited efficiency especially in the
presence of complex shaped obstacles where the borders are
generally ignored by the algorithm. The presence of the
human operator is thus necessary to find the best locations of
POIs nearby the obstacles and moves them to more
advantageous positions. Moreover, the POIs are generated
after obtaining the grid covering the map according to the
shape of the sensor’s range. Therefore, we seek to find a
generic and scalable technique that allows to generate directly
the POIs and still be applied whatever the shape and the size
of the range.

We propose to discretize the closed bounded non-connected
domains 𝔇𝔇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 using triangulation methods. This is
referred to a mesh generation that provides a collection of
vertices and edges constituting triangles covering-up the
whole map. Unlike, the existing approaches, the vertices
represent the set of POIs 𝑃𝑃. It is better than the choice of the
centers of the cells. Then, any sensor can be used. The most
available meshing software is just used as “black boxes” and
difficult to be integrated with other codes. In reference [11] a
simple and high quality-meshing open source was developed.

It gives a specific attention to the borders of obstacles as
well as the target zones with adaptation possibility of POIs
density. These points are used directly whatever the shape or
the size of the sensor. The density of points may be adjusted
as well as the coverage rate using a scale factor. For the
complete MATLAB code and further significations about this
meshing algorithm, the reader may refer to [11].

V. RESULTS AND DISCUSSION

Before presenting the obtained results, we iterate firstly, our
overall approach in order to achieve a coverage mission using
quadrotor. It is summarized in six steps as follows:
1- Definition of the map by fixing the target zones (shape

and boundaries) and obstacles.
2- Definition of the mission and the sensor (range, altitude).
3- Apply the mesh generation algorithm and get target zone

decomposition.
4- From the discretized map, get the localization of the

resulting POIs (vertices in the mesh model). The user can
add, remove or move some POIs.

5- Apply Algorithm 4 (scale 1), based on multi-RRT*FN
strategy, using the obtained POIs in order to obtain the
pair-wise cost matrix and the real optimal connection
graph.

6- Apply Algorithm 4 (scale 2) considering the matrix cost,
to find the shortest path that relates the overall points and
then turn to the initial point. If the onboard energy is not
enough for the mission, a Savings-VRP can be used
(Algorithm 5) to find the minimal set of shortest paths.

 In this example of application, we assume usage of an AR-
drone quadrotor for coverage planning of bounded and
constrained area to demonstrate the effectiveness of our
proposed approach. In order to reduce the consumed energy,
the quadrotor is supposed flying at a constant altitude and
seek to avoid the obstacles using only the lateral and
longitudinal motions. Besides, bottom camera is used as
sensor for photos shooting. The captured pictures have
rectangular form (range of the sensor).

The workspace is considered in this case of study as a 2D
bounded map 𝔇𝔇(𝑥𝑥,𝑦𝑦) = [0𝑚𝑚 5𝑚𝑚] × [0𝑚𝑚 5𝑚𝑚]. The map is
composed of one target region, 𝔇𝔇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝔇𝔇(𝑥𝑥,𝑦𝑦). In this
target region, we distinguish one connected obstacle. The
quadrotor can be enclosed by a circle of radius 𝑟𝑟 = 0.25 𝑚𝑚.
Therefore, the obstacle is enlarged by a distance of 𝑟𝑟 =
0.25𝑚𝑚. Therefore, the resulting fictive obstacle is
𝔇𝔇𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥, 𝑦𝑦) = 𝜕𝜕𝛥𝛥1. This obstacle is delimited by the
following coordinates (𝑥𝑥, 𝑦𝑦): (1,1), (3.5,1), (4.5,2),
(4.5,3) and (2.5,3), thus 𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝔇𝔇\𝔇𝔇𝑜𝑜𝑜𝑜𝑜𝑜. The overall
algorithms are running using Matlab tool where four
scenarios are proposed.
Scenario 1:
In this first scenario, we assess the performance and the
efficiency of the RRT based algorithms, namely RRT, RRT*
and RRT*FN, through a deep comparison. Thus, the
quadrotor starts from an initial state: 𝑝𝑝0(𝑥𝑥, 𝑦𝑦) =
(0.5 𝑚𝑚, 0.5 𝑚𝑚) and flies toward the goal state 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑥𝑥, 𝑦𝑦) =
(4𝑚𝑚, 4 𝑚𝑚)𝑇𝑇. Herein, 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 represents the unique POI, 𝑃𝑃 =

https://www.google.fr/search?site=webhp&q=discretized&spell=1&sa=X&ved=0ahUKEwjH-JzFzuTRAhVD2xoKHZZHD9wQBQgZKAA

�𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�, that represents the center of the ROI 𝑤𝑤𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
delimited by a square of width 𝐿𝐿 = 1 𝑚𝑚. The parameters used
in the algorithms are:

1. Max of iterations: 𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 4000
2. Max of nodes: 𝑀𝑀 = 2000
3. Radius of local neighborhoods: 𝐷𝐷𝑛𝑛 = 1,5𝑚𝑚

The obtained results are summarized in Table 1 for the
overall strategies where the corresponding paths are depicted
in Fig. 4 (a), Fig. 4 (b) and Fig. 4 (c) for RRT, RRT* and
RRT*FN respectively.

 (a) RRT (b) RRT*

(c) RRT*FN

Fig. 4. One goal point path planning problem.
Table 1 : Summary of comparative analysis.

 RRT RRT* RRT*FN
Path cost (m) 6.4736 4.9492 4.9589

Run time (sec) 2.9373 11.9042 13.1847
Tree density

(Number of nodes)
2993 2993 2000

Optimality No Yes Yes
Obviously, from Fig. 4, RRT exhibits the worst performance
with respect to optimality of the path. This is because no
optimality criteria are considered. Both RRT* and RRT*FN
converge towards an optimal path even though the rate of
convergence is slower for the RRT*FN (13.1847 sec) where
the final solution can be improved with respect to the number
of iterations (see Table 1). We observe also that the trees
looks denser, in the case of RRT*, than the case of RRT*FN.
We should note that the required memory increases linearly
as iterations increase in the case of RRT* (2993 nodes are
generated). It adds nodes to improve the path without
removing procedural. This latter makes the RRT*FN requires
much less memory (fixed memory i.e. a fixed number of
nodes M= 2000). RRT*FN still optimizes the path by adding
better nodes and removing the ones with no children or one
child.
Scenario 2:
In this second scenario, we show the result from the
application of the multi-directional RRT*FN (see Algorithms
3). Using the same parameters as those mentioned in
Scenario 1, the algorithm finds all the optimal paths from the

starting state 𝑝𝑝0(𝑥𝑥, 𝑦𝑦) = (0.5 𝑚𝑚, 0.5 𝑚𝑚) to the POIs P =
{𝑝𝑝1(0.25, 4.75) , 𝑝𝑝2(4.75, 2) , 𝑝𝑝3(2.5,4.75), 𝑝𝑝4(4.5, 3)} ∈
𝔇𝔇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 . These POIs represent the centers of ROIs 𝑊𝑊 =
{𝑤𝑤1,𝑤𝑤2,𝑤𝑤3,𝑤𝑤4} that are delimited by squares of width 𝐿𝐿 =
1 𝑚𝑚. The obtained results are displayed in Fig. 5.

Fig. 5. Multi-RRT*FN based path planning.

We observe that the algorithm grows a tree from the starting
point (one root) and find multiple optimal paths in the same
tree. The optimal paths have lengths as: c01 = 4.3918,
c02 = 4.8831, c03 = 4.9831, c04 = 5.4956.
Scenario 3:
Considering the same map and the same set of POIs as in the
previous scenarios, the quadrotor has to pass by all the points
and then return back to the starting point by following the
shortest path. To achieve this objective, Algorithm 4 is used.
In this particular example, four sub-trees are grown where:
Tree 1: starting point: 𝑝𝑝0 goal points: 𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3, 𝑝𝑝4
Tree 2: starting point: 𝑝𝑝1 goal points: 𝑝𝑝2, 𝑝𝑝3, 𝑝𝑝4
Tree 3: starting point: 𝑝𝑝2 goal points: 𝑝𝑝3, 𝑝𝑝4
Tree 4: starting point: 𝑝𝑝3 goal points: 𝑝𝑝4
Once, the inter-costs for the set of points 𝑃𝑃 are obtained, we
start computing the shortest route that connects all the points.
To do this, we use the second scale of Algorithm 4 by setting
up the following conditions:

1. GA population size: 𝑁𝑁𝑝𝑝 =60
2. Max of iterations 𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇 = 4000

As shown in Fig. 6 (a), good results are obtained. The global
path, of cost 14.55𝑚𝑚, contains five sub-optimal paths of
costs 𝑐𝑐02 = 4.58 𝑚𝑚, 𝑐𝑐24 = 0.99 𝑚𝑚, 𝑐𝑐43 = 2.59 𝑚𝑚, 𝑐𝑐31 =
2.24 𝑚𝑚, 𝑐𝑐10 = 4.34𝑚𝑚.

(a) TSP problem (b) C-VRP problem

Fig. 6. Shortest path.
In the case of limited energy, many rounds must be supposed.
In this example, we assume that the quadrotor has a capacity
of 35 seconds flying at moderate speed with average value of
0.5 𝑚𝑚/𝑠𝑠𝑠𝑠𝑠𝑠. At each point, the quadrotor hovers about 3
seconds. The obtained sequences and the shortest paths are

1 2 3 4
0.5

1

1.5

2

2.5

3

3.5

4

4.5

x[m]

y[
m

]

1 2 3 4
0.5

1

1.5

2

2.5

3

3.5

4

4.5

x[m]

y[
m

]

1 2 3 4
0.5

1

1.5

2

2.5

3

3.5

4

4.5

x[m]

y[
m

]

0 1 2 3 4 5
0

1

2

3

4

5

x[m]

y[
m

]

p0

p1 p3

p4

p2

0 1 2 3 4 5
0

1

2

3

4

5

x[m]

y[
m

]

depicted in Fig. 6 (b) where the quadrotor passes by all the
points in two rounds that are:
Sequence 1 that links the points 𝑝𝑝0, 𝑝𝑝2 and 𝑝𝑝4 has a length of
10.69 𝑚𝑚 and comprises three optimal sub-paths of
costs: 𝑐𝑐02 = 4.58 𝑚𝑚, 𝑐𝑐24 = 0.99 𝑚𝑚 and 𝑐𝑐40 = 5.12 𝑚𝑚.
Sequence 2 that links the points 𝑝𝑝0, 𝑝𝑝3 and 𝑝𝑝1 has a length of
21.70 𝑚𝑚 and comprises of three optimal sub-paths 𝑐𝑐03 =
4.14 𝑚𝑚, 𝑐𝑐31 = 2.24 𝑚𝑚 and c10 = 4.62 m. This example is
just to demonstrate the effectiveness of Algorithm 5. Because
in real life, the quadrotors have an autonomy at least of 10
minutes.
Scenario 4:
In this scenario, the quadrotor should cover completely the
map described in the previous scenarios. For this reason, we
have to generate the POIs in order to achieve the given
mission. The discretized map model using mesh generation is
displayed in Fig. 7.

Fig. 7. Map meshing model.

The vertices of the triangles are considered as POIs. They are
uniformly distributed on the map and represented by the
yellow points (see Fig. 7). In order to cover totally this map,
the quadrotor has to pass by all these points. The shortest path
sequences is displayed in Fig. 8 (a). The footprints of the
quadrotor passage are displayed in Fig. 8 (b). Notice that the
quadrotor uses a camera with square range of width 𝐿𝐿 = 1 𝑚𝑚.

 (a) Shortest path (b) Camera footprints

Fig. 8. Coverage planning mission.
This technique ensures a coverage planning. The quadrotor
starts from the base station (black disk) and finishes at the
blue point then turns back to the base station. The developed
approach allows covering almost all the map with a coverage
rate about 94%.

VI. CONCLUSION & FUTURE IMPROVEMENTS

We have presented a coverage path-planning algorithm for
VTOL quadrotors flying in 2D workspace while avoiding
obstacles. The algorithm is executed in two steps: the first
one is a RRT*-FN based algorithm that uses removal
procedurals to maintain a fixed number of nodes, limiting the

size of memory. This algorithm allows finding optimal
paths from one point to their neighbors. The second stage
allows connecting these points following the shortest path
using GA. We provided also a scalable solution with respect
to the consumed energy using savings technique. For a
complete coverage scenario, a discrete model of the map
composed of a collection of vertices and edges is obtained
through a mesh generation. Then, from this discretized map,
we define the set of POIs. Regarding future work many
extensions to this paper can be made:
- Heuristics can be used to improve the convergence rate of

our algorithm as in [4] by involving the Artificial
Potential Fields.

- The coverage mission cannot be completed if the
quadrotor is stopped by a threat. Therefore, a team of
quadrotors will be used to cover the target area in our near
future work.

REFERENCES
[1] J. M. Phillips, N. Bedrossian, and L. E. Kavraki, “Guided

Expansive Spaces Trees: a search strategy for motion- and
cost-constrained state spaces,” in IEEE International
Conference on Robotics and Automation, 2004, vol. 4, p.
3968–3973 Vol.4.

[2] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H.
Overmars, “Probabilistic roadmaps for path planning in
high-dimensional configuration spaces,” IEEE
Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[3] S. Lavalle “Planning Algorithms / Motion Planning.”
[Online]. Available: http://planning.cs.uiuc.edu/.
[Accessed: 07-Jan-2017].

[4] P. Pharpatara, B. Hérissé, and Y. Bestaoui, “3-D Trajectory
Planning of Aerial Vehicles Using RRT*,” IEEE
Transactions on Control Systems Technology, vol. PP, no.
99, pp. 1–8, 2016.

[5] P. Pharpatara, R. Pepy, B. Hérissé, and Y. Bestaoui,
“Missile trajectory shaping using sampling-based path
planning,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2013, pp. 2533–2538.

 [6] S. Karaman, and E. Frazzoli, “Optimal Kinodynamic
Motion Planning using Incremental Sampling-Based
Methods,” in IEEE Conference on Decision and Control,
2010.

[7] O. Adiyatov and H. A. Varol, “Rapidly-exploring random
tree based memory efficient motion planning,” in IEEE
International Conference on Mechatronics and
Automation, 2013, pp. 354–359.

[8] Q. Zhu and S. Chen, “A New Ant Evolution Algorithm to
Resolve TSP Problem,” in Sixth International Conference
on Machine Learning and Applications, 2007, pp. 62–66.

[9] Copyright (c) 1994-2016 by Michael G. Kay Matlog
Version 17 21-Jan-2016
(http://www.ise.ncsu.edu/kay/matlog).

[10] M. Amac Guvensan and A. Gokhan Yavuz, “On coverage
issues in directional sensor networks: A survey,” Ad Hoc
Networks, vol. 9, no. 7, pp. 1238–1255, 2011.

[11] Per-Olof Persson, Mesh Generation for Implicit
Geometries, thesis, 2005.

0 1 2 3 4 5
0

1

2

3

4

5

x[m]

y[
m

]

0 1 2 3 4 5

0

1

2

3

4

5

x[m]

y[
m

]

	Y. Bouzid*, Y. Bestaoui, H. Siguerdidjane
	I. INTRODUCTION
	II. PROBLEM STATEMENT
	III. ALGORITHMS DESCRIPTION
	A. First scale RRT based algorithm
	B. Second scale: GA based TSP algorithm
	C. Second scale: Savings based VRP algorithm
	IV. Space decomposition and POIs generation
	V. RESULTS AND DISCUSSION
	VI. CONCLUSION & FUTURE IMPROVEMENTS

