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Abstract

This paper contains a partial result on the Pierce–Birkhoff conjecture on piece-
wise polynomial functions defined by a finite collection {f1, . . . , fr} of polynomials.
In the nineteen eighties, generalizing the problem from the polynomial ring to an
artibtrary ring Σ, J. Madden proved that the Pierce–Birkhoff conjecture for Σ is
equivalent to a statement about an arbitrary pair of points α, β ∈ Sper Σ and their
separating ideal < α, β >; we refer to this statement as the local Pierce-Birkhoff
conjecture at α, β. In [8] we introduced a slightly stronger conjecture, also stated
for a pair of points α, β ∈ Sper Σ and the separating ideal < α, β >, called the Con-
nectedness conjecture, about a finite collection of elements {f1, . . . , fr} ⊂ Σ. In
the paper [10] we introduced a new conjecture, called the Strong Connectedness
conjecture, and proved that the Strong Connectedness conjecture in dimension
n− 1 implies the Strong Connectedness conjecture in dimension n in the case when
ht(< α, β >) ≤ n− 1.

The Pierce-Birkhoff Conjecture for r = 2 is equivalent to the Connectedness
Conjecture for r = 1; this conjecture is called the Separation Conjecture. The Strong
Connectedness Conjecture for r = 1 is called the Strong Separation Conjecture. In
the present paper, we fix a polynomial f ∈ R[x, z] where R is a real closed field and
x = (x1, . . . , xn), z are n + 1 independent variables. We define the notion of two
points α, β ∈ Sper R[x, z] being in good position with respect to f . The main
result of this paper is a proof of the Strong Separation Conjecture in the case when
α and β are in good position with respect to f .

Dedicated to Professor Felipe Cano on the occasion of his sixtieth birthday.

† F. Lucas passed away in April 2016
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1 Introduction

All the rings in this paper will be commutative with 1. Let R be a real closed field.
Let x = (x1, . . . , xn) and let z be a single variable. Let B = R[x]. We will use the
notation A := R[x, z] = B[z].

Throughout the paper, by connectedness we mean semi-algebraic connect-
edness (sometimes called definable connectedness, cf. [3], Définition 2.4.5). If
R = R, a semi-algebraic subset of Rn is connected if and only if it is semi-
algebraically connected ([3], Theorem 2.4.5).

The Pierce–Birkhoff conjecture asserts that any piecewise-polynomial function

g : Rn → R

can be expressed as a maximum of minima of a finite family of polynomials in n
variables.

We start by giving a precise statement of the conjecture as it was first stated by
M. Henriksen and J. Isbell in the early nineteen sixties ([1] and [7]).

Definition 1.1 A function g : Rn → R is said to be piecewise polynomial if Rn

can be covered by a finite collection of closed semi-algebraic sets Pi, i ∈ {1, . . . , s}
such that for each i there exists a polynomial gi ∈ B satisfying g|Pi

= gi|Pi
.

Clearly, any piecewise polynomial function is continuous. Piecewise polynomial
functions form a ring, containing B, which is denoted by PW (B).

On the other hand, one can consider the (lattice-ordered) ring of all the functions
obtained from B by iterating the operations of sup and inf. Since applying the
operations of sup and inf to polynomials produces functions which are piecewise
polynomial, this ring is contained in PW (B) (the latter ring is closed under sup
and inf). It is natural to ask whether the two rings coincide. The precise statement
of the conjecture is:

Conjecture 1 (Pierce-Birkhoff) If g : Rn → R is in PW (B), then there exists
a finite family of polynomials gij ∈ B such that f = sup

i
inf
j
(gij) (in other words, for

all x ∈ Rn, f(x) = sup
i

inf
j
(gij(x))).

Here is a partial list of earlier papers devoted to the Pierce–Birkhoff conjecture: [4],
[8], [9], [10], [11], [12], [13] [15] and [16].

The starting point of this paper is the abstract formulation of the conjecture in
terms of the real spectrum of B and separating ideals proposed by J. Madden in
1989 [11].

For more information about the real spectrum, see [3]; there is also a brief
introduction to the real spectrum and its relevance to the Pierce–Birkhoff conjecture
in the Introduction to [8].

Terminology: If Σ is an integral domain, the phrase “valuation of Σ” will mean “a
valuation of the field of fractions of Σ, non-negative on Σ”. Also, we will sometimes
commit the following abuse of notation. Given a ring Σ, a prime ideal p ⊂ Σ, a
valuation ν of Σ

p
and an element x ∈ Σ, we will write ν(x) instead of ν(x mod p),
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with the usual convention that ν(0) = ∞, which is taken to be greater than any
element of the value group.

Let K be a field and ν a valuation of K with value group Γ.

Notation. For γ ∈ Γ, let

Pγ = {g ∈ K \ {0} | ν(g) ≥ γ } ∪ {0}

and
Pγ+ = {g ∈ K \ {0} | ν(g) > γ } ∪ {0}.

Let Σ be a subring of K. We define the graded algebra associated to ν to be

grν(Σ) =
⊕

γ∈Γ

Pγ ∩ Σ

Pγ+ ∩ Σ
.

For all f ∈ K, f ∈ Pγ \ Pγ+ , we denote by inν(f) the natural image of f in

Pγ

Pγ+

⊂ grν(K).

For a point α ∈ Sper Σ we denote by pα the support of α. We let Σ[α] = Σ
pα

and let Σ(α) be the field of fractions of Σ[α]. We let να denote the valuation of
Σ(α) associated to α ([9], p. 264), Γα its the value group, Rνα the valuation ring,
kα its residue field and grα(Σ) the graded algebra associated to the valuation να.

For f ∈ Σ with γ = να(f), let inαf denote the natural image of f in
Pγ

Pγ+
. For an

ordered field k, we will denote by kr a real closure of k and by k an algebraic closure
of kr. Typically we will work with ordered fields of the form k = Σ(α). Usually we
will write kr (respectively, k̄) to indicate that we have fixed a real closure kr of k
(resectively, an algebraic closure k̄ or kr) once and for all.

Next, we recall our generalization of the notion of piecewise polynomial func-
tions and the Pierce–Birkhoff conjecture from polynomials to arbitrary rings ([9],
Definition 8). Let Σ be a ring.

Definition 1.2 Let
g : Sper Σ →

∐

γ∈Sper Σ

Σ(γ)

be a map such that, for each γ ∈ Sper Σ we have g(γ) ∈ Σ(γ). We say that g
is piecewise polynomial (denoted by f ∈ PW (Σ)) if there exists a covering of
Sper Σ by a finite family (Si)i∈{1,...,s} of constructible sets, closed in the spectral
topology, and a family (gi)i∈{1,...,s}, gi ∈ Σ such that, for each γ ∈ Si, g(γ) = gi(γ).

We call gi a local representative of g at γ and denote it by gγ (gγ is not, in
general, uniquely determined by g and γ; this notation means that one such local
representative has been chosen once and for all).

Note that PW (Σ) is naturally a lattice ring: it is equipped with the operations
of maximum and minimum. Each element of Σ defines a piecewise polynomial
function. In this way we obtain a natural injection Σ ⊂ PW (Σ).
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Definition 1.3 A ring Σ is a Pierce–Birkhoff ring if, for each g ∈ PW (Σ),
there exists a finite collection {gij} ⊂ Σ such that g = sup

i
inf
j
gij .

Conjecture 2 (the Pierce–Birkhoff conjecture for regular rings) A regular
ring Σ is a Pierce-Birkhoff ring.

J.J. Madden reduced the Pierce–Birkhoff Conjecture to a purely local statement
about separating ideals and the real spectrum. Namely, he introduced

Definition 1.4 [11] Let Σ be a ring. For α, β ∈ Sper Σ, the separating ideal
of α and β, denoted by < α, β >, is the ideal of Σ generated by all the elements
f ∈ Σ that change sign between α and β, that is, all the f such that f(α) ≥ 0 and
f(β) ≤ 0.

Definition 1.5 A ring Σ is locally Pierce-Birkhoff at α, β if the following con-
dition holds. Let g be a piecewise polynomial function, let gα ∈ Σ be a local represen-
tative of g at α and gβ ∈ Σ a local representative of g at β. Then gα−gβ ∈< α, β >.

The statement that, for a certain class X of rings, every ring Σ ∈ X is locally
Pierce-Birkhoff for all α, β ∈ Sper Σ will be denoted by PB(X ). If X consists of
only one ring Σ, we will write PB(Σ) instead of PB(X ).

Theorem 1.6 (J. Madden [11]) The ring Σ is Pierce-Birkhoff if and only if PB(Σ)
holds.

In [8], we introduced

Definition 1.7 (the Connectedness property) Let Σ be a ring and

α, β ∈ Sper Σ.

We say that Σ has the Connectedness property at α and β if for any finite
collection f1, . . . , fs of elements of Σ \ < α, β > there exists a connected set

C ⊂ Sper Σ

such that α, β ∈ C and C ∩ {fi = 0} = ∅ for i ∈ {1, . . . , s} (in other words, α and
β belong to the same connected component of the set Sper Σ \ {f1 . . . fs = 0}).

The statement that, for a certain class of rings X , every ring Σ ∈ X has the
Connectedness Property for all α, β ∈ Sper Σ will be denoted by CP(X ).

Conjecture 3 (the Connectedness conjecture for regular rings) Let X de-
note the class of all the regular rings. Then CP (X ) holds.

In the paper [8], we proved that CP(X ) implies PB(X ) where X is the class of
all the polynomial rings over R. The proof given in [8] applies verbatim to show
that CP(X ) implies PB(X ) for any class X of rings whatsoever. One advantage of
CP(Σ) is that it is a statement about elements of Σ which makes no mention of
piecewise polynomial functions; in particular, if Σ is a polynomial ring, CP(Σ) is a
statement purely about polynomials.
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For a field k and an ordered group Γ, we will denote by k
[[

tΓ
]]

, the ring of
generalized power series over k with exponents in Γ, that is, the ring formed by all
the expressions of the form

∑

γ∈W

cγt
γ , where cγ ∈ k and γ and W is a well ordered

subset of the semigroup Γ+ of non-negative elements of Γ. The ring k
[[

tΓ
]]

is
equipped with a natural t-adic valuation with value group Γ. An order on the field
k induces an order on k

[[

tΓ
]]

in a natural way.

Definition 1.8 Let Σ be a ring and k an ordered field. A k-curvette on Sper Σ
is a homomorphism of the form

α : Σ → k
[[

tΓ
]]

,

where Γ is an ordered group. A k-semi-curvette is a k-curvette α together with a
choice of the sign data sgn x1, . . . , sgn xr ∈ {+,−}, where x1, ..., xr are elements of
Σ whose t-adic values induce an F2-basis of Γ/2Γ.

In [9] we explained how to associate to a point α of Sper Σ a (kα)r-semi-curvette.
Conversely, given an ordered field k, a k-semi-curvette α determines a prime ideal
pα (the ideal of all the elements of Σ which vanish identically on α) and a total
ordering on Σ

pα
induced by the ordering of the ring k

[[

tΓ
]]

of formal power series.
Hence a k-semi-curvette determines a point in Sper Σ. Below, we will often describe
points in the real spectrum by specifying the corresponding semi-curvettes.

We will use the following notation throughout the paper. We denote
√
< α, β >

by p; set µα := να(< α, β >) and µβ := νβ(< α, β >).

Let X be a class of rings. We use the following notation:
CPn(X ) means that CP holds for all the rings Σ ∈ X such that dimΣ ≤ n;
PBn(X ) means that PB holds for all the rings Σ ∈ X such that dimΣ ≤ n;
CP≤n(X ) means that the Connectedness Property holds for all the rings Σ ∈ X

and α, β ∈ Sper Σ such that ht(p) ≤ n;
PB≤n(X ) means that the local Pierce-Birkhoff Conjecture holds for all the rings

Σ ∈ X and α, β ∈ Sper Σ such that ht(p) ≤ n.

In the situation of CPn for a certain regular ring Σ of dimension n, assume that
ht(p) < n. If one wants to proceed by induction on n, a natural idea is to try to
reduce CPn(Σ) to CPn−1(Σp).

The difficulty with this approach is that the CPn−1 cannot be applied directly.
Indeed, let f1, . . . , fs be as in the CP and let ∆α ⊂ Γα denote the greatest isolated
subgroup not containing να(p).
The hypothesis fi∈/ < α, β > does not imply that fi∈/ < α, β > Σp: it may happen
that να(fi) < µα, να(fi) − να(p) ∈ ∆α and so fi ∈< α, β > Σp, as shown by the
Example below.

Example. Let Γ = Z2
lex. Let α, β ∈ Sper R[x, y, z] be given by the semi-curvettes

x(t) = t(0,3) (1.1)

y(t) = t(0,4) + bt(1,0) (1.2)

z(t) = t(0,5) + ct(1,1), (1.3)
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where b ∈ {bα, bβ} ⊂ R, c ∈ {cα, cβ} ⊂ R and t(0,1) > 0, t(1,0) > 0. The constants
bα 6= bβ, cα 6= cβ will be specified later. Let f1 = xz−y2, f2 = x3−yz, f3 = x2y−z2;
consider the ideal (f1, f2, f3). The most general common specialization of α, β is
given by the semi-curvette

x(t) = t3 (1.4)

y(t) = t4 (1.5)

z(t) = t5, (1.6)

t > 0. The corresponding point of Sper R[x, y, z] has support (f1, f2, f3), so

p =
√

< α, β > = (f1, f2, f3).

Let (xα(t), yα(t), zα(t)) and (xβ(t), yβ(t), zβ(t)) be the semi-curvettes defining α and
β as in (1.1)–(1.3). Let us calculate fi(xα(t), yα(t), zα(t)) and fi(xβ(t), yβ(t), zβ(t)).
In the notation of (1.1)–(1.3) we have

f1(x(t), y(t), z(t)) = (c− 2b)t(1,4) + f̃1 (1.7)

f2(x(t), y(t), z(t)) = −(c+ b)t(1,5) + f̃2 (1.8)

f3(x(t), y(t), z(t)) = (b− 2c)t(1,6) + f̃3, (1.9)

where f̃i stands for higher order terms with respect to the t-adic valuation. Choose
bα, bβ, cα, cβ so that none of f1, f2, f3 change sign between α and β. The smallest
να-value of an element which changes sign between α and β is

(1, 4) + (0, 4) = (1, 5) + (0, 3) = (1, 8),

so µα = (1, 8).
Thus we have fi∈/ < α, β >, but fi ∈< α, β > R[x, y, z]p.

In this way we are naturally led to formulate a stronger version of CP, one which
has exactly the same conclusion but with somewhat weakened hypotheses.

Definition 1.9 (Strong Connectedness Property) Let Σ be a ring and

α, β ∈ Sper Σ

two points having a common specialization ξ. We say that Σ has the Strong Con-
nectedness Property at α, β if given any f1, . . . , fs ∈ Σ \ (pα ∪ pβ) such that for
all i ∈ {1, . . . , s},

να(fi) ≤ µα, νβ(fi) ≤ µβ (1.10)

and such that no fi changes sign between α and β, the points α and β belong to the
same connected component of Sper Σ \ {f1 · · · fs = 0}.

We say that Σ has the Strong Connectedness Property if it has the Strong
Connectedness Property at α, β for all α, β ∈ Sper A having a common specializa-
tion.

Let n ∈ N\{0}. We say that Σ has the Strong Connectedness Property up
to height n if it has the Strong Connectedness property at α, β for all α, β ∈ Sper A
having a common specialization such that ht(< α, β >) ≤ n.
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Let X be a class of rings. We use the following notation:
SCP(X ) is the statement that every ring Σ ∈ X has the Strong Connectedness

property;
SCPn(X ) is the statement that every ring in X of dimension at most n has the

Strong Connectedness property;
SCP≤n(X ) is the statement that every ring in X has the Strong Connectedness

property up to height n.

Remark 1.10 One advantage of the Strong Connectedness Property is that its hy-
potheses behave well under localization at prime valuation ideals. Namely, let Σ, α,
β and f1, . . . , fs be as in Definition 1.9. Let ξ be a common specialization of α and
β. Let α0 be the preimage of α under the natural inclusion σ : Sper Σpξ

→֒ Sper Σ
and similarly for β0. Then, for all i ∈ {1, . . . , s},

να0
(fi) ≤ να0

(< α, β >) = να0
(< α0, β0 >), (1.11)

νβ0
(fi) ≤ νβ0

(< α, β >) = νβ0
(< α0, β0 >) (1.12)

and fi does not change sign between α0 and β0.

Conjecture 4 (The Strong Connectedness Conjecture)
Let X be the class of all the regular rings. Then SCP(X ) holds.

Let Σ be a ring and α, β ∈ Sper Σ. Let the notation be as in Remark 1.10. We
have the following result (see [10]):

Theorem 1.11 If Σpξ
has the Strong Connectedness property at α0, β0, then Σ has

the Strong Connectedness property at α, β.

Corollary 1.12 Let X be a class of rings closed under localization.
We have SCPn(X ) =⇒ SCP≤n(X ) (the implication SCP≤n(X ) =⇒ SCPn(X ) is
trivial and does not depend on X being closed under localization).

The Connectedness Property with s = 1 will be referred to as the Separation
Property. The Separation Conjecture asserts that any regular ring has the
Separation Property; this is equivalent to the Connectedness Conjecture for s = 1
and to the Pierce-Birkhoff Conjecture for s = 2. Analogously to CP, we have the
following stronger version of the Separation Property.

Definition 1.13 Let Σ be a ring, f a non-zero element of Σ and α, β two points
of Sper Σ having a common specialization. Consider the following conditions:

(1) να(f) ≤ µα, νβ(f) ≤ µβ and f does not change sign between α and β
(2) α and β lie in the same connected component of {f 6= 0}.
The strong separation property for the triple (f, α, β) is the implication

(1) =⇒ (2). The ring Σ has the strong separation property if the strong sepa-
ration property holds for any triple (f, α, β) as above.

Remark 1.14 Assume that α and β have a common specialization. Let ξ be the
most general such specialization. If f(ξ) 6= 0, then α and β lie in the same connected
component of {f 6= 0}, so (f, α, β) trivially satisfy the Strong Separation Property
in this case. In the rest of the paper, we will tacitly assume that f(ξ) = 0.
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Let X be a class of rings. We use the following notation:
SP(X ) is the statement that the Separation Property holds for all the rings in

X ;
SSP(X ) is the statement that the Strong Separation Property holds for all the

rings in X ;
SPn(X ) (resp. SSPn(X )) is the statement that the Separation Property (resp.

Strong Separation Property) holds for all the rings in X of dimension at most n.
SP≤n(X ) (resp. SSP≤n(X )) is the statement that the Separation Property (resp.

the Strong Separation Property) holds for all rings Σ ∈ X and all α, β ∈ Sper Σ
having a common specialization, such that ht(p) ≤ n.

Conjecture 5 (Strong Separation Conjecture) Let X be the class of all regular
rings. Then SSP(X ) holds.

As explained above, we have so far proved the following implications for any
class of rings X and any natural number n:

SCPn(X ) +3
KS

SSPn(X )
KS

SCP≤n(X ) +3

��

SSP≤n(X )

��
CP≤n(X ) +3

��

PB≤n(X ) +3

��

SP≤n(X )

��
CPn(X ) +3 PBn(X ) +3 SPn(X )

(1.13)

If, in addition, the class X is closed under localization at prime ideals, then the
two upper vertical arrows of the above diagram are, in fact, equivalences. In other
words, SCPn(X ) ⇐⇒ SCP≤n(X ) and SSCn(X ) ⇐⇒ SSC≤n(X ).

Consider the Euclidean space Rn+1 with coordinates (x, z), where x = (x1, . . . , xn).
Let π : Rn+1 → Rn denote the natural projection onto the x-space. Let D ⊂ Rn

be a connected semi-algebraic subset of Rn. A cylinder in Rn+1 is a set of the
form C = π−1(D) for some D as above. Using the same notation as in [3], given a
basic semi-algebraic set F ⊂ Rn+1, we denote by F̃ the subset of Sper B[z] defined
by the same equations and inequalities as F in Rn+1. More generally, if F is a
boolean combination of basic semi-algebraic subsets of Rn+1, F̃ is defined in the
obvious way. Similarly, we denote by π̃ : Sper B[z] → Sper B the natural projection
corresponding to π. We will refer to C̃ as the cylinder lying over D̃.

Definition 1.15 Let g ∈ B[z]. Let φ : D → R be a semi-algebraic continuous
function and let h = z − φ : C → R. If, for each a ∈ D, the element φ(a) is a
simple root of the polynomial equation g(a, z) = 0, we call h a branch of g over D.
We call h = z − φ a branch over D if h is a branch of g over D for some g. It is
called a real branch over D if the image of φ is contained in R.

8



Let K be an algebraically closed field and ν a valuation on K[z]. Let g ∈ K[z]

be a monic polynomial and let g =
d
∏

i=1
gi be the factorization of g into linear factors.

Definition 1.16 For i ∈ {1, . . . , d}, we say that gi is a ν-privileged factor if
ν(gi) ≥ ν(gj) for all j ∈ {1, . . . , d}.

Definition 1.17 Assume given a real closed field L ⊂ K such that K = L. For
i ∈ {1, . . . , d}, if gi ∈ L[z], we call gi a real factor of g.

Let γ0 ∈ Sper B. Fix a real closure B(γ0)r of B(γ0) and an algebraic closure B(γ0)

of B(γ0)r, once and for all. Take g = zd + ad−1z
d−1 · · · + a0 ∈ B[z]. Let g =

d
∏

i=1
gi

be the factorization of g into linear factors over B(γ0).

Definition 1.18 We refer to the gi as γ0-branches. If

gi ∈ B(γ0)r[z],

we say that gi is a real γ0-branch of g.

Take an element γ ∈ π−1(γ0) ∈ Sper A. A γ-privileged branch of g is a
νγ-privileged γ0-branch of g.

In §4, we will recall results from [3] which canonically associate to each real
branch gi of g an element gi(γ) ∈ A(γ)r.

Consider a monic polynomial f = zd+ad−1z
d−1 · · ·+a0 ∈ A. For a point b ∈ D,

denote by f(b) the polynomial f(b) = zd + ad−1(b)z
d−1 · · ·+ a0(b) ∈ R[z].

Notation. For a polynomial g ∈ A we will use the notation g(k) := 1
k!

∂gk

∂zk
.

Definition 1.19 Assume that p is a maximal ideal of A so that p = supp(ξ). As-
sume that there exist connected semi-algebraic sets D ⊂ Rn and C = π−1(D) ⊂
Rn+1 as above, having the following properties:

(1) α, β ∈ C̃
(2) For each k ∈ {0, . . . , d− 1}, the number of real roots of f (k)(b), counted with

or without multiplicity, is independent of the point b ∈ D.
In this situation we say that α, β are in good position with respect to f, x, z.

Remark 1.20 Condition (2) of Definition 1.19 is satisfied in the following situa-
tion. Assume that there are d pointwise distinct continuous functions φj : D → R

such that f =
d
∏

j=1
(z−φj) in C (in other words, f has d pointwise distinct real roots

in C). Then, for all i > 0, ∆
(

f (i)
)

6= 0 and f (i) has d − i pointwise distinct con-
tinuous real roots in C. In this case, any α, β ∈ C having a common specialization
are in good position with respect to f, x, z.

Remark 1.21 The condition that p is a maximal ideal of A is equivalent to saying
that α and β have a unique common specialization whose support is a maximal ideal
of A.

9



We can now state the main theorem of this paper.

Theorem 1.22 Assume that α, β are in good position with respect to f, x, z. Then
the Strong Separation Property holds for f , α and β.

At the end of the paper, we will explain that the hypothesis of good position in
the theorem can be relaxed somewhat (see Remark 8.4).

Open question. We do not know whether, given f ∈ A and α, β ∈ Sper A, there
exists an automorphism σ : A→ A such that, letting x̃j = σ(xj) and z̃ = σ(z), the
points α and β are in good position with respect to f, x̃ and z̃.

Remark 1.23 We note that the following slightly more general result holds.
Let BD ⊂ R(x) denote the ring of rational functions having no poles in D.
To each polynomial g in A whose first coefficient has no zeroes in D we can

naturally associate a monic polynomials in BD[z], namely, g divided by its leading
coefficient.

The above definitions, in particular, Definition 1.19, extend in an obvious way
to polynomials in BD[z]. Theorem 1.22 holds for f ∈ BD[z], alternatively, for non-
monic f ∈ A whose first coefficient has no zeroes in D. The proof is exactly the
same as the proof of Theorem 1.22 given in the present paper. We chose to work
in the more restrictive setup of monic polynomials in A in order not to overburden
the notation.

Remark 1.24 As we explained earlier the reason for introducing strong versions of
all the conjectures is the fact that the strong versions are stable under the localization
at p. This would allow us to proceed by induction on the dimension of A and reduce
the case when p is not maximal to the case when p is maximal by localization. The
difficulty is that in the preset paper we use in an essential way the hypothesis that
the ground field is real closed. Localization at p destroys this hypothesis. If the
results of the present paper could be generalized to a non real closed ground field R,
the hypothesis on the maximality of p would become unnecessary.

Remark 1.25 In the proof of Theorem 1.22, we may assume that the polynomial
f is reduced. Indeed, suppose the Theorem is true when f is reduced. Assume that
f̃ ∈ A satisfies να(f̃) ≤ µα, νβ(f̃) ≤ µβ and that f̃ does not change sign between α
and β. Let f = f̃red. We have να(f) ≤ να(f̃) ≤ µα and the same for β. If

να(f) = να(f̃), (1.14)

then να(f̃/f) = 0, so f̃/f is a unit in Rα and Rβ. Therefore f does not change
sign between α and β. Thus, in all cases (that is, regardless of whether the equality
(1.14) holds) f satisfies the hypotheses of the Strong Separation Conjecture. Then
α and β belong to the same connected component of {f 6= 0} and hence also to the
same connected component of {f̃ 6= 0}, as desired.

This paper is organized as follows.

In §2 we let K be an algebraically closed field. Let g =
d
∑

i=0
aiz

i, where ai ∈ K

and ad = 1, be a monic polynomial. Let ν be a valuation of K[z].

10



We define the notion of Newton polygon of g. The main result of §2, Proposition
2.19, says that if k ∈ {1, . . . , d− 1} and νγ

(

g(i)
)

≥ νγ(g) for all i ≤ k then, for each

γ0-branch gj of g and each γ-privileged branch h of g(k), we have νγ(h) > νγ(gj).

In §3 we start with a monic polynomial g in the variable z whose coefficients are
continuous functions over a semi-algebraic set U ⊂ Rn. We assume that for a ∈ U
the number s of real roots of g(a), counted with multiplicities, is independent of a.
We define continuous functions φi : U → R, 1 ≤ i ≤ s, such that for all a ∈ U we

have g(a) =
s
∏

i=1
(z − φi(a)). This result is well known in the case when R = R, but

we did not find it in the literature in the case of an arbitrary real closed field R. If,
in addition, the coefficients of g are semi-algebraic functions on U then the φj can
also be chosen to be semi-algebraic : [5] Lemma 1.1.

In §4 we recall results from [3] which canonically associate to each real branch
gi of g an element gi(γ) ∈ A(γ)r.

In §5 we study, for a point γ ∈ Sper A, the extension νγ̄ of νγ to A(γ). The
main result of §5 is Proposition 5.1; it says that this extension is unique and that
for every branch h over D we have

νγ(h) = min{νγ(Reh), νγ(Imh)}. (1.15)

Most of §6 is devoted to using the Newton polygon to prove comparison results
between quantities of the form νγ(gj) and νγ(h) where gj is a γ0-branch of g and h
is an γ0-branch of g′, as well as relating inequalities of size to inequalities of values.
Lemma 6.2 says that if h1, h2 are two real branches such that 0 < h1(γ) < h2(γ)
then νγ(h1(γ)) ≥ νγ(h2(γ)).

If g1, g2 are two real branches of g and h a real branch of h′ between g1 and g2,
then γ cannot have strictly higher contact with both g1 and g2 than it does with
h. The equidistance Lemma (Lemma 6.7) is a valuation-theoretic generalization of
this fact to the case when the branches are not necessarily real.

§7 is devoted to reducing the problem to the case when Γα
∼= Z and Γβ

∼= Z and
kα = kβ = R.

Finally, in §8 we use the results of the preceding sections to complete the proof
of Theorem 1.22 by induction on deg(f).

Acknowledgement. We thank Michel Coste for sharing his insights on semi-
algebraicity of roots of polynomials over real closed fields.

We would also like to thank the Institute of Mathematics of UNAM in Cuer-
navaca (Mexico) for inviting D. Schaub in February 2018; the work on this paper
was completed during our stay there.

2 Graded algebra and Newton polygon

LetK be an algebraically closed field and z an independent variable. Fix a valuation
ν of K(z) with value group Γ.
Let νz denote the valuation of K(z) defined by

νz

(

∑

i

biz
i

)

= min
{

ν
(

biz
i
) ∣

∣ bi 6= 0
}

.
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For each g ∈ K[z], we have νz(g) ≤ ν(g). We will write inz instead of inνz .

Remark 2.1 Let X be an independent variable. Since ν|K = νz|K and inzz is
transcendental over grzK in grz(K[z]), we have a natural isomorphism

(grνK)[X] ∼= grz(K[z])

of graded algebras.

For g =
d
∑

j=0
ajz

j , let Sz(g) =
{

i ∈ {0, . . . , d}
∣

∣ ν
(

aiz
i
)

= νz(g)
}

. We have

inzg =
∑

i∈Sz(g)

inz(ai)inz(z)
i.

Assume that there exists g ∈ K[z] such that

νz(g) < ν(g). (2.1)

For such a g, the polynomial inzg is not a monomial.

Let δ(g, z) = deg(inzg) and δ = δ(g, z).
The inequality (2.1) is equivalent to saying that

∑

i∈Sz(g)

inν(ai)inν(z)
i = 0.

Since K is algebraically closed, the polynomial ḡ(X) :=
∑

i∈Sz(g)

inνaiX
i factors into

linear factors in grνK[X] :

ḡ(X) = inνaδ

δ
∏

j=1

(X − ψj).

Thus there exists a unique φ̄ ∈ grνK such that inνz = φ̄. Take a representative
φ ∈ K such that φ̄ = inνφ. We have ν(z − φ) > ν(z).

We summarize the above considerations in the following Remark:

Remark 2.2 Take g ∈ K[z]. We have the following implications:

νz(g) < ν(g) =⇒ inν(z) is algebraic over grν(K) ⇐⇒ inν(z) ∈ grν(K)

⇐⇒ there exists φ ∈ K such that ν(φ) = ν(z) < ν(z − φ).

The second implication uses the fact that K is algebraically closed; the first and the
third one are valid without any hypotheses on K.

Assume that the strict inequality (2.1) holds. Consider the change of variables
z̃ = z − φ as above. Write g =

∑

i
ãiz̃

i. Let Sz,z̃(g) =
{

i
∣

∣ νz
(

ãiz̃
i
)

= νz(g)
}

. Let

κ = maxSz,z̃(g).

We have νz
(

ãiz̃
i
)

= ν (ãi) + iν(z) because νz (ãi) = ν (ãi) and

νz (z̃) = νz(z − φ) = min{ν(z), ν(φ)} = ν(z) = ν(φ).

12



Lemma 2.3 We have:
(1) νz(g) = min

{

νz
(

ãiz̃
i
) ∣

∣ ãi 6= 0
}

.
(2) inzg =

∑

i∈Sz,z̃(g)

inz (ãi) inz(z − φ)i.

Proof: (1) The fact that νz(g) ≥ min
{

νz
(

ãiz̃
i
) ∣

∣ ãi 6= 0
}

follows from the definition
of valuation. Now, νz(g) = min

{

ν
(

aiz
i
) ∣

∣ ai 6= 0
}

. Replacing z by z̃ + φ in g and
expanding in z, we see that ãi is a sum of terms of the form cai+kφ

k where c ∈ N.
Hence ν

(

ãiz̃
i
)

≥ min
k∈N

{ν(ai+kφ
kzi)} ≥ min

0≤j≤d

{

ν
(

ajz
j
)}

= νz(g). This proves (1).

From (1), we deduce that Sz,z̃(g) =
{

i
∣

∣ νz
(

ãiz̃
i
)

= νz(g)
}

. We have

g =
∑

i∈Sz,z̃(g)

ãiz̃
i + h

with νz(h) > νz(g). This proves (2). �

Remark 2.4 With the above notation, we have κ = δ.

Lemma 2.5 Consider two integers i, j ∈ {0, . . . , d}. Assume that

ν
(

ãiz̃
i
)

≤ ν
(

ãj z̃
j
)

and νz
(

ãiz̃
i
)

≥ νz
(

ãj z̃
j
)

. (2.2)

We have:
(1) i ≤ j;
(2) If at least one of the inequalities (2.2) is strict, then i < j.

Proof : We have ν (ãi) + iν(z̃) = ν
(

ãiz̃
i
)

≤ ν
(

ãj z̃
j
)

= ν (ãj) + jν (z̃), so

ν (ãi)− ν (ãj) ≤ (j − i)ν (z̃) .

On the other hand,

ν (ãi) + iν(z) = ν (ãi) + iνz (z̃) = νz
(

ãiz̃
i
)

≥ νz
(

ãj z̃
j
)

= ν (ãj) + jν(z),

so (j − i)ν(z) ≤ ν (ãi)− ν(ãj). We obtain

(j − i)ν(z) ≤ ν (ãi)− ν (ãj) ≤ (j − i)ν (z̃) .

From this we deduce both (1) and (2). �

Let δ̃ = δ(g, z̃) = deg(inz̃(g)).

Lemma 2.6 We have:
(1) δ̃ ≤ δ;
(2) If equality holds in (1), then inzg = inz(ãδ)inz(z − φ)δ.

Proof : We have ν
(

ãδ̃ z̃
δ̃
)

≤ ν
(

ãδ z̃
δ
)

, because δ̃ ∈ Sz̃(g), so ν
(

ãδ̃ z̃
δ̃
)

is minimal

among all the ν
(

ãiz̃
i
)

.
On the other hand, we have ν (ãδ) = ν (aδ). By Lemma 2.3,

νz

(

ãδ̃z̃
δ̃
)

≥ νz(g) = νz

(

aδz
δ
)

= νz

(

ãδ z̃
δ
)

.
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Applying (1) of Lemma 2.5 with δ̃ = i and δ = j, we deduce (1).
Now, if equality holds in (1), Sz,z̃(g) = {δ}. Indeed, let i ∈ Sz,z̃(g); then i ≤ δ.

Now, by definition of δ̃, we have ν
(

ãiz̃
i
)

≥ ν
(

ãδ̃ z̃
δ̃
)

= ν
(

ãδ z̃
δ
)

(as δ = δ̃). On the

other hand, because i, δ ∈ Sz,z̃(g), we have νz
(

ãiz̃
i
)

= νz
(

ãδ z̃
δ
)

. Applying (1) of
Lemma 2.5 to the pair (i, δ), we deduce that δ ≤ i. Thus δ = i and Sz,z̃(g) = {δ}.
Now the conclusion follows from Lemma 2.3 (2). �

Remark 2.7 Let g(z) = a0 + a1z + · · ·+ adz
d ∈ K[z].

(1) We have the following implications: δ(g, z) = 0 ⇐⇒ ν(a0) < ν(ajz
j) for

all j > 0 =⇒ νz(g) = ν(g).
(2) Assume that inν(z) ∈ grν(K). Let φ ∈ K be as in the Remark 2.2 and put

z1 = z − φ. We have νz(g) = ν(g) =⇒ δ(g, z1) = 0.

Lemma 2.8 Let Σ be a noetherian domain and µ a rank 1 valuation of the field
of fractions of Σ, non-negative on Σ. Then every bounded subset of the semi-group
µ(Σ \ {0}) is finite.

Proof: Localizing Σ at the center of µ does not change the problem. Assume that
(Σ,m) is local and µ is centered at m. Take a subset T ⊂ µ(Σ \ {0}) such that
T ≤ β for some β ∈ µ(Σ \ {0}). Let Iβ = {y ∈ Σ | µ(y) ≥ β}. Since rk(µ) = 1, we
have mn ⊂ Iβ for some n ∈ N. A chain of elements β1 < β2 < . . . ≤ β of T induces
a chain of submodules

Iβℓ

mn
⊂ Iβℓ−1

mn
⊂ . . . ⊂ Iβ1

mn
⊂ Σ

mn
.

Hence

#T ≤ length
Σ

mn
<∞.

�

The set of isolated subgroups of Γ is naturally ordered by inclusion. In the
applications the rank of Γ will be finite by Abhyankar’s inequality. In particular,
the set of isolated subgroups of Γ will be well ordered.

From now till the end of this section, assume that char K = 0.

Lemma 2.9 Assume that the set of isolated subgroups of Γ is well-ordered. Fix a
polynomial

g(z) =

d
∑

i=0

aiz
i ∈ K[z]. (2.3)

(1) There exists φ ∈ K such that, letting z̃ = z − φ, we have νz̃(g) = ν(g).
(2) Let z̃ be as in (1). Assume that inν(z̃) ∈ grν(K). Then there exists φ∗ ∈ K

such that, letting z∗ = z̃ − φ∗, we have δ(g, z∗) = 0.

Proof: By Remark 2.7, (1) implies (2). Let us prove (1). Let δ = δ(g, z).
Let Λ0 be the smallest isolated subgroup of Γ such that ν(g) − νz(g) ∈ Λ0. If

Λ0 = (0), there is nothing to prove. Assume that (0) $ Λ0. Let Λ− be the union of
all the proper isolated subgroups of Λ0. We have Λ− $ Λ0 since

ν(g)− νz(g) ∈ Λ0 \ Λ−.
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Thus Λ− is the greatest proper isolated subgroup of Λ0.
It is sufficient to show that there exists φ ∈ K such that, letting z̃ = z − φ, we

have
ν(g) − νz̃(g) ∈ Λ−. (2.4)

The proof will then be finished by transfinite induction on Λ0.
Let Rν ⊂ K(z) denote the valuation ring of ν. Let

PΛ−
= {y ∈ Rν | ν(y)∈/Λ−} (2.5)

PΛ0
= {y ∈ Rν | ν(y)∈/Λ0}. (2.6)

Write ν = ν0 ◦ν− ◦µ where ν0 is the valuation of K(z) with valuation ring (Rν)PΛ0
,

ν− is the rank one valuation of the residue field κ(PΛ0
) of PΛ0

with valuation ring

(Rν)PΛ
−

PΛ0
(Rν)PΛ

−

and µ is the valuation of the residue field κ(PΛ−
) of PΛ−

with valuation ring

Rν

PΛ−

.

Replacing ν by ν0 ◦ ν− does not change the problem. In this way, we may assume
that Λ− = (0) and rk(Λ0) = 1.

In what follows, we will consider changes of variables of the form

z̃ = z − φ, (2.7)

such that νz̃(g) ≥ νz(g).
We proceed by induction on δ(g, z). The case δ = 0 is given by Remark 2.7.

Assume that δ > 0. If
νz(g) = ν(g), (2.8)

that is, the conclusion of Lemma 2.9 (1) holds with φ = 0 and z̃ = z, there is
nothing to prove. Assume

νz(g) < ν(g). (2.9)

By the algebraic closedness of K, inz(g) decomposes into linear factors in

inzK[inzz] = grzK[z].

Hence, by (2.9) and Remark 2.2, there exists b ∈ K such that

ν(z) = ν(b) < ν(z − b). (2.10)

Claim 1. It is sufficient to prove (1) in the case when

ν(z) = 0 (2.11)

and
ν(ai) ≥ ν(aδ) for all i ∈ {0, . . . , d}. (2.12)
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Proof of Claim 1. Assume that (1) of the Lemma is known in the case when (2.11)
and (2.12) hold. Put zb :=

z
b . We have

ν(zb) = 0. (2.13)

For i ∈ {0, . . . , d}, put aib := biai. Using the definition of δ, for each i ∈ {0, . . . , d}
we obtain

ν
(

aibz
i
b

)

= ν
(

aiz
i
)

≥ ν
(

aδz
δ
)

= ν
(

aδbz
δ
b

)

. (2.14)

Together with (2.13), this implies that ν (aib) ≥ ν (aδb) for all i ∈ {0, . . . , d}.
Let gb :=

d
∑

i=0
aibz

i
b. By assumption and in view of (2.13), there exists φb ∈ K

such that, letting z̃b = zb − φb, we have

νz̃b(gb) = ν(gb). (2.15)

Put φ := bφb. We have inz̃bgb = (inz̃g)b. In particular, Sz̃(g) = Sz̃b(gb). Now, (2.15)
is equivalent to saying that

∑

i∈Sz̃b
(gb)

inν
(

ãibz̃
i
b

)

6= 0. Then
∑

i∈Sz̃(g)

inν
(

ãiz̃
i
)

6= 0, so

that
νz̃(g) = ν(g). (2.16)

This completes the proof of Claim 1.

From now till the end of the proof of Lemma 2.9, assume that (2.11)–(2.12) hold.

Replacing g(z) by g(z)
aδ

does not change the problem. In this way, we may assume
that

aδ = 1 (2.17)

and
ν(ai) ≥ 0 for all i ∈ {0, . . . , δ − 1}. (2.18)

Let

PΛ0
:= {w ∈ Q[a0, . . . , ad] | ν(w)∈/Λ0} = PΛ0

∩Q[a0, . . . , ad] (2.19)

m0 := {w ∈ Q[a0, . . . , ad] | ν(w) > 0} = mν ∩Q[a0, . . . , ad]. (2.20)

Assumption (2.18) imply that PΛ0
and m0 are prime ideals of Q[a0, . . . , ad]. The

valuation ν induces a valuation of Q(a0, . . . , ad), centered at m0.

Let z0 := z.

Assume that, for a certain integer s ≥ 0, we have constructed elements

φ1, φ2, . . . , φs−1 ∈ K

and monic linear polynomials z0, . . . , zs ∈ K[z], having the following properties (if
s = 0 we adopt the convention that both sets {φ0, . . . , φs−1} and {z1, . . . , zs−1} are
empty, only z0 is defined) :

1) zi+1 = zi − φi, i ≤ s− 1; we have

ν(zi) = ν(φi) < ν(zi+1); (2.21)
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2) g ∈ Q[a0, . . . , ad]m0
[zi] and φ0, . . . , φs−1 ∈ Q[a0, . . . , ad]m0

;

3) write g =
d
∑

j=0
aj,sz

j
s ; we have aδ,s ∈ 1 +m0Q[a0, . . . , ad]m0

.

In the case s = 0 condition 3) clearly holds and 1) and 2) are vacuously true,
since only z0 is defined and the set {φ0, . . . , φs−1} is empty.

Remark 2.10 1. By (2.21) we have ν(φ0) < ν(φ1) < . . . < ν(φs−1).
2. By Lemma 2.6, δ(g, z) ≥ δ(g, z1) ≥ . . . ≥ δ(g, zs).

If s ≥ 1 and δ(g, zs) < δ(g, z), the proof is finished by induction on δ(g, z).
Assume that

δ(g, zs) = δ(g, z) = δ; (2.22)

if s > 0 this implies that δ(g, zs−1) = δ(g, zs).

If
νzs(g) = ν(g), (2.23)

that is, the conclusion of Lemma 2.9 (1) holds with φ =
s−1
∑

j=1
φj and z̃ = zs, there is

nothing more to prove. Assume that

νzs(g) < ν(g). (2.24)

Let X be an independent variable and consider the polynomial

g(X) :=
∑

i∈Szs(g)

inνaisX
i. (2.25)

By (2.22) we have degX(g) = δ. By Remark 2.2 and considerations which precede
it, we have g(inνzs) = 0.

Since K is algebraically closed , we can factor g into linear factors over grνK. If
g is not of the form

g = inνaδ,s(X − ψ)δ, (2.26)

take an element φs ∈ K such that inνz = inνφs. Put zs+1 := zs − φs.
By Lemma 2.6 (2) and in view of Remark 2.1, we have δ(g, zs+1) < δ and the

proof is finished by induction on δ.
Assume that g is of the form (2.26). By Newton binomial theorem and in view

of (2.17), equating the coefficients of inzs(zs)
δ−1 on the right and left hand sides of

(2.26), we see that

ψ = − inzs(aδ−1,s)

δ
.

Define φs to be −aδ−1,s

δ . By definitions, (2.21) holds for i = s.
Repeat the procedure to construct a sequence φ0, φ1, φ2, . . . ∈ K such that

ν(φ0) < ν(φ1) < ν(φ2) < . . . (2.27)

having the properties 1), 2), 3) preceding Remark 2.10.

It remains to show that at some point of this construction we obtain

νzi(g) = ν(g)
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or
δ(g, zi) < δ(g, z).

In both cases, the Lemma will be proved. Therefore, the proof of the Lemma is
reduced to the following Claim:

Claim 2: The above procedure cannot continue indefinitely.

Proof of the Claim 2: We give a proof by contradiction. Assume that the procedure
does not stop, in other words, the sequence {φi} is infinite. By construction,

φi ∈ Q[a0, . . . , ad]m0
for all i ∈ N.

Write ν0 = θ ◦ ǫ, where θ is a valuation of Q[a0, . . . , ad], centered at PΛ0
. We have

rk(ǫ) = rk(Λ0) = 1. Since
Q[a0, . . . , ad]m0

PΛ0
Q[a0, . . . , ad]m0

is noetherian, (2.27) and Lemma 2.8 imply that the sequence {ǫ( φi

φ0
)}i∈N is un-

bounded in Λ0. Hence so is the sequence {ν( φi

φ0
)}i∈N.

Take i sufficiently large so that

δν

(

φi
φ0

)

> ν(g)− νz(g). (2.28)

We have

νz(g) = δν(φ0) (2.29)

νzi(g) = δν(φi). (2.30)

Hence

ν(g)− νz(g) < δ(ν(φi)− ν(φ0)) = νzi(g) − νz(g) < ν(g)− νz(g), (2.31)

which is a contradiction. This completes the proof of the Claim and with it the
Lemma. �

Corollary 2.11 Given a finite family of polynomials f1, . . . , fs ∈ K[z], the follow-
ing hold.

(1) There exists φ ∈ K such that letting z̃ = z − φ, we have

νz̃(fi) = ν(fi) (2.32)

for i = 1, . . . , s.
(2) Assume that inν(z̃) ∈ grν(K). Then there exists φ∗ ∈ K such that, letting

z∗ = z̃ − φ∗, we have δ(fi, z
∗) = 0 for i = 1, . . . , s.

Proof: As before, (1) implies (2) by Remark 2.7, so it is enough to prove (1). It
follows from Lemma 2.3 that if z∗ = z − φ with ν(z∗) > ν(z) = ν(φ), then

νz∗(g) ≥ νz(g) for all g ∈ K[z]. (2.33)
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We construct z̃ satisfying (2.32) recursively in i. Take the greatest integer j ∈
{0, . . . , s− 1} such that

νz(fi) = ν(fi) for all i ∈ {1, . . . , j}. (2.34)

Apply Lemma 2.9 to fj+1. We obtain an element z̃ = z − φ such that (2.32) holds
with i = j + 1. Moreover, by (2.34) and (2.33), equality (2.32) also holds for all
i ≤ j. This completes the proof by induction on j. �

Definition 2.12 Let S = {v1, . . . , vs} be a finite subset of Q ⊕ (Γ ⊗Z Q). The
convex hull of S is

{

t1v1 + · · ·+ tsvs ∈ Q⊕ (Γ⊗Z Q)

∣

∣

∣

∣

∣

s
∑

i=1

ti = 1, ti ∈ Q≥0

}

.

Fix a polynomial g = adz
d + ad−1z

d−1 · · ·+ a0 ∈ K[z].

Definition 2.13 The Newton polygon of g, denoted by ∆(g, z), is the convex hull
of the set

d
⋃

i=0

{(i, ν(ai))} ⊂ Q⊕ (Γ⊗Z Q).

Let g = ad
d
∏

j=1
gj be the factorization of g into linear factors, with gj = z − φj.

From now till the end of the paper, assume that ν(z) ≥ 0.

Let L := [(i, ǫ), (j, θ)] ⊂ Q⊕Γ be a segment with i < j. The slope of L, denoted
sl(L), is defined by

sl(L) :=
θ − ǫ

j − i
∈ Γ⊗Z Q.

Remark 2.14 The Newton polygon ∆(gj , z) is the segment [(1, 0), (0, ν(φj ))]. Now

∆(g, z) = (0, ν(ad)) +
d
∑

j=1

∆(gj , z)

where the sum stands for the Minkowski sum. For each j ∈ {1, . . . , d}, ∆(g, z) has
a side Lj parallel to [(1, 0), (0, ν(φj ))].

Definition 2.15 In this situation, we say that gj is attached to Lj .

Remark 2.16 1. Note that, for ψ ∈ K, we have ν(z) > ν(ψ) if and only if
ν(z) > ν(z − ψ).

2. Take g ∈ K[z] and let h = z−ψ be a ν-privileged factor of g. Then ν(z) > ν(ψ)
if and only if ν(z) > ν(φj) for all j ∈ {1, . . . , d}. Indeed, “if” is trivial. “Only
if” follows from (1) of this Remark:

ν(z) > ν(ψ) ⇐⇒ ν(z) > ν(z − ψ) =⇒ ν(z) > ν(z − φj) ⇐⇒ ν(z) > ν(φj).
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Lemma 2.17 Take g ∈ K[z] monic and let h = z−ψ be a ν-privileged factor of g.

1. The following are equivalent:

(a) ν(z) > ν(ψ)

(b) δ(g, z) = 0.

2. If δ(g, z) = 0, every ν-privileged factor h = z − ψ of f is attached to the side
of ∆(g, z) of the smallest slope.

Proof: 1.(a) =⇒ (b) We number the φj in the increasing order of their values. Then,
for each j ∈ {1, . . . , d}, we have

ν





d−j
∏

q=1

φq



 ≤ ν(aj).

Hence ν(z) > ν(ψ) ⇐⇒ ν(z) > ν(z − φj) for all j ∈ {1, . . . , d} =⇒ ν(a0) =

ν

(

d
∏

i=1
φi

)

< ν
(

ajz
j
)

for all j ∈ {1, . . . , d} ⇐⇒ δ(g, z) = 0.

(b) =⇒ (a) We must show that the inequalities ν

(

d
∏

i=1
φi

)

< ν
(

ajz
j
)

for all j ∈
{1, . . . , d} imply that ν(z) > ν(φi) for all i ∈ {1, . . . , d}.

We argue by contradiction. Number the φi so that

ν(φ1) ≤ · · · ≤ ν(φd). (2.35)

Since ν

(

d
∏

i=1
φi

)

< ν(zd), we have ν(φ1) < ν(z). Assume that there exists i ∈
{2, . . . , d} such that

ν(φi) ≥ ν(z) (2.36)

and take the smallest such i. We have ad−i+1 = φ1 · · ·φi−1 +
∏

(j1,...,ji−1)

φj1 · · ·φji−1

where (j1, . . . , ji−1) runs over all the (i − 1)-tuples of elements of {1, . . . , d} other
than (1, . . . , i− 1). By (2.35) and (2.36), for each such (i− 1)-tuple we have

ν(φ1 · · · φi−1) < ν(φj1 · · · φji−1
).

Hence ν(ad−i+1) = ν(φ1 · · · φi−1) and

ν
(

ad−i+1z
d−i+1

)

= ν
(

φ1 · · ·φi−1z
d−i+1

)

≤ ν

(

d
∏

ℓ=1

φℓ

)

.

This is a contradiction. This completes the proof of the first part of the Lemma.

2. By Part 1 of this Lemma, we have ν(z) > ν(ψ). By Remark 2.16, we have
ν(z) > ν(φj), for all j ∈ {1, . . . , d}. Hence ν(z − φj) < ν(z) for all j ∈ {1, . . . , d}.

Now, sl([1, 0), (0, ν(φj )]) = −ν(φj). Thus {−ν(φ1), . . . ,−ν(φd)} is a complete
list of slopes of sides of ∆(g, z) of the form Lk. The result follows immediately. �
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ℓ

ǫ

ν(a0)

ν(ai)

i

ν(aj)

j

ν(ad)

d

ǫ = −ℓν(z) + ν(a0)

Remark 2.18 We have δ(g, z) = 0 if and only if δ(gred, z) = 0.

Proposition 2.19 Let g =
d
∏

j=1
gj be as above. Take an integer k ∈ {1, . . . , d− 1}.

Let g(k) =
d−k
∏

j=1
hj be a decomposition of g(k) into linear factors in K[z] and let h be

a ν-privileged factor of g(k). If

ν
(

g(i)
)

≥ ν(g) for all i ≤ k (2.37)

then
ν(h) > ν(gj) for 1 ≤ j ≤ d. (2.38)

Proof: By Lemma 2.9, we can choose coordinates so that one of the following
conditions holds:

(a)
δ(g, z) = 0 (2.39)

or
(b) inνz∈/grνK.

Next, we show that (b) =⇒ (a). Suppose (b) holds, that is, inνz∈/grνK. By
Remark 2.2, we have ν(g) = νz(g).

Let δ = δ(g, z). We give a proof of (a) by contradiction. Assume that δ > 0.
Then (δ − 1, ν(aδ)) is a vertex of ∆(g′, z). We have

ν(g) = νz(g) = min
j∈{0,...,d}

{

ν
(

ajz
j
)}

= ν
(

aδz
δ
)

.
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On the other hand,

ν
(

g′
)

= νz
(

g′
)

= min
j∈{1,...,d}

(ν(jajz
j−1)) = min

j∈{1,...,d}
(ν(ajz

j)− ν(z))

= min
j∈{1,...,d}

(ν(ajz
j))− ν(z)) = νz(g)− ν(z) = ν(g)− ν(z) < ν(g).

This contradicts (2.37). This proves the implication (b) =⇒ (a).

Therefore it is sufficient to prove the Proposition under the assumption (a). By
Remark 2.7, we have ν(g) = νz(g). More precisely, we have

ν(g) = νz(g) = ν (a0) < ν
(

ajz
j
)

for all j ∈ {1, . . . , d}. (2.40)

By the implication (b) =⇒ (a) of Lemma 2.17, formula (2.40) implies that

ν(z) > ν(gj).

If ν(z) ≤ ν(h), the proof is finished.

Hence we may assume that ν(z) > ν(h). By Lemma 2.17 (1), we have

δ
(

g(k), z
)

= 0.

In particular,

ν
(

g(k)
)

= ν(ak). (2.41)

We have

ν(ak) = νz

(

g(k)
)

= ν
(

g(k)
)

≥ ν(g) = νz(g) = ν(a0). (2.42)

Let
L = [(0, ν(a0)), (ǫ, ν(aǫ))]

be the side of ∆(g, z) of minimal slope. Let

L̃(k) = [(0, ν(ak)), (ǫ − k, ν(aǫ))] ⊂ ∆
(

g(k), z
)

.

Let L(k) be the side of ∆
(

g(k), z
)

of minimal slope. We have (0, ν(ak)) ∈ ∆
(

g(k), z
)

.
Now let gj be a ν-privileged factor of g. Using (2.42) we obtain

ν(gj) = −sl(L) = ν(a0)− ν(aǫ)

ǫ
<
ν(ak)− ν(aǫ)

ǫ− k

= −sl
(

L̃(k)
)

≤ −sl
(

L(k)
)

= ν(h).

This completes the proof of the Proposition. �
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3 Semi-algebraicity of roots of polynomials

Fix a monic polynomial g in one variable z of degree d whose coefficients are con-
tinuous semi-algebraic functions defined on a semi-agebraic set U ⊂ Rn.

Recall the following definition from [6]:

Definition 3.1 A multiple-valued function F from a space X to a space Y will
be called a continuous n-valued function from X to Y and will be denoted by
F : X →n Y provided

(i) to each x ∈ X, F assigns mx values y1, . . . , ymx in Y with associated multi-

plicities ki such that
mx
∑

i=1
ki = n;

(ii) to each neighborhood N(yi) in Y there corresponds a neighborhood U(x)
in X such that for z ∈ U(x) there are ki values of F(z) in N(yi), counted with
multiplicities.

Theorem 3.2 The root F in R of g(a), a ∈ U , is a continuous d-valued function
from U to R.

Remark 3.3 This Theorem is well known in the case R = C, but the proofs found in
the literature ([14], p. 3)) usually use complex analysis (namely, the characterization
of the number of roots in a disk as a contour integral) and so are not applicable in
our more general situation. The proof given below uses only the Euclidean topology

on R
d
and some elementary facts about finite group actions on varieties.

Proof of the Theorem: Fix a point a ∈ U . Let ψ(a) = (ψ1(a), . . . , ψd(a)) ∈ R
d

be the roots of g(a), let ℓ ≤ d be the number of distinct roots among the ψi(a).
Renumbering the ψi(a) if necessary, we may assume that there exist integers

0 = i0 < i1 < i2 < · · · < iℓ = d

such that:
(1) for all j ∈ {1, . . . , ℓ} we have ψij−1+1(a) = ψij−1+2(a) = . . . = ψij (a)
(2) for all j, j′ ∈ {1, . . . , ℓ}, j 6= j′, we have ψij (a) 6= ψij′ (a).

We want to check the definition of continuity at a. In other words, we must
show that for any ǫ ∈ R, ǫ > 0, there exists δ ∈ R such that for all a′ ∈ U ,
|a′ − a| < δ, there exists a numbering ψ1(a

′), . . . , ψd(a
′) of the roots of g(a′) such

that |ψj(a)− ψj(a
′)| < ǫ for all j ∈ {1, . . . , d}.

Let Sd denote the symmetric group on d elements. Let Sd × R
d → R

d
be the

action of Sd on R
d
by permutation of coordinates. Let σ : R

d → R
d
/Sd ∼= R

d

be the resulting quotient map, where the last isomorphism is obtained using the

symmetric functions. Let b = (b1, . . . , bd) be coordinates on the source R
d
. Then

the symmetric functions σ1(b), . . . , σd(b) form a natural coordinate system on the

target R
d
.

Definition 3.4 Let ξ = (ξ1, . . . , ξd) be a point of R
d
and ǫ a strictly positive element

of R. The ǫ-polydisk neighborhood of ξ is the set

Dǫ(ξ) =
{

(

ξ′1, . . . , ξ
′
d

)

∈ R
d
∣

∣

∣

∣

∣ξj − ξj′
∣

∣ < ǫ, j ∈ {1, . . . , d}
}

.
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Continuity of the d-valued function a 7→ ψ(a) follows from the fact that the map
σ is open at ψ(a), that is, for each ǫ-neighborhood Dǫ(ψ(a)) of ψ(a), its image
σ(Dǫ(ψ(a))) contains a δ-neighborhood Dδ(g(a)) of g(a). It remains to prove that
σ is open.

For j ∈ {1, . . . , ℓ}, put kj = ij − ij−1. We consider the stabilizer of ψ(a) in Sd:
Stab(ψ(a)) ∼= Sk1 × · · · × Skℓ. Let

c :=
d!

k1! · · · kℓ!
.

Let p1, . . . , pc ∈ Sd be a set of representatives of the left cosets of Stab(ψ(a)). Then
{p1ψ(a), . . . , pcψ(a)} is the orbit of ψ(a) under the action of Sd.

Take ǫ sufficiently small so that all the Dǫ(pjψ(a)), 1 ≤ j ≤ c, are disjoint. The
group Sd permutes the polydisks Dǫ(pjψ(a)), 1 ≤ j ≤ c. Thus the action of Sd on

R
d
restricts to an action on

c
∐

j=1
Dǫ(pjψ(a)). For each j ∈ {1, . . . , c}, the action of Sd

on R
d
induces an action of pjStab(pjψ(a))p

−1
j on Dǫ(pjψ(a)). We have the induced

action of Sd on
c
∐

j=1
Dǫ(pjψ(a))/pjStab(pjψ(a))p

−1
j , having no fixed points.

Consider the quotient σSt : Dǫ(ψ(a)) → Dǫ(ψ(a))/Stab(ψ(a)) of Dǫ(ψ(a)). In
view of the above, it remains to show that σSt is open at ψ(a). Write

Dǫ(ψ(a)) = Dǫ(ψ1(a), . . . , ψi1(a))×Dǫ(ψi1+1(a), . . . , ψi2(a))× · · ·
· · · ×Dǫ(ψiℓ−1+1(a), . . . , ψiℓ(a)).

Now, Sk1 × Sk2 × · · · × Skℓ acts diagonally on Dǫ(a), that is, given

p = (p1, . . . , pℓ) ∈ Sk1 × Sk2 × · · · × Skℓ

and (λ1, . . . , λℓ) ∈ Dǫ(ψ(a)), we have pλ = (p1λ1, p2λ2, . . . , pℓλℓ). Thus to show that
σSt is open at ψ(a), it is sufficient to show that, for each j ∈ {1, . . . , ℓ}, the quotient
map of Dǫ(ψij−1+1(a), . . . , ψij (a)) by Skj is open at (ψij−1+1(a), . . . , ψij (a)).

This reduces the proof of the Theorem to the following lemma (where we have

replaced kj by d and (ψij−1+1(a), . . . , ψij (a)) by the origin in R
d
). �

Lemma 3.5 The map σ is open at the origin of R
d
.

Proof: Take a strictly positive ǫ ∈ R. Let δ = min
{

(

ǫ
d!

)d!
, 12

}

. Take a point

a = (a1, . . . , ad) ∈ Dδ(0) and a point b = (b1, . . . , bd) ∈ σ−1(a). We want to prove
that

b ∈ Dǫ(0). (3.1)

We will prove (3.1) by induction on d. For d = 1 the result is obvious. Assume that
d > 1 and (3.1) holds with d replaced by d− 1.

Without loss of generality, assume that |b1| ≤ |b2| ≤ · · · ≤ |bd|. Since

|ad| = |σd(b)| =

∣

∣

∣

∣

∣

∣

d
∏

j=1

bj

∣

∣

∣

∣

∣

∣

< δ,
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we have |b1| < δ1/d < ǫ.
Let

zd−1 + c1z
d−2 + · · · + cd−1 =

zd + a1z
d−1 + · · ·+ ad
z − b1

.

Each ci is a sum of at most d terms, each of which has absolute value strictly less
than δ1/d. Thus

|ci| < dδ1/d ≤ d
( ǫ

d!

)(d−1)!
≤
(

ǫ

(d− 1)!

)(d−1)!

.

By the induction assumption, we have |bi| < ǫ for i ∈ {1, . . . , d} as desired.
This completes the proof of Lemma 3.5 and Theorem 3.2. �

Assume that for a ∈ U the number of real roots of g(a), counted with multiplic-
ities, is independent of a. Let s denote this number of real roots, common for all
a. We define the following functions φi : U → R, i ∈ {1, . . . , s}. For each a ∈ U ,
define (φ1(a), . . . , φs(a)) to be the s-tuple of real roots of g(a) in R arranged in the
increasing order.

Corollary 3.6 The functions φi are continuous.

First of all, we recall two Lemmas from [6], generalizing the first one from R to any
closed real field R:

Lemma 3.7 (Lemma 1, p. 431) For any F : X →n R, the least value f(x) of F(x)
is a continuous function.

The proof is exactly the same as the one given in [6], but we prefer to reproduce
it here for the sake of completeness.

Proof : Let x0 ∈ X. By the property (ii) of Definition 3.1, for any ǫ ∈ R, ǫ > 0,
there exists a neighborhood U of x0 such that for all z ∈ U , all n values of F(z)
are greater than f(x0) − ǫ. Similarly, using the property (ii) again, there exists a
neighborhood V of x0 in which at least one value of F(z) is less than f(x0) + ǫ.
Hence, if z ∈ U ∩ V , we have f(x0) − ǫ < f(z) < f(x0) + ǫ, so f is continuous at
x0. �

Lemma 3.8 (Lemma 3, p. 432) If F : X →n Y has always exactly m values in
an open or closed subspace W of Y , then the restriction of the values of F(x) to W
defines a continuous multi-valued function F ′ : X →m W .

Proof of Corollary 3.6: We proceed by induction on d. For d = 1 the Corollary
is obvious. Together with Theorem 3.2, the preceding Lemmas imply that φ1 is
continuous. Now, z − φ1 divides g, so g̃ = g

z−φ1
is a polynomial of degree d − 1,

whose coefficients are continuous functions. We may apply the induction hypothesis
to g̃ and conclude that all the real roots of g̃ are continuous. This completes the
proof of the Corollary. �

For 1 ≤ i ≤ s let Gi := graph(φi) = {(a, φi(a)) | a ∈ U}.
The next Proposition is a special case of a general result by H. Delfs and M.

Knebusch in 1981 : Lemma 1.1 of [5] which proves the semi-algebraicity of the roots
of a polynomial whose coefficients are semi-algebraic functions of x.

25



Proposition 3.9 Let the notation be as above. Assume, in addition, that the co-
efficients of g are semi-algebraic functions of x. Then for each i ∈ {1, . . . , s} the
set Gi is semi-algebraic. The functions φi are semi-algebraic (in other words, for
each i the linear polynomial z − φi is a real branch of g over U). The projection
π|Gi

: Gi → U is a semi-algebraic homeomorphism.

4 Value of a semi-algebraic function at a point

of the real spectrum

Recall the following notation from the Introduction. We consider the Euclidean
space Rn+1 with coordinates (x, z), where z is a single variable and x = (x1, . . . , xn).
Let π : Rn+1 → Rn be the projection onto the x-space and

π̃ : Sper B[z] → Sper B

be the corresponding morphism of real spectra. Let D ⊂ Rn be a connected semi-
algebraic set; consider the cylinder C = π−1(D).

Let γ ∈ Sper B[z] be a point of the real spectrum of B[z], γ ∈ C̃ (where C̃ is
the cylinder in Sper B[z], corresponding to C); let γ0 := π̃(γ) ∈ D̃. Recall that for
g ∈ B[z], g(γ) denotes the natural image of g in B[z](γ). Let h = z − φ be a real
branch of g over D (cf. Definition 1.15).

Following [3] §7.3, we can associate to φ a map φ̃ : D̃ → ∐

η0∈D̃

B(η0)r. Let h(γ)

be the image of z− φ̃(γ0) under the natural homomorphism B(γ0)r[z] → B[z](γ)r.

Let U be a connected semi-algebraic set such that the number of real roots of g
over U , counted with or without multiplicity, is constant. Let s be the number of
distinct real roots of g.

We have the functions φ̃i : Ũ → ∐

η0∈Ũ

B(η0)r and continuous semi-algebraic

functions φi : U → R, i ∈ {1, . . . , s} such that, for each closed point a ∈ U ⊂ Ũ , we
have φi(a) = φ̃i(a) (here we identify a ∈ U with its natural image under the natural
injection U ⊂ Ũ and B(a)r with R).

For each η0 ∈ Ũ (resp. a ∈ U), (φ̃1(η0), . . . , φ̃s(η0)) (resp. (φ1(a), . . . , φs(a))) is
the s-tuple of distinct real roots of g(η0) in B(η0)r (resp. real roots of g(a) in R)
arranged in the increasing order.
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z

D

z = φ1
γ1r1

z = φ2
γ2r2

z = φ3
γ3r3

γ0

γ

a

For g ∈ B, let g(γ0) ∈ B(γ0)[z] be the polynomial obtained from g by replacing
all the coefficients by their images in B(γ0). This way we have associated to each
γ0 ∈ D̃ a collection of s real factors z − φ̃1(γ0), . . . , z − φ̃s(γ0) of g(γ0). Conversely,
given a real factor z − φ̃(γ0) of g(γ0), there exists j ∈ {1, . . . , s} such that φ̃(γ0) =
φ̃j(γ0).

Remark 4.1 The above results show that, for any γ0 ∈ D̃, there is a natural order-
preserving bijection between real branches of g over D and real γ0-branches.

5 Real and imaginary parts of branches

Denote by A the ring B[z] = R[x, z]. Let γ ∈ Sper A. The point γ determines
morphisms

A[γ] =
A

pγ
→֒ A(γ)r →֒ A(γ).

Now, Sper A(γ)r consists of a single point γ. The valuation associated to this point

is a natural extension of νγ to A(γ)r which we denote by νγ .

We can view A(γ) as the field extension A(γ)r(i) where i2 = −1. Thus any

ξ ∈ A(γ) can be written as ξ = u+ iv where u = Re ξ, v = Im ξ ∈ A(γ)r.

The purpose of this section is to study the extension of νγ̄ to A(γ); by abuse of
notation this extension will also be denoted by νγ̄ . The main result is

Proposition 5.1 The valuation νγ admits a unique extension to A(γ), also denoted

by νγ. This extension is characterized by the fact that for each h ∈ A(γ) we have

νγ(h) = min{νγ(Reh), νγ(Imh)}. (5.1)
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Proof: Let ν ′ be an extension of νγ to A(γ). Take an element h ∈ A(γ)
∗
. Since

ν ′(i) = 0, we have
ν ′(h) ≥ min{νγ(Reh), νγ (Imh)}. (5.2)

Similarly, letting h̄ denote the complex conjugate of h, we have

ν ′(h) ≥ min{νγ(Reh), νγ (Imh)}. (5.3)

To prove that (5.2) and (5.3) are equalities, we may assume that Reh 6= 0 and
Imh 6= 0. Since (Reh)2 >γ 0 and (Imh)2 >γ 0, we have

(Reh)2 + (Imh)2 >γ (Reh)2.

and
(Reh)2 + (Imh)2 >γ (Imh)2.

Hence
νγ
(

(Reh)2 + (Imh)2
)

≤ νγ
(

(Reh)2
)

(5.4)

and
νγ
(

(Reh)2 + (Imh)2
)

≤ νγ
(

(Imh)2
)

, (5.5)

so that
νγ
(

(Reh)2 + (Imh)2
)

≤ min
{

νγ
(

(Reh)2
)

, νγ
(

(Imh)2
)}

. (5.6)

Combining (5.2), (5.3) and (5.6), we obtain

min
{

νγ
(

(Reh)2
)

, νγ
(

(Imh)2
)}

= 2min {νγ (Reh) , νγ (Imh)} ≤ ν ′(h) + ν ′(h)

= ν ′(hh) = νγ((Reh)
2 + (Imh)2)

≤ 2min{νγ((Reh), νγ (Imh)}.
Thus all the inequalities are equalities. Hence

ν ′(h) = ν ′(h) = min{νγ(Reh), νγ(Imh)}.
�

Corollary 5.2 Let h ∈ A(γ). We have νγ(Imh) ≥ νγ(h).

Corollary 5.3 Let f ∈ A. Let hγ be a γ-privileged branch of g. For every γ0-branch
g̃ of g we have νγ(Imhγ) ≥ νγ(g̃).

Proof: This is an immediate consequence of Corollary 5.3 and the fact that hγ is
γ-privileged. �

Corollary 5.4 Assume that νγ
(

g(k)
)

≥ νγ(g). Let hγ be an γ-privileged branch of

g(k) and g̃ a γ0-branch of g. Then νγ(Imhγ) ≥ νγ(hγ) > νγ(g̃).

Proof: This follows from Corollary 5.3 and Proposition 2.19. �

Remark 5.5 For any branch h : D → R, we can define two continuous functions
Re h : D → R (resp. Im h : D → R) by setting, for each a ∈ D,

(Re h)(a) = Re(h(a))

(resp. (Im h)(a) = Im(h(a))). There exists a connected semi-algebraic set U ⊂ D
containing γ0 such that Re h and Im h are real branches over U . We can apply the
preceding construction to define, for any γ ∈ C̃, Re h(γ) and Im h(γ) as elements
of A(γ)r. It is precisely in this situation that the results of this section will be most
frequently applied.
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6 Rolle-type theorems for the real spectrum

In order to prove Theorem 1.22, we start with some lemmas.
Assume that (0, 0) ∈ D \D.

Let h1 = z − φ1 and h2 = z − φ2 be real branches over D for some connected
semi-algebraic set D ⊂ Rn, φ1(0) = φ2(0) = 0. Let γ be a point of the real spectrum
Sper B[z].

Definition 6.1 If 0 < h1(γ) < h2(γ) or h2(γ) < h1(γ) < 0, we say that h1 lies
between γ and h2.

Lemma 6.2 If h1 lies between γ and h2, then νγ(h1(γ)) ≥ νγ(h2(γ)).

Note: geometrically 0 < h1(γ) ≤ h2(γ) means that the curvette γ is on the same
side of the hypersurfaces h1 = 0 and h2 = 0.

Proof: Recall that by definition of νγ the valuation ring Rγ is given by

Rγ =
{

x ∈ B[z](γ)r

∣

∣

∣ ∃y ∈ B[z][γ] such that |x| ≤ |y|
}

.

By hypothesis, |h1| < |h2|, so
∣

∣

∣

h1

h2

∣

∣

∣
< 1. Hence h1

h2
∈ Rγ , from which we deduce that

νγ(h1) ≥ νγ(h2). �

Definition 6.3 The ring of Puiseux series R[[tQ]]Puisseux is the ring of general-
ized series over R whose exponents are non-negative rational numbers with bounded
denominators. Denote its quotient field by R((tQ))Puisseux

We will now restrict attention to points γ ∈ C defined by Puiseux
series. In the next section we will show how to reduce the general case to the case
of such semi-curvettes.

For g ∈ A and γ ∈ Sper A given by a curvette γ(t) = (x1(t), . . . , xn(t), z(t)),
where xj(t) and z(t) are generalized power series over R whose exponents are ra-
tional with bounded denominators, put g(z, t) = g(z, x(t)). This is a polynomial
in z over the ring of Puiseux series in t. As before, let γ0 = π(γ). Fixing a
curvette as above is equivalent to fixing a homomorphism L : A[γ] → R[[tQ]]Puiseux.
Below we will be interested in the restriction of L to B[γ0], which induces a ho-
momorphism L0 : B[γ0][z] → R[[tQ]]Puiseux[z]. Since the field R((tQ))Puiseux is
real closed, the homomorphisms L and L0 extend naturally to homomorphisms
ι : A(γ)r → R((tQ))Puiseux and ι0 : B(γ0)r[z] → R((tQ))Puiseux respectively.

Now let g = zd + ad−1(x)z
d−1 + · · · + a1(x)z + a0(x) be a monic polynomial in

A = B[z], where ai(x), i ∈ {0, . . . , d− 1}, are elements of B. Let h1, h2 be two real
branches of g over D. Write hi = z − φi, i = 1, 2 such that φ1(0) = φ2(0) = 0.

For each a ∈ N, the map t 7→ ta induces a homeomorphism of the half-plane
{t ≥ 0} onto itself. We can choose a positive integer a such that, replacing t by ta

in g, we may assume that g is a formal power series over R with integer exponents.
By the results of §4, we can canonically associate to φi an element φ̃i ∈ B(γ0)r. Let
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φi = ι0(φ̃i). Up to performing a new change t 7→ ta, we may assume that all g and
φi are series with integer exponents.

Write h1 = z − φ1(t) = z −
∞
∑

i=1
bit

i and h2 = z − φ2(t) = z −
∞
∑

i=1
cit

i. Let

s = max{i ∈ N | bi = ci}.
Replacing z by z −

s+1
∑

i=1
cit

i, we may assume that cs+1 = 0 and ci = bi = 0 for

i ≤ s. Also, up to interchanging φ1 and φ2, we may assume that bs+1 > 0. Let
κ = min{j ∈ N | cs+j 6= 0}.

For h =
q
∑

i=0
eiz

i ∈ R[[t]][z], let

νs(h) = min{(s + 1)i+ νγ(ei) | ei 6= 0} (6.1)

insh =
∑

(s+1)i+νγ(ei)=νs(h)

eiz
i. (6.2)

In order not to overload the notations, from now to the end of the section, we
will write g instead of g.

Lemma 6.4 (equidistance) (1) Let h ∈ R[[t]][z] be a polynomial such that

insh = insg
′.

There is at least one real factor of h of the form z − ds+1t
s+1 + h.o.t. with

0 < ds+1 < bs+1.

(2) For each such factor v, there is no unique minimum among the three values
νγ(h1), νγ(h2), νγ(v).

Equivalently, we have

min{νγ(h2), νγ(v)} ≤ νγ(h1), min{νγ(h1), νγ(v)} ≤ νγ(h2),

min{νγ(h1), νγ(h2)} ≤ νγ(v).

Proof: Let g =
∑

j,k

cjkz
jtk ∈ R[[t]][z]. We view R((t)) as a valued field with the

t-adic valuation. Let

∆(g) = convex hull







⋃

cjk 6=0

({(j, k)})







.

be the Newton polygon of g (see Definition 2.13).
Let

L = [(j0, k0), (j1, k1)], with j0 < j1, k0 > k1 (6.3)

, be an edge of ∆(g) with strictly negative slope. The initial form of g with respect
to L is defined to be

inL(g) =
∑

(j,k)∈L

cjkz
jtk.
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Let L′ = [(j0 − 1, k0), (j1 − 1, k1)] if j0 > 0 and L′ =
[

(0, k0 − k0−k1
j1

), (j1 − 1, k1)
]

otherwise. Note that, if j1 ≥ 2 (resp. j1 = 1), L′ is a side (resp. a vertex) of ∆(g′)
and (inL(g))

′ = inL′(g′).

By construction, ∆(g) has an edge L with slope −(s+ 1). Let the notations be
as in (6.3). Let g̃ denote the polynomial in one variable u such that

g̃(
z

ts+1
) =

inL(g(z, t))

t(s+1)j0+k0
.

Since {g = 0} has a factor of the form z − cs+κt
s+κ + · · · with s + κ > s + 1,

L cannot be the leftmost edge of ∆(g). In particular, j0 ≥ 1, so g̃(0) = 0. As
g̃(bs+1) = 0, by Rolle’s theorem (see for instance [2]), there is at least one root ds+1

of g̃′ in the open interval (0, bs+1). This proves (1).
Now fix one such ds+1 and let v be a factor of {h = 0} of the form v = z −

ds+1t
s+1 + h.o.t. It remains to prove that v satisfies the conclusion of (2) of the

Lemma.
Consider the set {νγ(z− cts+1) | c ∈ R}. We have #{νγ(z− cts+1) | c ∈ R} ≤ 2.

In other words, either νγ(z− cts+1) is constant for all c ∈ R or there exists a unique
c∗ ∈ R such that νγ(z − c∗ts+1) > νγ(z − cts+1) for all c ∈ R \ {c∗}.

If #{νγ(z − cts+1) | c ∈ R} = 1 or c∗∈/{0, bs+1, ds+1}, then νγ(h1) = νγ(h2) =
νγ(v) = min{νγ(z), (s + 1)νγ(t)} and (2) of the Lemma holds.

If #{νγ(z − cts+1) | c ∈ R} = 2 and c∗ coincides with one of 0, bs+1, ds+1, then
the corresponding factor among h1, h2, v has strictly greater νγ-value than the other
two, whose νγ-values are equal. This completes the proof of the Lemma. �

Definition 6.5 Let α, β ∈ Sper A, let h be a real branch over D. We say that h is
between α and β if h(γ) > 0 and h(β) < 0 or vice versa.

Definition 6.6 Let z − ψ, z − φ1 be real branches over D and z − φ2 a γ0-branch,
not necessarily real. We say that ψ lies between φ1 and φ2 if

φ1(γ0) ≤ ψ(γ0) ≤ Re(φ2) or Re(φ2) ≤ ψ(γ0) ≤ φ1(γ0). (6.4)

Lemma 6.7 (generalized Rolle’s Theorem) Let φ1 ∈ R(x)(γ0)r and φ2 ∈ R(x)(γ0)
be roots of g(k)(γ0) such that νγ(h1) < νγ(h2) where hi stands for z − φi.

There exists a real root v ∈ R(x)(γ0)r of g(k+1)(γ0) between φ1 and φ2 such that

νγ(z − v) = νγ(h1) < νγ(h2).

Proof : Let

h̃ = g(k)
Re(h2)

2

h2h2
.

Note that
νγ(h1) < νγ(h2) (6.5)

implies that, after a change of variables, we may assume that h1 = z − cs+1t
s+1 +

h.o.t. and h2 = z− bs+κt
s+κ + h.o.t. where κ > 1. Another consequence of (6.5) is :

νγ(h1) = (s+ 1)νγ(t) < min{νγ(z), (s + κ)νγ(t)} (6.6)
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By Corollary 5.2 and (6.6), we have z = ins(h2) = ins(Re(h2)) and the same for
h2. Hence ins(g

(k)) = ins(h̃). Hence

ins(g
(k+1)) = ins(h̃

′). (6.7)

Let L be the side of the Newton polygon of h̃ whose slope is −(s+1). Let (j0, k0)
be an integer point on L.

Consider the polynomial g̃(u) in one variable, defined by

g̃(
z

ts+1
) =

inLh̃

t(s+1)j0+k0
.

Let L′ be the side of the Newton polygon of h̃′ whose slope is −(s+ 1).
Consider the polynomial Θ(u) in one variable, defined by

Θ(
z

ts+1
) =

inL′ h̃′

t(s+1)(j0−1)+k0
.

We argue as in Lemma 6.4 : the polynomial g̃(u) has real roots at 0 and cs+1,
hence its derivative Θ(u) has at least one real root ds+1 ∈]0, cs+1[.

Hence, by (6.7), g(k+1)(γ0) has at least one real root v of the form ds+1t
s+1+h.o.t.

with 0 < ds+1 < cs+1.
This completes the proof of the Lemma. �

7 Reduction to the case when α and β are

curvettes with Γ = Z and kα = kβ = R

Lemma 7.1 Let α, β ∈ Sper A. Assume that α is not a specialization of β and
vice-versa. Then < α, β > is generated by all the elements g ∈ A such that g(α) < 0
and g(β) > 0.

Proof : Let g1, . . . , gs be a set of generators of < α, β > such that, for each i, we
have gi(α) ≥ 0, gi(β) ≤ 0. It suffices to show that for each i ∈ {1, . . . , s}, there exist
h1i, h2i ∈ A such that h1i(α), h2i(α) > 0, h1i(β), h2i(β) < 0 and gi ∈ (h1i, h2i).

Since, by assumption, α is not a specialization of β, there exists hi ∈ A such
that hi(α) > 0 and hi(β) ≤ 0. Similarly, β is not a specialization of α, so there
exists ki ∈ A such that ki(α) ≥ 0, ki(β) < 0.

Let h1i = gi + hi + ki and h2i = 2gi + hi + ki. So the desired h1i and h2i are
constructed. �

Notation Let A be a ring and α ∈ Sper A. Let P be a να-ideal of A. We will
denote by P+

α the greatest να-ideal of A, strictly contained in P .

Proposition 7.2 Let A be a ring, C an open set in Sper A and α, β ∈ C such
that p =

√
< α, β > is a maximal ideal. There exist α̃, β̃ ∈ Sper A satisfying the

following conditions :
(1) The value groups Γα̃ of να̃ and Γβ̃ of νβ̃ are both isomorphic to Z and

kα ∼= kβ ∼= R.
(2) < α̃, β̃ >⊃< α, β >, < α̃, β̃ >+

α̃⊃< α, β >+
α , < α̃, β̃ >+

β̃
⊃< α, β >+

β .

(3) α̃ ∈ C and β̃ ∈ C.
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Proof : Let g1, . . . , gs be as in the proof of Lemma 7.1. Let gα1 , . . . , g
α
sα be a set of

generators of < α, β >+
α . Similarly let gβ1 , . . . , g

β
sβ

be a set of generators of < α, β >+
β .

Let h1, . . . , hr be a complete list of inequalities with appear in the definition of C.
Let π : X → Sper A be a sequence of blowings up with non singular centers

having the following properties. In what follows, ”prime” will denote strict trans-
form under π. For example, α′, β′ are the strict transforms of α, β respectively. We
require that :

1. the centers of α′, β′ in X are disjoint;
2. for all indices i, the elements gi, g

α
i , g

β
i , hi define normal crossing subvarieties

of X;

3. for all indices i, the sets {g′i = 0}, {gα′

i = 0}, {gβ′

i = 0}, {hi = 0} do not
contain the center of α′ or the center of β′.

Let α̃′ be an R-semi-curvette with exponents in Z whose center is a sufficiently
general closed point of the center of α′ and similarly for β̃′. Then α̃ := π(α̃′) and
β̃ := π(β̃′) satisfy the conclusions of the proposition. �

8 Proof of the main theorem

We give a proof by contradiction. By Remark 1.14, we may assume that α, β have
a common specialization ξ and f(ξ) = 0. Assume that α and β lie in 2 different
connected components of {f 6= 0}. Note that, because f does not change sign
between α and β, there are at least two real branches f1, f2 of {f = 0} over D, not
necessarily distinct, containing ξ, between α and β. Hence there exists at least one
real branch h of {f ′ = 0} over D between α and β.

Let θ = min{k > 0; να(f
(k)) < να(f)} (the set over which the minimum is taken

is not empty because it contains d).

Assume that there exists a real branch of f (θ) over D between α and β, so α
and β lie in two different connected components of C ∩ {f (θ) 6= 0}. Note that by
the above this holds if θ = 1. By definition of θ, να(f

(θ)) < να(f).
If f (θ) changes sign between α and β, f (θ) ∈< α, β >, which implies that

να(f
(θ)) ≥ µα and νβ(f

(θ)) ≥ µβ. This contradicts the hypothesis να(f) ≤ µα
(and the same with β). Hence, f (θ) does not change sign between α and β.

Remark 8.1 If να(f
(θ)) < να(f), then f

(θ)∈/ < α, β > and hence νβ(f
(θ)) < µβ.

Thus, if να(f
(θ)) < να(f), then the triple (f (θ), α, β) satisfies the hypothesis of

the Theorem 1.22. By induction on deg(f), α and β lie in the same connected
component of {f (θ) 6= 0} ∩ C. This is a contradiction. This completes the proof of
the Theorem assuming there is a real branch of f (θ) between α and β (in particular
in the case θ = 1).

It remains to prove the existence of a real branch of f (θ) between α and β. Since
the Theorem has been proved in the cae θ = 1, we have reduced the problem to the
case

να(f
′) ≥ να(f) and νβ(f

′) ≥ νβ(f) (8.1)

We proceed by induction on d = deg(f).
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To prove the base of the induction, let us consider the cases deg(f) = 1 and
deg(f) = 2. First, let deg(f) = 1. The set {f 6= 0} has two connected components
C1 and C2; up to interchanging C1 and C2, we have f(C1) > 0 and f(C2) < 0.
Since f does not change sign between α and β, α and β lie in the same connected
component of {f 6= 0}.

Next, let us consider the case deg(f) = 2. Assume that α and β are in different
components of {f 6= 0}, aiming for contradiction. Write f = (z−φ1)(z−φ2) where
f1 = z − φ1, f − 2 = z − φ2 are branches. Since (f, α, β) are in good position, up
to interchanging f1 and f2, we have f1(a) ≤ f2(a) for all a ∈ D and either equality
holds for all a ∈ D or strict inequality holds for all a ∈ D (this is due to the choice
of D, see Definition 1.19 (2)). Hence C \ {f = 0} = C++

∐

C−−
∐

C+− where
C++ = {f1, f2 > 0}, C−− = {f1, f2 < 0}, C+− = {f1 < 0, f2 > 0}, where C+− may
be empty; f is strictly positive on C++, C−− and strictly negative on C+−. Hence
we may assume that f1(α), f2(α) > 0 and f1(β), f2(β) < 0. We have f1(α) < f ′(α).
Apply Lemma 6.2 to f1 and f ′. We obtain να(f

′) ≤ να(f1). Since να(f2) > 0, we
have να(f

′) < να(f). Which is a contradiction.

The base of the induction is proved, let us now prove the induction step.

Let f =
∏d

j=1 fj, let f
′ =
∏d−1

j=1 hj where fj are α0-branches of f and hj are α0-
branches of f ′. Let hα be an α-privileged branch of f ′. Then, since να(f

′) ≥ να(f),
we have

να(Imhα) ≥ να(hα) > να(fj), for 1 ≤ j ≤ d. (8.2)

The first inequality is by Lemma 5.1 and the second is just (2.38).

Claim : Let i ∈ {0, . . . , [θ2 ]}. There exist :

- branches over D, g2i,1, g2i,2, of f
(2i) and h̃2i+1 of f (2i+1),

- a branch h2i+1,αof f
(2i+1) over a suitable neighbourhood Uα of α0 and a branch

h2i+1,β of f (2i+1), over a suitable neighbourhood Uβ of β0
such that :
(1) g2i,1, g2i,2, h̃2i+1 are real and separate α from β and

0 < g2i,1(α) < h̃2i+1(α) < g2i,2(α) or 0 > g2i,1(α) > h̃2i+1(α) > g2i,2(α) (8.3)

g2i,1(β) > h̃2i+1(β) > g2i,2(β) > 0 or g2i,1(β) < h̃2i+1(β) < g2i,2(β) < 0 (8.4)

(2) for i > 0 we have

να(g2i,2(α)) ≤ να(g2i,1(α)) = να(h̃2i−1(α)) < να(h2i−1,α(α)) (8.5)

νβ(g2i,1(β)) ≤ νβ(g2i,2(β)) = νβ(h̃2i−1(β)) < νβ(h2i−1,β(β)); (8.6)

(3) h2i+1,α is an α-privileged branch of f (2i+1) (and similarly for h2i+1,β);
(4)

να(g2i,1(α)) ≥ να(h̃2i+1(α)) = να(g2i,2(α)) (8.7)

νβ(g2i,2(β)) ≥ νβ(h̃2i+1(β)) = νβ(g2i,1(β)). (8.8)

Proof of Claim : We use induction on i. First let i = 0. We put g0,1 = f1, g0,2 =
f2, h̃1 = h with the convention that f1 is between α and f2 and f2 is between β and
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f1. Fix an α-privileged branch h1,α of f ′ and similarly for β. Statements (1), (3)
are clear, (4) follows from Lemmas 6.2 and 6.4. (2) is vacuously true.

Let 0 < i ≤ [θ2 ]. We assume the Claim holds up to i− 1.

As i ≤ [θ2 ], we have να(f
(2i−1)) ≥ να(f). Using (2.38), we have να(h2i−1,α(α)) >

να(g0,1(α)). By (8.3) at step (i − 1), we may apply Lemma 6.2 to g0,1, g2i−2,2.
We obtain να(g0,1(α)) ≥ να(g2i−2,2(α)). According to (4) at step i − 1, we have
να(g2i−2,2(α)) = να(h̃2i−1(α)). So

να(h̃2i−1(α)) < να(h2i−1,α(α)). (8.9)

Let g2i,1(α) be a real factor of f (2i)(α) between h̃2i−1(α) and h2i−1,α whose
existence is given by Lemma 6.7. Let g2i,1 be a real branch of f (2i) associated to
g2i,1(α) by Remark 4.1. Similarly, let g2i,2 be a real branch of f (2i) over D between
h̃2i−1 and h2i−1,β .

Let h̃2i+1 be a real branch of f (2i+1) over D between g2i,1 and g2i,2 whose exis-
tence is guaranteed by Rolle’s theorem.

Let h2i+1,α be an α-privileged branch of f (2i+1) and similarly for β. Statements
(1) and (3) are clear. (2) follows from (8.9) and Lemma 6.2. Now (4) follows from
(1) and Lemma 6.4.

This completes the proof of the Claim. �

We continue with the proof of Theorem 1.22. Let i = [θ2 ]. Apply the Claim to

this i. By the Claim, there exists a real branch of f (θ) over D between α and β.
This completes the proof of the Theorem. �

Given a monic polynomial g ∈ B[z], write g =
∏s

j=1 g
aj
j , where each gj is a

linear polynomial over the algebraic closure of the field of fractions of B.

Definition 8.2 A partial reduction of g is a polynomial of the form g̃ =
∏s

j=1 g
a′j
j ,

where 0 < a′j ≤ aj for all j. A derivative reduction of g is a polynomial of the form
g̃′ where g̃ is as above.

Definition 8.3 (f, α, β) are in generalized good position if there exists a sequence
of polynomial having the following properties :

(1) For each i ∈ {0, . . . , k}, the polynomial f (i+1,∗) is a derivative reduction of
f (i∗);

(2) να(f) ≤ να(f
(1∗)), . . . , να(f

(i−1,∗)) and να(f) > να(f
(i∗));

(3) The number of real roots of each of f, f (1∗), . . . , f (i∗) counted with or without
multiplicity is constant over D.

Remark 8.4 With the same proof, the main theorem holds for (f, α, β) in gener-
alized good position.
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