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Résumé 

On présente les conditions pour avoir la solution générale de l’équation de Navier-

Stokes lorsque le domaine est borné et que les forces extérieures ne dépendent pas 

du temps. Le problème se décompose alors en deux équations : Une équation de 

Poisson pour la pression et une équation différentielle ordinaire pour la vitesse 

dépendant fortement de la distribution connue à l’instant initial. En général, quand 

des approximations polynomiales sont justifiées, la solution de l’équation 

différentielle ordinaire est donnée par des séries entières de fonctions de 

Weierstrass-Mandelbrot. On peut aisément étendre la méthode à des équations 

différentielles beaucoup plus générales. 

 

Abstract. 

In this paper, we exhibit the conditions to have the general solution of the Navier-

Stokes equation, in particular when the domain is bounded and the external forces 

don’t depend on time. Locally, the problem can be decomposed in two equations: 

A Poisson’s equation for the pressure and an ordinary differential equation on the 

velocity depending strongly on the known initial distribution at the origin. In 

general, when polynomial approximations are justified, the solution is given by 

power series of Weierstrass-Mandelbrot functions. We extend the method to more 

general equations. 

 

Keyword 

Navier-Stokes equation, 𝜔-time, almost periodic functions, bounded polynomial 

iterations, Weierstrass-Mandelbrot functions. 

 

 

Introduction  

 

Since the important J. Leray’s paper on the Navier-Stokes equation (NSE) in 

1934, many problems remain about the existence and the construction of a 

solution, at such a point that this existence constitutes one of the millennium’s 

problems posed by Fefferman. But all the methods used to solve the question are 



too much dependant of the linearization of the equation. An oversee of the 

question can be found in the Lemarie-Rieusset’s book.  

 

This paper presents a completely different point of view. It gives some new 

reflexions about the conditions and the understanding of the existence of the 

Navier-Stokes equation (NSE). But, here, the difficulties don’t come from non-

linearities but from linearities, especially for non autonomous equations. 

 

The main chapter entitled the equation of Navier-Stokes presents our approach. 

An appendix of three chapters follows to prove the solution in power series of 

Weierstrass-Mandelbrot functions. 

 

First, we improve and correct our first results about Navier-Stokes equation given 

in Cirier, especially oriented on probabilistic results. Here, we search 

deterministic solutions. We decompose this equation in two problems when the 

external forces don’t depend on the time:  

- The first problem is the existence of the initial pressure defined by a Poisson’s 

equation when the velocity is known; this question seems well-known under 

Dirichlet’s conditions.  

- The second is the resolution of an ordinary differential equation defining the 

position of the velocity in function of the time. This equation is completely 

defined by initial conditions. The technics of iteration give some conditions to 

obtain an interesting solution: that is the subject of the appendix.  

 

The following three chapters of the appendix give hints to understand the solution 

in terms of Weierstrass - Mandelbrot’s series. They are a recall of some properties 

of the iterations applied to the differential iterations. The full demonstrations can 

be found in Cirier where probabilistic approaches are studied.  

I -    Composition of functions, 

II -  Deterministic method: linearization of iterations,  

III - Application to differential equations. 

 

The equation of Navier Stokes 

 

Fefferman [6], writer of the problem of the equation of Navier Stokes for the 

Clay’s foundation, seems very embarrassed to formulate it: in fact, he proposes 

four problems A, B, C, D. Carefully, he seems accept periodical solutions to 

represent the physically reasonable movement. We are not sure it is true. 

On other hand, he exposes very clearly many ambiguities of the question. But, his 

paper is singularly imprisoned by many physical considerations, with many 

parameters and derivatives in relation with the non linearity of the equations.  

 

Our approach would give a best new understanding. Naturally, many things 



remain to improve. In conclusion, we formulate a solution of a more synthetic 

generalization of the problem. Now, place to the classical Navier’s problem. 

 

1 – Presentation of the equation 

The Navier’s equations concern the unknown velocity vector 𝒖 ∈ n and the 

pressure 𝑝 ∈ of an incompressible fluid in movement. The variables are the 

position x and the time t:   x=(x, t); 𝒙 ∈ n  and  𝑡 ∈ .  

Initially, we have as many equations as unknown functions with:  

         
∂𝒖𝑖
∂𝒕

= 𝜈Δ𝑢𝑖 − ∑  
𝑗=𝑛
𝑗=1 𝑢𝑗

∂𝑢𝑖
∂𝒙𝑗

−
∂𝑝

∂𝒙𝑗
+ 𝑓𝑖(𝒙, 𝑡),  

          𝑖 = 1, . . 𝑛 

with the null divergence:  

            div 𝒖 =  ∑  𝑖=𝑛
𝑖=1

∂𝑢𝑖
∂𝒙𝑖

= 0 

and the known function:     𝒖(𝒙, 𝟎) = 𝒖0(𝒙)   at time:   𝑡 = 0. 

Main hypothesis 

We can have many problems with the linearity induced by the non autonomous 

externally forces  𝒇(𝒙, 𝑡).  So, we suppose 𝒇(𝒙, 𝑡) free of 𝑡:  

         𝒇(𝒙, 𝑡) = 𝒇(𝒙). 

Vectorial notation 

- We note with vectors:     𝑁𝑖(𝒙, 𝒖, 𝒑) = 𝜈Δ𝑢𝑖 − ∑  
𝑗=𝑛
𝑗=1 𝑢𝑗

∂𝑢𝑖
∂𝒙𝑗

−
∂𝑝

∂𝒙𝑗
+ 𝑓𝑖(𝒙) 

        𝑵(𝒙, 𝒖, 𝒑) = 〔𝑁1, 𝑁2, . . 𝑁𝑛〕  

Then:        𝑵(𝒙, 𝒖, 𝒑) = 𝜈Δ𝒖 − ∑  
𝑗=𝑛
𝑗=1 𝑢𝑗

∂𝒖

∂𝒙𝑗
− 𝒑 + 𝒇(𝒙) 

with         𝒑 = ∂𝑝/ ∂𝒙 

So, the NSE is:     ∂𝒖/ ∂𝑡 =  𝑵(𝒙, 𝒖, 𝒑) 

Let          𝑭(𝒙, 𝒖, 𝒑) = (∂𝒖/ ∂𝒙 ) 𝑵(𝒙, 𝒖, 𝒑) 

And:              ∂𝒖 ⊗ ∂𝒖 = ∑  𝑖=𝑛
𝑖=1  ∑  

𝑗=𝑛
𝑗=1

∂𝑢𝑗
∂𝒙𝑖

∂𝑢𝑖
∂𝒙𝑗

  

 

2 - Principle of demonstration 

The demonstration is based on the following arguments:  

At time 𝑡 = 0, the function 𝒖 of 𝒙 is known:   𝒖(𝒙, 𝟎) = 𝒖0(𝒙). We deduce easily 

the pressure 𝑝𝑜. Then, substituting 𝒖, 𝒑 (and all the derivatives of 𝒖) by 𝒖0, 𝒑0 as 

functions of 𝒙 in the NSE  ∂𝒖/ ∂𝑡 = 𝑵(𝒙, 𝒖, 𝒑), we obtain an ordinary differential 

equation of 𝒙(𝑡) in function of 𝑡 in a neighbourhood 𝒱 (𝑂) of 0. By this 

transformation, the unknown function is now 𝒙(𝑡) and the solution is 𝒖0(𝒙(𝑡)).  
But, we have to check at each time 𝑡 the conditions of existence: 

Now, if we suppose at an arbitrary fixed time 𝑡𝑜 ≧0 that the velocity 𝒖 is known 

in function of the position 𝒙:  𝒖(𝒙, 𝑡𝑜) = 𝒖𝑡𝑜(𝒙). We translate easily the 

demonstration from 0 to 𝑡𝑜 and find the solution in a neighbourhood 𝒱 (𝑡𝑜) of 𝑡𝑜 

under new conditions of existence at 𝑡𝑜. And so on. 

»

» +

» » +

-1

+

+



 

First, we recall: 

Lemma 1 

If 𝒖(𝒙) is known, the condition  𝑑𝑖𝑣 𝒖 =  0 implies that the pressure 𝑝 follows the 

Poisson’s equation: 

          Δ𝑝 =  div𝒇(𝒙) − ∂𝒖 ⊗ ∂𝒖      ∀𝒙 ∈  𝑛  , 𝑡𝑜 ∈  

And this solution is unique under Dirichlet’s conditions. 

 

■ The divergence operator commutes with all derivations. If we apply this 

operator to the first n equations defining ∂𝒖/ ∂𝑡, we obtain: 

           divΔ𝒖 = Δdiv𝒖 = 0 ;  div
∂𝒖

∂𝑡
=

∂

∂𝑡
div𝒖 = 0 

With:          div ∑  
𝑗=𝑛
𝑗=1 𝑢𝑗

∂

∂𝒙𝑗
 𝒖 =∂𝒖 ⊗ ∂𝒖 

And:         div𝒑 = div∇𝑝 = Δ𝑝 

So:           0 =  ∂𝒖 ⊗ ∂𝒖 + Δ𝑝 − div𝒇(𝒙) 

The pressure is only function of 𝒙 and of  𝒖(𝒙). If 𝒖(𝒙) is known, the unicity of 

𝑝 depends on the unicity of the solution of the Poisson’s equation:  

           Δ𝑝 = div𝒇(𝒙) − ∂𝒖 ⊗ ∂𝒖 = ℎ(𝒙) 

But, the solution of the Poisson’s equation is given modulo a function satisfying 

the Laplace’s equation. Limit conditions such as Dirichlet’s conditions are 

necessary to prove the uniqueness of this solution. This condition doesn’t appear 

clearly in the text of Fefferman, but many authors, as Tao, know it.  ■ 

 

The utility of the hypothesis H 𝑡𝑜 will appear in the following. 

 

2 - Hypothesis H 𝑡𝑜 at a fixed time 𝑡𝑜 ≧0:  

- 𝒖(𝒙, 𝑡𝑜) = 𝒖𝑡𝑜(𝒙) is a known function of 𝒙 ∈
 𝑛  , 𝑎𝑡 𝑡ℎ𝑒 𝑓𝑖𝑥𝑒𝑑 𝑡𝑖𝑚𝑒 𝑡𝑜. 

- We recall explicit and implicit initial conditions at 𝑡𝑜:  

  𝒖𝑡𝑜(𝒙)  has 𝑑𝑖𝑣 𝒖𝑡𝑜 = 0   and 𝛥𝑝𝑡𝑜 = ℎ𝑡𝑜(𝒙) has a unique solution. 

- The jacobian matrix  𝜕𝒖𝑡𝑜/𝜕𝒙 is invertible. If ∂𝛺𝑡𝑜 = {𝒙|   |𝜕𝒖𝑡𝑜/𝜕𝒙| = 0} , that 

means: 𝒙 ∉ ∂𝛺𝑡𝑜. 

- The domain 𝛺𝑡𝑜 of 𝒙 is (Dirichlet) bounded under the previous condition for 𝑡𝑜. 

 

We note H𝑡 if H𝑡𝑜 is true at each time between 0 and 𝑡.  

 

Example at time 𝑡𝑜 = 0 

At time 𝑡 = 0, the known initial velocity 𝒖(𝒙, 0) = 𝒖o(𝒙) satisfies the initial 

conditions: div 𝒖0 = 0 and the pressure must satisfy the condition: Δ𝑝0 = ℎ0(𝒙) 

with a unique solution. A sufficient condition for the unicity is that the bounded 

domain 𝛺 of 𝒙 satisfies the Dirichlet’s conditions 

The matrix  ∂𝐮to/ ∂𝐱 is invertible means that the jacobian: |𝜕𝒖𝑜/𝜕𝒙| ≠ 0. Let 

∂𝛺𝑜 the set of 𝒙:    ∂𝛺𝑜 = {𝒙|   |𝜕𝒖𝑜/𝜕𝒙| = 0} 

» » +

»

*



We have interest to take 𝛺𝑜 satisfying the Dirichlet’s conditions strictly inside the 

frontier ∂𝛺𝑜. Here, the Poisson’s equation will have generally a unique solution. 

(Every terrestrial position is bounded).  

 

Lemma 2 

Let 𝒙𝑡 = 𝒙(𝒙𝑡𝑜, 𝑡) the position of the velocity  𝒖𝑡 = 𝒖(𝒙𝑡𝑜 , 𝑡) at time 𝑡 ≥ 𝑡o for the 

initial position 𝒙𝑡𝑜. At time 𝑡𝑜 , we suppose that the velocity 𝒖(𝒙𝑡𝑜 , 𝑡𝑜) = 𝒖𝑡𝑜(𝒙𝑡𝑜) 

is a known function 𝒖𝑡𝑜 of the position 𝒙𝑡𝑜 = 𝒙(𝒙𝑡𝑜, 𝑡𝑜). 

Under H𝑡𝑜, for all 𝒙𝑡 ∉ ∂𝛺𝑡𝑜, the solution 𝒙𝑡 of the NSE for ∀𝑡 ≥ 𝑡o, is: 

      𝒖𝑡 = 𝒖𝑡𝑜(𝒙𝑡)  

where 𝒖𝑡𝑜 
is known and 𝒙𝑡 is the solution of the ordinary differential equation 

with the  known function 𝑭𝑡𝑜 of 𝒙𝑡 
: 

       d𝒙𝑡/d𝑡 = 𝑭𝑡𝑜(𝒙𝑡)= (∂𝒖𝑡𝑜(𝒙𝑡)/ ∂𝒙𝑡 ) 𝑵𝑡𝑜(𝒙𝑡); 

with initial condition:  𝒙𝑡𝑜 = 𝒙(𝒙𝑡𝑜, 𝑡𝑜) 

Then:     Δ𝑝𝑡 =  div𝑓(𝒙𝑡) − ∂𝒖𝑡 ⊗ ∂𝒖𝑡= ℎ𝑡(𝒙𝑡) 

 

■ At time 𝑡𝑜 ,the pressure 𝑝𝑡𝑜 must satisfy the Poisson’s equation for 𝒇(𝒙) and the 

known function 𝒖𝑡𝑜(𝒙) at 𝒙𝑡𝑜: 

        Δ𝑝𝑡𝑜 =  div𝒇(𝒙𝑡𝑜) − ∂𝒖𝑡𝑜 ⊗ ∂𝒖𝑡𝑜= ℎ𝑡𝑜(𝒙𝑡𝑜) 

If 𝒙 has a good smooth frontier (as under Dirichlet’s conditions), the solution is 

unique. And 𝑵to(𝒙) is a known function of 𝒙 . 

Now, we study 𝒙𝑡 = 𝒙𝑡𝑜(𝒙𝑡𝑜 , 𝑡) solution of the NSE for ∀𝑡 ≥ 𝑡o and a initial 

position 𝒙𝑡𝑜. As 𝒖𝑡𝑜(𝒙𝑡) is known but 𝒙𝑡 = 𝒙𝑡𝑜(𝒙𝑡𝑜, 𝑡) is unknown, the NSE 

becomes in a neighbourhood 𝒱 (𝑡𝑜) of 𝑡𝑜: 

      ∂𝒖𝑡𝑜(𝑥𝑡)/ ∂𝑡 = 𝑵to(𝒙𝑡) 

      ∂𝒖𝑡𝑜(𝑥𝑡)/ ∂𝑡 = ∂𝒖𝑡𝑜(𝒙𝑡)/ ∂𝒙𝑡 . ∂𝒙𝑡/ ∂𝑡 

Then:     ∂𝒙𝑡/ ∂𝑡 = (∂𝒖𝑡𝑜/ ∂𝒙𝑡 ) 𝑵𝑡𝑜(𝒙𝑡). 
       d𝒙𝑡/d𝑡 = 𝑭𝑡𝑜(𝒙𝑡) 

Where 𝑭𝑡𝑜(𝒙𝑡) is a known function of only  𝒙𝑡. The NSE is reduced to an ordinary  

differential equation (ONSE) near 𝑡o with the initial position 𝒙𝑡𝑜. 

   

Let 𝒙𝑡 = 𝒙𝑡𝑜(𝒙𝑡𝑜, 𝑡) be the solution for the initial position 𝒙𝑡𝑜 = 𝒙𝑡𝑜(𝑡o) at time 

𝑡 = 𝑡o. Then, the velocity at time 𝑡 ≧ 𝑡𝑜 for the known initial position 𝒙𝑡𝑜 is:  

            𝒖𝑡𝑜(𝒙𝑡𝑜, 𝑡) = 𝒖𝑡𝑜(𝒙(𝒙𝑡𝑜, 𝑡)) 

and the NSE at time 𝑡 remains yet valid for the new velocity 𝒖𝑡𝑜(𝒙𝑡) in a 

neighbourhood 𝒱 (𝑡𝑜) of 𝑡𝑜 . ■ 

 

Remark 

We have obtained the result that, at each time 𝑡𝑜, the solution of the NSE is 

solution of the ONSE defining 𝒙(𝑡). But, as this 𝒙(𝑡)is changing with 𝑡, we may 

have the case where 𝒙(𝑡𝑜) ∈ ∂𝛺𝑡𝑜 for some time 𝑡𝑜. So, we define the time 𝜔: 

-1

+

-1

+



 

 

Definition 

Let 𝜔-time the first time where 𝒙(𝜔) ∊  ∂𝛺𝑡𝑜. 
It means that ∂𝛺𝑡𝑜 = {𝒙𝑡𝑜|   |𝜕𝒖𝑡𝑜/𝜕𝒙𝑡𝑜| = 0}.  

We will clarify this condition in the next proposition. 

 

3 - Proposition 

Let 𝒖𝑜(𝒙) be the known function of the position 𝒙 at time 𝑡 = 0.  

For all  0 ≦ 𝑡 < 𝜔 , under H𝑡 , the solution of the NSE for ∀𝑡 ≥ 0, is: 

      𝒖(𝒙𝑡 
, 𝑡) = 𝒖𝑜(𝒙(𝑡) )  

  

  𝒙𝑡 = 𝒙(𝒙𝑜, 𝑡) is solution of the ONSE with 𝑭𝑜 known for an initial position 𝒙𝑜: 

       d𝒙𝑡/d𝑡 = 𝑭𝑜(𝒙𝑡); 

- Then:     Δ𝑝𝑡 =  div𝑓(𝒙) − ∂𝒖𝑡 ⊗ ∂𝒖𝑡= ℎ𝑡(𝒙𝑡) 

Where:      𝑭𝑜(𝒙) = 𝑭(𝒙, 𝒖𝑜, 𝒑𝑜) = (∂𝒖𝑜/ ∂𝒙 ) 𝑵(𝒙, 𝒖𝑜, 𝒑𝑜) 

With 𝑝𝑜:     Δ𝑝𝑜 =  div𝑓(𝒙) − ∂𝒖𝑜 ⊗ ∂𝒖𝑜= ℎ𝑜(𝒙)   

- The  𝜔 -time is defined by the two conditions: : 𝒙𝑡 ∉ ∂𝛺𝑜 and | ∂𝒙𝑡/ ∂𝒙| ≠ 𝟎 

- The solution of the ONSE is reduced to the study of the zero of 𝑭0(𝒙) (𝑭𝑜(𝜶) =
𝟎)and the eigen values at these points. More, if we suppose that 𝑭0(𝒙) can be 

uniformly approximated by polynomials, at least locally near fixed points 

(𝑭𝑜(𝜶) = 𝟎) , especially if they are hyperbolic, the solution is a power series of 

Weirestrass - Mandelbrot functions. The equality of Perceval is satisfied. 

 

■  

- We take 𝑡𝑜 =0 and write under H𝑡  for all  0 ≦ 𝑡 < 𝜔 ,  

             𝒖𝑡(𝒙) = 𝒖𝑜(𝒙(𝑡))  

with 𝒙(𝑡) solution of:          d𝒙𝑡/d𝑡 = 𝑭𝑜(𝒙𝑡) 

Where:      𝑭𝑜(𝒙) = 𝑭(𝒙, 𝒖𝑜, 𝒑𝑜) = (∂𝒖𝑜/ ∂𝒙 ) 𝑵(𝒙, 𝒖𝑜, 𝒑𝑜) 

And 𝑝𝑜:           Δ𝑝𝑜 =  div𝑓(𝒙) − ∂𝒖𝑜 ⊗ ∂𝒖𝑜= ℎ𝑜(𝒙)   

If we note 𝒙𝑜 = 𝒙(0) the initial position at time 𝑡𝑜 =0, the position 𝒙(𝑡) at time 

𝑡  will be 𝒙(𝑡) = 𝒙(𝒙𝑜, 𝑡).  

- We check the coherence of the solution 𝒖𝑡(𝒙) = 𝒖𝑜(𝒙(𝒙𝑜, 𝑡)), at every time: 

 0 ≦ 𝑡 < 𝜔, to have a solution of the NSE:  

 Let the (ONSE)
 𝑜

 be the ONSE with the known velocity 𝒖𝑜(𝒙)at time 0: 

d𝒙𝑡/d𝑡 = (∂𝒖𝑜/ ∂𝒙 ) 𝑵(𝒙, 𝒖𝑜) 

Now, we want to study the fluid not at time 0 but at time 𝑡𝑜 >0 with the position 

of the velocity 𝒙𝑡𝑜 = 𝒙𝑡𝑜(𝒙) defined by the solution of the (ONSE)
 𝑜

 at time 𝑡𝑜. 

The new (ONSE)
 𝑡𝑜

 with the new position 𝒙𝑡𝑜 and the new known velocity 

𝒖𝑜(𝒙𝑡𝑜) is:        d𝒙/d𝑡 = (∂𝒖𝑜/ ∂𝒙 ∂𝒙𝑡𝑜/ ∂𝒙) 𝑵( 𝒙𝑡𝑜, 𝒖(𝒙𝑡𝑜)) 

The solution is invariant under a translation of time only if ∂𝒖𝑜/ ∂𝒙 ∂𝒙𝑡𝑜/ ∂𝒙 is 

*

-1

*

-1

-1

-1



invertible. So, the conditions are: | ∂𝒖𝑜/ ∂𝒙| | ∂𝒙𝑡𝑜/ ∂𝒙| ≠ 𝟎. We have a new  

condition | ∂𝒙𝑡𝑜/ ∂𝒙| ≠ 𝟎  with the previous  | ∂𝒖𝑜/ ∂𝒙| ≠ 𝟎.  

 

- The analysis of the ordinary differential equation will be studied in the appendix 

in terms of iteration: Under the hypothesis of the hyperbolicity of the fixed points, 

the solution is developed in power series of functions of Weierstrass - Mandelbrot. 

See appendix. ■ 

 

Remarks 

Under our main assumptions, we find many situations where the NSE has no 

unique solution.  

 

If |𝜕𝒖𝑜/𝜕𝒙| = 0, the corresponding surface is a pole for the NSE and we have 

turbulences all along this surface and Δ𝑝 =  div𝑓(𝒙). So, before to do anything, 

we have to note the points such as |𝜕𝒖𝑜/𝜕𝒙| = 0 and study the behaviour of the 

process far from these points as possible. But, we can have many other turbulences 

when | ∂𝒙𝑡/ ∂𝒙| = 𝟎 .  
 

Anyway, we have seen that the solutions are local near each fixed points and we 

can meet many other perturbations when the process cross from a basin of a fixed 

point to an another as in the Lorenz iteration. 

 

4 - Conclusion 

The paradigm of the problem has completely moved: the equations of the 

movement depend entirely on the given initial situation 𝒖𝑜(𝒙) ! But the good 

solution is local near by the initial 𝒖𝒐(𝒙).  

 

New generalised equation 𝑵(𝒖, 𝒙), 
If our demonstrations are correct, we see easily that we can take more complicated 

derivable function 𝑵(𝒖, 𝒙)instead of 𝜈Δ𝒖 − ∑  
𝑗=𝑛
𝑗=1 𝑢𝑗

∂𝑢

∂𝒙𝑗
 −

∂𝑝

∂𝒙
.  The method will 

be the same: parameter 𝜈 does not have a great importance mathematically in this 

context. In 𝑵(𝒖, 𝒙), we can put  any functions (smooth functions, derivatives, 

even unique solution of an equation as the pressure 𝑝) of 𝒖(𝒙).  

 

Definition 

Let 𝑵(𝒖, 𝒙) be a smooth function of 𝒖(𝒙), and of (any smooth functions, 

derivatives, even unique solution of a functional or integro-differential equation 

of) 𝒖, where 𝒖 ∈ 𝑛
 
and 𝒙 ∈ 𝑛.  

Let:      ∂𝒖(𝑥)/ ∂𝑡 =  𝑵(𝒖, 𝒙)     

 

Theorem 

At time 𝑡 =0 , 𝒖𝑜(𝒙) = 𝒖𝑜 the solution is a smooth known function. Then, the 

» »



solution of: 

               ∂𝒖(𝑥)/ ∂𝑡 =  𝑵(𝒖, 𝒙) 
 

Is, for all 0 ≦ 𝑡 < 𝜔:   𝒖𝑡(𝒙) = 𝒖𝑜(𝒙(𝒕)),  

where 𝒙(𝒕) is the solution of the ordinary differential equation with 𝑭𝑜(𝒙) =

𝑭(𝒙, 𝒖𝑜) = (∂𝒖𝑜/ ∂𝒙 ) 𝑵(𝒖𝑜, 𝒙)function of 𝒙: 
        d𝒙/d𝑡 = 𝑭𝑜(𝒙); 

 

■ As 𝒖𝒐(𝒙) is function of 𝒙, every smooth functions, derivatives and unique 

solutions of a functional or integro-differential equation of 𝒖  can be explained as 

functions of 𝒙  and we can write 𝑵(𝒖𝑜, 𝒙) =  𝑵𝑜(𝒙).  

The only important things to check are:  

- the jacobian |𝜕𝒖𝑜/𝜕𝒙| ≠ 0 , 

- the unicity of the solution of the functionals in 𝑵(𝒙), 
- the veracity of H𝑡  at each time t, and especially the 𝜔 point, 

- the border of the domain of 𝒙. 

And we have to solve the ordinary differential equation: d𝒙/d𝑡 = 𝑭(𝒖𝑜(𝒙)) ■ 

 

But, if we are interested by an improbable stationary behaviour, i.e. ∂𝒙𝑡/ ∂𝑡 = 𝑂, 

we have to search a solution of 𝑭(𝒙, 𝒖) = 0, with our very complicate hypothesis 

under condition |𝜕𝒖/𝜕𝒙| = 0 . 
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Appendix 
 

I - Composition of functions 

 

Let 𝑓 a polynomial application of  in itself. This space can be occasionally  . 

Geometrically, we represent it as a point transformation: 

 

       

We start from a point 𝒂 𝐶. We construct : 𝒂 = 𝑓(𝒂 )  and we do it again 

indefinitely : 𝒂 = 𝑓(𝑎 ). So, we have: 𝒂 = 𝑓 (𝒂 ) 
 

1 - Definition of a bounded iteration  

We call iteration the data of a function 𝑓  when we iterate it indefinitely with 

composition’s law of functions noted  and a starting point 𝒂 . the - iterated 

𝑓    of 𝑓  is such as:  

.  

We call orbit of 𝒂 the set of the iterates of a point 𝒂 : 𝑂(𝒂 ) = (𝒂 , 𝒂 . . 𝒂 ). 

 

In all this paper, 𝑓 is always supposed defined on a bounded domain  with a 

bounded image in  : 𝑓( ) . As 𝑓 is polynomial, the extrema of 𝑓 has 

just to belong in C. For instance, the logistic function :  defined on  

has an image  which remains bounded for  . But, generally, it is often 

very difficult to prove this property. Here, we admit that it is always true, because 

proofs are more simple. On other hand, this hypothesis remains the implicit or 

explicit basis of many cases studied by users and physicists: The Lorenz’s 

differential equations represent mathematically terrestrial atmosphere as a gas 

contained between a hot sphere (hearth) and a cold sphere (stratosphere). So: 

 

2 – Hypothesis H1  
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Iteration 𝑓 is polynomial with degree  and applies a bounded set  of   in 

itself. 

 

In mathematics, a dynamic system is generally indexed on an additive semi - 

group rather than on integers. Here, differential equations will be seen as iterations 

rather than indexed on a continuous additive semi - group. 

 

3 -  Conjugation of iterations 

As the study of the composition’s law 𝑓   is our main goal, we have to search 

commutative invariants for this law. So, from a geometrical point of view, 

qualitative properties of an iteration do not vary when we operate a continuous 

invertible change of coordinates of in :  𝒂 = (𝒕) . Generally, this change 

is a diffeomorphism. This technique will be often used here.  

Let 𝒂  be the image of 𝒂 by 𝑓:     

 𝒂 = 𝑓(𝒂) 

Changing of basis with: 𝒂 = (𝑡) and  𝒂 = (𝒕 ), we get:  

    𝒂 = (𝒕 ) = 𝑓(𝑎) = 𝑓 (𝒕)  

Then:    𝒕 = 𝑓 (𝒕). 

 

4 - Invariant sets 

Definitions 

A set 𝐴 is invariant under 𝑓 if : f(A) 𝐴. 

 

Let the chain: 𝑓 (𝐶) … 𝑓(𝐶) 𝐶 and the adherence 𝐶 = 𝑓 (𝐶). We have  

the invariant set 𝐶 = 𝑓 (𝐶 ) . An attractor is a compact sub-set  such as 

the orbit of any point of a given neighbourhood of a point converges to . 

So, the bounded domain is invariant. Orbit  𝑂(𝒂 ) is invariant under  𝑓.  

Generally, an iteration has some remarkable invariants. 

 

Fixed points and cycles 

Definition 

An invariant point 𝟎 is called fixed point if 𝟎 = 𝑓(𝟎). Cycles are composed of 

invariant points 𝛼 under 𝑓   such as  𝛼= 𝑓 (𝛼) but 𝛼 ≠ 𝑓(𝛼).  

 

Remarks 

- Even if there are many fixed points or cycles, we take the origin at one point 

denoted 𝟎 for all local study.  
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- All that we say about a fixed point 𝟎 will be true for all the points of the 

collection of cycles or other fixed points. There is sometimes interactions between 

attraction’s domains of these different points. 

- If invariant points can be dense, we may have continuous differentiable set; but 

we don’t study these sets here. 

  

Eigen values at the fixed point  

At the fixed point : 𝟎, if 𝑓 is linear, we have :𝑓(𝒂) = 𝑓′(𝟎)𝒂 where 𝑓′(𝟎) is a 

square matrix.  Then, it is easy to calculate 𝑓  and forecast the behaviour when 

. But 𝑓′(0)must be diagonalisable. We have to research the eigen values  

of 𝑓′(𝟎), and study the characteristic polynomial: 

    |𝑓′(𝟎) − 𝜆 𝐼| = 0. 

In order to diagonalize 𝑓′(𝟎), we suppose  the eigen values distinct. We note that 

the eigen value |𝜆| = 1 may induce functional relationship between fixed points 

in a neighbourhood of 𝟎 and a particular behaviour of the iteration. The 

importance of the role of the eigen values at the fixed point is illustrated by some 

most important theorems of convergence, often called theorems of the fixed point, 

especially for contracting iterations characterized by eigen values |𝜆 | < 1. We 

have same results for dilating iterations. 

Definition 

In the intermediate case where we have |𝜆 | ≠ (0,1), with eigen values larger and 

smaller than the unit, iteration and the fixed point are said hyperbolic.  

 

justification 

Let the linear application  Λ of  ( ) in : 𝒂 → 𝒂. Λ  is the diagonal matrix 

of the eigen values    𝜆, |𝜆 | ≠ (0,1). the iteration is written: 𝒂 = 𝒂 . Each 

axis of coordinates is globally invariant. If , we have a kind of  

invariant hyperbola. So, if the eigen values of the linear part of  𝑓′(𝟎) have this 

configuration, the fixed point is said hyperbolic. We don’t speak here about 

complex eigen values, except if the argument is like 2𝑘𝜋/𝑝.  then, 𝑓    has all 

the real positive eigen values. 

 

To study this intermediate case, we have to examine the invariant functions. The 

case where some eigen values equal 1 is not studied here. 

 

Invariant surfaces and curves  

Definition 

An invariant surface or variety is defined by the data of a  vector 𝐺 with k functions 

analytical, distinct of the identity, : → such as 

    𝐺 °𝑓(𝒂) = 𝐺 (𝒂) , .  
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If 𝒂  belongs to  𝐺 , all the points of the orbit of 𝒂  belong to the invariant 

surface : 𝐺(𝒂) = 𝐺(𝒂 ). 

Linearization of 𝑓 in  

The behaviour of a point 𝒂 in the neighbourhood of a fixed point 𝟎, is more easy 

when we can linearize its evolution. Two functional equations are useful: 

- Construction of  𝑑 functions of linearization 𝜑 (𝒂), →  : 

  𝜑 °𝑓(𝒂) = 𝜆  𝜑 (𝒂) ,  

- Construction of  𝑑  invariant functions 𝒂 (𝒕) coordinates of 𝒂(𝒕)   : → , 

    𝑎 (𝜆 𝒕)= 𝑓 (𝒂(𝒕)) , ,  

sometimes called separatrices.  They are coordinates of 𝒂(𝒕): 

    𝒂(𝜆 𝒕)= 𝑓(𝒂(𝒕)).  

𝒂(𝒕) is an invariant function under the action of 𝑓 because every point transformed 

by 𝑓 remains defined by the same parameterization. These invariant curves 

contain the origin. Some scholars call them linearizing functions. 

In the both cases, applications 𝜑 and 𝒂 are constructed locally with series.  

We call study with more details 𝒂(𝒕)) in the paragraph on the invariant functions. 

 

Invariant measures  

Generally, a measure 𝑓-invariant is defined as the solution of the Perron - 

Frobenius operator: 

 

Definition  

Let an arbitrary measure of probability 𝑃 and 𝑓   a   𝑃 - measurable application.  

For all borelian set , the transformation of 𝑃 by the Perron - Frobenius  

operator 𝑃  is:    𝑃°𝑓 (𝐵) = 𝑃 (𝐵).  

The measure 𝑃 it 𝑓-invariant if, for all borelian set , we have:  

     𝑃°𝑓 (𝐵) = 𝑃(𝐵) 
Such a functional equation is not easy to solve. We present solutions in our book. 

 

II - Deterministic method: linearization of iterations 

 

Following the works of Poincaré in 1879 on the linearization of differential 

equations and iterations, many results have been obtained on this question. 

Among the last one, the main theorem of Grobman - Hartman (1959) says: in a 

Banach’s space B, if Λ is a linear hyperbolic application of B in B, 𝑓 a continuous 

invertible application and if 𝑓 − Λ is a lipchitsian contraction, then 𝑓 is 

linearizable in a neighbourhood of  0, fixed point of 𝑓. 

In our case,  Λ is a application linear hyperbolic, means that the eigen values at 0 

are not in resonance : 𝜆 ≠ 𝜆 𝑛 ,  , and that we have eigen values with 
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modulus larger and smaller than 1. « 𝑓 is linearizable in neighbourhood of 0 » 

means that we have:  

    𝒂(Λ 𝒕)= 𝑓(𝒂(𝒕)).  

When we iterate indefinitely 𝑓, the eigen values with modulus smaller than 1 will 

tend to 0. So, it remains only the 𝑞 eigen values with modulus larger than 1:  

|𝜆  | > 1, denoted 𝜆  and we keep the notation  𝒕 for the corresponding vector of 

dimension 𝑞 :  (𝜆  , 𝑡 ) , , 

The other coordinates corresponding to the eigen values of modulus smaller than 

1 tend to 0 when the number of iterations tend to the infinite. 

To continue, we use more restrictive hypothesis on the eigen values with modulus 

larger than 1 :   |𝜆 | > 1,  . 

1 - Hypothesis H 

Les eigen values are not in resonance: 𝜆 ≠ 𝜆 𝑛,  . All the 𝑞 eigen 

values with modulus larger than 1:  𝜆 > 1,
 

 are positive 

transcendental. So: 𝑂 ≠ 𝛴 𝑛𝑘𝜆 𝑘 , ∀𝑛𝑘 ∈ ℕ; ∀𝑘 ∈ ℤ;  

The equation of linearization becomes E: 

     𝒂(𝜆 𝒕)= 𝑓(𝒂(𝒕)) where 𝒕 ∈ 𝑞  and 𝜆 ∈ 𝑞 

Under these hypothesis, the theorem of Bohr comes without difficulties. The 

hypothesis 𝜆 ∈ 𝑞 is not necessary because: if 𝜆 < 0, by iterating twice times 

𝑓, we obtain positive eigen values. Positive eigen values 𝜆 > 1 are necessary to 

use the Weierstrass- Mandelbrot’s function. 

If 𝒂(𝒕) is bounded, the image of 𝒂(𝒕)is relatively compact, so the solution of 

equation E  is an almost periodic function of Bohr, then : 𝒂(𝒕) ∈ 𝐴𝑃. 

 

2 -  Theorem of Bohr (recall of the Bohr’s approximation) 

Let a trigonometric function: 

     𝑃𝑛(𝒕) = ∑  𝒄𝑚
𝑘=𝑛
𝑘=1   e

𝑖𝝁
𝑘
𝒕  : 

Where 𝝁𝑘  , 𝒕 ∈ 𝑞  ,      𝒄𝑘 ∈ 𝑑  , 𝝁𝑘𝒕 is the scalar product.  

If 𝒂(𝒕) ∈ 𝐴𝑃, for ∀𝜀 > 0, it exists a sequence of 𝑃𝑛(𝒕) such as: 

𝒄(𝝁) = 𝓕𝝁 (𝒂) where 𝓕𝝁 is the transformation of Fourier- Bohr  

 

    𝓕𝝁 (𝒂) = lim
𝑇→∞

 
1

(2𝑇)𝑞 ∫ … ∫ 𝒂(𝒕)
+𝑇

−𝑇
 e−i𝝁𝒕 𝑑𝒕  

 

Let 𝒄(𝝁) the vector coefficient of Fourier-Bohr for the almost period  𝝁 .  

Let 𝚲(𝒂) = {𝝁: 𝒄(𝝁) ≠ 𝟎}the set of the almost period (p.p.)  𝚲 is countable. 𝒂(𝒕)  

is uniformly continuous with a representation with series of Bohr Fourier: 

       𝒂(𝒕)~ ∑  𝒄(𝝁)𝝁∈𝚲   e
𝑖𝝁𝒕    .   

This representation is unique. The convergence in quadratic mean holds. The 

equality of Perceval is satisfied.  
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 Remark 

The theorem of Bohr generalizes the Fourier’s series. The continuity is uniform. 

 

3 - Solution of E in the space of the almost periodic functions  

 

Under H3, the solution of the equation E is: 

     𝒂(𝜆 𝒕)=𝑓(𝒂(𝒕)) where 𝒕 ∈ 𝑞 and 𝜆 > 1 ∈ 𝑞  

As its image is relatively compact in ,  its solution belongs to the set of the 

almost periodic (A.P.) functions. 
But, equation E implies conditions on the almost periods (a.p.) 𝝁 and on the 

corresponding coefficients 𝒄(𝝁). 

Now, we search the solution of the equation E in the set (A.P.). 

 

Definition 

Let the polynomial finite formal sums defined for  all the  𝑞 positive eigen values 

with modulus larger than 1  𝜆 > 1,
 
  

      𝜑𝑚(𝜆) = Σ𝑗𝑘 𝑚𝑗𝜆𝑘  | 𝑚𝑗 ∈ ℕ; 𝑚𝑗 ≤ 𝑚; 𝑘, 𝑗 ∈ ℤ 

Here, only the integer 𝑚 is important, and not the degrees of 𝜆 which are 

arbitrary in  . We call 𝑚 the index. 

■ If Φ(𝜆) is the set Φ(𝜆) = ⦗𝜑𝑚(𝜆)|𝑚 ∈ ℕ ⦘. We have the following algebra for 

all the elements:   

If 𝜑𝑚(𝜆), 𝜑 (𝜆), 𝜑 (𝜆) ∈ 𝛷(𝜆), then: 

, ,   , . 

As 𝑓  is invertible, if  𝜇  is an a.p. , then  𝜇𝜆𝑘  and   𝜇𝜆 𝑘  are still an a.p. Then, the 

𝜇 are multiplies by all the coefficients of the polynomial. So, all the a.p. belong to 

Φ(𝜆). ■  

 

4 - Theorem (linearization)  

Under H, the  p.p. 𝜇 solutions of E are 𝜇 = 𝜑𝑚(𝜆) and the solutions 𝒂(𝒕)  can 

be written ;  

            𝒂(𝒕) = Σ𝑚Σ𝜑 𝔑𝑒⦗𝒄(𝜑 𝑚(𝜆))(1 − exp(𝜑𝑚(𝜆)𝒕))⦘ 

 

If the index 𝑚 = 1, then : 𝜑 𝑚(𝜆) = 𝜆𝑘|𝑘 ∈ ℤ 

and        𝒂1(𝒕) = 𝒄𝒘(𝒕)
  

 

Where: 

-𝒄 is the matrix of the eigen vectors of : 𝑓′(𝟎)𝒄 = 𝒄𝝀  at the fixed point 𝟎 , 

corresponding only to the  𝑞  eigen values with modulus larger than 1 and of zero 

elsewhere. 

-  𝒘(𝒕)  is the diagonal matrix compound of a diagonal bloc  of the 𝑞 eigen 
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values 𝜆 and of zero elsewhere. The diagonal bloc 𝑞 ×  𝑞 is composed of 

Weierstrass-Mandelbrot’s functions(WMF ):  

     𝑤 (𝑡 ) =  𝔑𝑒⦗Σ𝑘 𝑟 𝑘(1 − exp 𝑖(𝜆 𝑘 𝑡 ))⦘  

with:     𝑟 = 𝜆    

■ hints of proof  

* the exponents of E and the almost periods for each coordinate of 𝒕 are: 

     𝜆𝜑 𝑚(𝜆) = Σ𝑚′ 𝑛𝑚′𝜑 𝑚′(𝜆),  

* for the coefficients of Fourier-Bohr 

The coefficients of Fourier-Bohr  𝒂(𝒕)  are obtained by Fourier’s transformation 

for each p.p.  . Applying this transformation 𝓕𝜑𝑚(𝜆) to equation E: 

     𝐜(𝜑𝑚/𝜆) = 𝓕𝜑𝑚 (𝒂)  

We order the calculus with the increasing index 𝑚 beginning with 𝑚 = 1 

 

 *First, we consider �𝑚 = 1.  

Now, the a.p. for a coordinate of 𝒕 is  𝜑1(𝜆) = 𝜆𝑘. The condition on the a.p. 

becomes:
  

     𝜆𝜆 𝑘 = Σ 𝑛𝑘′𝜆
 𝑘′.  

If the eigen values are transcendental, all the coefficients 𝑛𝑘′ satisfy:  𝑛
𝑘′ = 0  

except 𝑛𝑘 1 = 1 . So, the solution unique is : 𝜇𝑘 = 𝜆𝑘, 𝑘 ∈ ℤ  . The following is 

easy. ■ 

 

Remarks: 

The hypothesis of the transcendence of 𝜆 is perhaps too strong because, 𝜆 cannot 

be algebraic, which is very restrictive. We think that there is less (For example, 

the eigen values are algebraic in the Henon’s case).  

All the other cases are more difficult. Indeed, if we don’t use the hypothesis of 

transcendence and we want to obtain  𝜇𝑘 = 𝜆𝑘|𝑘 ∈ ℤ, we have to prove that all the 

resultants of the characteristic equation of the eigen values and 𝜆𝜆 𝑘 = Σ 𝑛𝑘′𝜆
 𝑘′ 

are not null. In the other cases, the relations between the coefficients are not linear. 

 

Construction  of the solution 𝑎(𝒘) 

Note 𝒘   the vector of coordinates: 

     𝑤 = 𝑤 (𝑡 )  for   

and     𝑤 = 0     for . 

 

Proposition 

Under H, We can write:  𝒂(𝒕)~ ∑ 𝒂
𝑚 𝑚 𝒘

𝑚 and the 𝒂𝑚 are determines by 

recurrence with  𝒂1 , 𝒂2 … 𝒂𝑚 − 1. The power series converges as an exponential. 

 

5 - Self similarity (S.S.) and function of WM 
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Definition 

Let  with  𝜆 > 1 and , the real function 𝒘(𝒕)  is  self  similar if:

     𝒘(𝜆𝒕) = 𝑟 𝒘(𝒕)  . 

Example: Let the pavement 𝐼𝑘 = ∏ [𝜆 𝑘 , 𝜆  𝑘 ﹢1 [, k ∈ ℤ and 𝑞  
 

Weierstrass-Mandelbrot’s function (WM) in   

The WMF:   𝑤 
𝜆(𝑡) = 𝔑𝑒⦗Σ 𝑘 ∈  ℤ   𝑟𝑘(1 − exp 𝑖(𝜆𝑘𝑡))〕    

is defined r=𝜆D-2≤1 and converges (See Berry p 463). The  are the almost 

periods a.p. of 𝑤 
𝜆(𝑡) and . 

Berry presents an interesting simulation of the function WM when  with: 𝜆 =
1,5 . The result is not a straight line.  

 

 
 

The WMF has the proprieties of self-similarity : 𝑤 
𝜆(𝜆𝑡) = 𝑟 1𝑤 

𝜆(𝑡) 

and also a kind of linearity, for : 𝑤𝜆(𝑡) = (𝑚/𝑛)𝑤 (𝑡)  

 

Some unsettled problems 

- When 𝑓 is partially linear or when the eigen values are integers or fractions, we 

can encounter some difficulties  

- When there are many fixed points, we can compute the invariant functions for 

each fixed point, but it seems that the iteration can swing from a domain of 

attraction to another. 

- When there is resonance, we can apply the same method with theorem of 

Poincaré Dulac.  

 

III - Application to differential equations  

 

1- Introduction: equations with partial derivatives  

Many problems can be studied with a partial differential equation such as: 

        ∂𝒂/ ∂𝒙= 𝐹(𝒂).  

i.e. :         ∂𝒂 / ∂𝒙 = 𝐹 (𝒂), ,
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where 𝐹(𝒂) is a vector 𝑜𝑓 polynomials of 𝒂 ∈ C bounded of  in C of  with  

as many equations than unknown functions 𝒂(𝒙). The number of equations equals 

the dimension of 𝒂.  

The dimension of the vector 𝒙 ∈  is equal à the dimension du vector 𝒂 ∈ .  

The equations of Navier Stokes satisfy this situation with some conditions.  

Here, the problems of frontiers are excluded, although, by hypothesis, the iteration 

is always supposed to belong in a bounded domain by its own inertia. 

The problem is to find a function 𝒂(𝒙) obeying this equation with an initial 

condition 𝒂(𝒙0) = 𝒂0. 

But, the number 𝑑 of coordinates of the variable 𝒙 can be choose arbitrary smaller 

according the studied problem. By example, If 𝒙 ∈ ,  we have a differential 

ordinary equation. In other words, all the coordinates of 𝒙 are equal.  

 

 We study theses differential equations with the results that we have obtained 

about the iterations: we have to translate the equation en words of iteration. But, 

there is two ways to approach the question. The first is deterministic and centred 

on the almost periodic functions, the second is probabilistic with the operator of 

Perron Frobenius. Here, we only study the first way. Probabilistic results can be 

found in Cirier. 

 

2 - Definition of a differential iteration  

We call iteration differential the data of a starting point 𝒂0  and of the 

application 𝑓(𝒂, δ) of  in a  bounded set of  defined by : 

      𝑓(𝒂, 𝛿) = 𝒂 +  𝛿𝑭(𝒂) 

with  :           δ ∈ 𝜟 = {𝟎 < δ < δ0} ∩      

 δ is generally related to 𝒙 by the relation δ = 𝒙/𝑛;  𝑛 ∈ ℕ. We note 

 𝒙𝑭 = {𝑥 𝐹 }; , so:  

     𝑓(𝒂, 𝒙/𝑛) = 𝒂 + 𝒙 𝑭(𝒂)/𝑛 

We suppose now, for all δ ∈ 𝜟 , that the polynomial  function𝑓(𝒂, δ) applies a  

bounded set C  of   in itself. 𝐹(𝒂) is of degree r. 

 

Generally, even if it means to modify 𝒙 in δ, the integer 𝑛 is common for all the 

coordinates of 𝒙 and is lied to the number of iterations we want to do and the 

solution of the equation is the limit of: 

       𝒂𝑛(𝑥) = 𝑓 (𝒂0, 𝒙/𝑛)  

when 𝑛 → ∞.  
This property will be used by for instance to define the limit cycles.  

For all small δ ∈ 𝜟 𝑓(𝒂, δ) is invertible in C; so, 

𝑓(𝒂, δ) 𝑖𝑠 𝑎n analytic diffeomorphism. We can construct for points fixed and 

cycles, a function 𝒂𝑛(𝑥)  and an invariant measure for fixed δ < δ0.  
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But, even if we can apply all the previous results to 𝑓(𝒂, δ) for all fixed δ, the 

invariant distribution will depend on δ ∈ 𝜟. (If the domain C remains invariant). 

 

The essential is question to check the convergence or the invariance of the 

solutions. More, we should like to determine the conditions of convergence to an 

asymptotic solution and check if this solution exists. We begin to study the fixed 

points and cycles. 

 

3- Fixed points and cycles  

We define the fixed points and the cycles as being the fixed points and the cycles 

of the differential iteration for ∀δ ∈ 𝜟 fixed. Then δ vary and   δ → 0. 

Definition 

For δ fixed, a fixed point 𝛼 is defined by 𝑓(𝛼, δ) = 𝛼 and a cycle 𝐾δ, 𝑝  of order 

𝑝 is defined by 𝑓(𝛼, δ) = 𝛼  

 

Proposition 

- Pour∀δ , the zero 𝛼  of 𝑭 , 𝑭(𝛼) = 0 are the fixed points of 𝑓(𝛼, δ). If 𝜌 is a 

eigen value of 𝑭′(𝛼) , then : 𝜆 is eigen value of 𝑓′(𝛼, δ)  with : 

 𝜆 = 1 + 𝜌 δ =  1 + 𝜌 𝑥 /𝑛,  .
 

 

If 𝑭′(𝛼) is diagonalisable, we write in the base of the eigen vectors 𝑭′(𝛼) = 𝛬 , 

and the linear part of 𝑓(𝒂, δ) is. ( 1 +  𝜌 𝒙/𝑛)𝒂 

- For δ fixed, a cycle 𝐾𝑛, 𝛿 of order n defined by p points 𝛼1, 𝛼2, … 𝛼𝑛 will depend 

on δ and verify :  

     𝜶𝑘 1 = 𝑓(𝜶𝑘, δ),   k=1,2..,n. 

and       ∑  𝑘=𝑛
𝑘=1 𝜕𝑚 𝑭(𝜶𝑘)/𝜕𝒂𝑚 = 0, s=1,..,n ;m=1,..,r  

- If 𝑛 → ∞, δ → 0, it can exist a limit cycle 𝐾. The points of 𝐾 must check 

asymptotically the cyclical orbits of uniform density satisfying: 

     ∫ 𝜕𝑚  𝑭(𝒂(𝒙(𝑡)))/𝜕𝒂𝑚𝑑𝑡
1

0
= 0; m=1,..,r  

et satisfying to: ∂𝒂/ ∂𝒙= 𝐹(𝒂) a cycle off order n for δ       

where the index of iteration 𝑡 =  lim
              𝑛→∞

 𝑠/𝑛, s=1,..,n determine a uni-dimensional 

cyclical path.
 
 

■ Let 𝐾
 𝑛

. 𝛿  a cycle of order n for δ fixed. For  ∀𝒂 ∈ 𝐾
 𝑛

. 𝛿    : 

       𝑓 (𝒂, 𝒙/𝑛) = 𝒂 

For  k=1,..,n ,         𝑓 (𝒂,
𝒙

𝑛
) = 𝑓 (𝒂,

𝒙

𝑛
) + δ 𝑭 ∘ 𝑓 (𝒂,

𝒙

𝑛
) 

By summation of these equalities, then by derivation with respect to  δ, we obtain 

the condition, if a cycle limit K exists. ■ 

 

4 - Deterministic approach by invariant functions 

We situate the approach in the scoop of the previous paragraph, near by a 

hyperbolic fixed point, where we have an invariant function  𝒂(𝒕, 𝒙/𝑛) : 

ℓ
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satisfying the relation 𝒂(λ𝒕, 𝒙/𝑛) = 𝑓( 𝒂(𝒕, 𝒙/𝑛)) for all fixed δ =
𝒙

𝑛
; 𝑛 ∈ ℕ. For 

a cycle, we cannot use the same way because the points are not well isolated. 

We have seen that, for study invariant functions , we have only to consider the 𝑞 

eigen values  𝜆 = 1 + 𝜌 δ =  1 + 𝜌 𝑥 /𝑛  larger than the unit,  so : 

       𝜌 𝑥 /𝑛 > 0 .  

Convention 

Here, we prefer use the letter 𝒖 instead of the letter 𝒕 for not confuse the parameter 

of fluctuation 𝒕 with some variables 𝒙 which can be misinterpreted with the time. 

Only the coordinates of 𝒖 corresponding to 
𝜌 𝑥

𝑛
> 0are interesting, the others 

are null. 𝒖 is call parameter of fluctuation. The equation E is now: 

     𝒂((1 + 𝜌𝒙/𝑛) 𝒖, 𝒙/𝑛) = 𝑓( 𝒂(𝒖, 𝒙/𝑛))     
Hypothesis H becomes H’: 

 

Hypotheses H’ 

For all δ fixed, the polynomial function 𝑓(𝒂, 𝒙/𝑛) applies a  bounded set of  

in itself. The 𝑞 eigen values larger than 1: 

          𝜆 = 1 + 𝜌 δ > 1   

are real and transcendental, all the others are not in resonance.  

 

Apparently, in many cases this hypothesis is not necessary. 

First, we recall that, for δ fixed, then we have an analytic of frame of the solution 

by absolutely convergent series. More, the solution belongs to the set of the 

functions almost periodic. We have now to clarify what are the periodic functions. 

 

Proposition  

Under H’, the equation E δ: 

      𝒂((1 + 𝜌𝒙/𝑛) 𝒖, 𝒙/𝑛) = 𝑓( 𝒂(𝒖, 𝒙/𝑛))  
of the differential iteration has an asymptotic almost periodic solution.  The a.p. 

belong to  Φ(𝜆) , composed with sums of  𝑚(1 + 𝜌δ)𝑘|𝑚 ∈ ℕ; 𝑘 ∈ ℤ. 
We write: 

     𝒂( 𝒖) = Σ𝑚𝒂𝑚( 𝒖)|𝑚 ∈ ℕ 

with  :     𝒂𝑚( 𝒖) = Σ𝜑𝒄 (𝜑𝑚(𝜆))(1 − exp(𝜑𝑚(𝜆)𝒕))  

      

For 𝑚 = 1, the a.p. are : 𝜆𝑘  ; the coefficients 𝒄(𝜆𝑘)  satisfy: 

     𝒄 (𝜆 𝑘) = (1 + 𝜌 δ ) 𝒄    

where  𝒄 is eigen vector of F’  for the eigen value 𝜌 δ > 0.  

When  𝑛 → ∞: 𝒂1 ( 𝒖) =  𝒄 𝒘 (𝒖)  

𝒘 (𝒖) is the function of WM with: 

      𝜆 = exp (𝑥 𝜌 ) and : 𝑟 = exp − (𝑥 𝜌 ) 
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■ For all δ fixed, we have just to take the previous demonstrations at the 

neighbourhood of a fixed point or of a cycle and change only the notation. The 

limit for 𝑛 → ∞ is not difficult. ■ 

 

Remarks 

- What happen when we start from any position? Supposing the iteration without 

resonance or smalls divisors, we do the same computation, but allowing that the 

eigen values are negatives.  

- The solution is local. It is not always so simple when we have many points fixed, 

as in the case of Lorenz. We have observed with probabilistic methods, the 

moving from a basin of domination to another.  
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