
HAL Id: hal-01716805
https://hal.science/hal-01716805v1

Submitted on 24 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Embedded Hybrid Anomaly Detection for Automotive
CAN Communication

Marc Weber, Simon Klug, Eric Sax, Bastian Zimmer

To cite this version:
Marc Weber, Simon Klug, Eric Sax, Bastian Zimmer. Embedded Hybrid Anomaly Detection for
Automotive CAN Communication. 9th European Congress on Embedded Real Time Software and
Systems (ERTS 2018), Jan 2018, Toulouse, France. �hal-01716805�

https://hal.science/hal-01716805v1
https://hal.archives-ouvertes.fr

Embedded Real Time Software and Systems (ERTS2) 2018

Embedded Hybrid Anomaly Detection for
Automotive CAN Communication

Marc Weber, Simon Klug
and Eric Sax

Institute for Information Processing Technologies
Karlsruhe Institute of Technology

Karlsruhe, Germany
Email: marc.weber3@kit.edu, simon.klug@student.kit.edu

and eric.sax@kit.edu

Bastian Zimmer
Vector Informatik GmbH

Stuttgart, Germany
Email: bastian.zimmer@vector.com

Abstract—Due to the steadily increasing connectivity com-
bined with the trend towards autonomous driving, cyber security
is essential for future vehicles. The implementation of an intrusion
detection system (IDS) can be one building block in a security
architecture. Since the electric and electronic (E/E) subsystem
of a vehicle is fairly static, the usage of anomaly detection
mechanisms within an IDS is promising. This paper introduces a
hybrid anomaly detection system for embedded electronic control
units (ECU), which combines the advantages of an efficient
specification-based system with the advanced detection measures
provided by machine learning. The system is presented for -
but not limited to - the detection of anomalies in automotive
Controller Area Network (CAN) communication. The second
part of this paper focuses on the machine learning aspect of
the proposed system. The usage of Lightweight On-line Detector
of Anomalies is investigated in more detail. After introducing its
working principle, the application of this algorithm on the time
series of a CAN communication signal is presented. Finally, first
evaluation results of a prototypical implementation are discussed.

Keywords—intrusion detection system, anomaly detection, ma-
chine learning, LODA, automotive, Controller Area Network, time
series

I. INTRODUCTION

Today, connectivity and highly automated driving are the
two major topics pushing the evolution of automotive elec-
tronics. Both enable a significant improvement for passenger
comfort and safety. However, especially in their combination,
connectivity and highly automated driving yield new danger-
ous scenarios. On the one hand, vehicles become increas-
ingly connected with their environment and other vehicles.
New wireless technologies like WiFi, Bluetooth and Car2X
communication are installed, which enable new cyber-attack
vectors [1][2][3]. On the other hand, ECUs get more and
more control over safety-relevant functions of a vehicle, like
braking and steering, in order to realize automated driving.
To counter the risk of fatal cyber-attacks, several researchers
and leading companies propose a multi-layer security concept
[1][4][5][6][7]. A so-called defense in depth architecture could
e.g. consist of four defense barriers as proposed by Miller and
Valasek [1]:

1) Secure off-board communication
2) Access control for in-vehicle networks
3) Separation of different domains within the electric

and electronic architecture
4) Mechanisms to detect and prevent cyber-attacks on

vehicle networks and within ECUs

The paper at hand focuses on the last defense barrier, for
which related research and industry propose the installation of
IDS and intrusion prevention systems (IPS) [1][7][8][9]. This
is especially true for in-vehicle CAN networks, since CAN is
the most important and most frequently used automotive bus
system at the moment. The presented IDS concept for CAN
combines the efficiency of a specification-based approach
with the advanced detection of irregularities using machine
learning algorithms. Although the IDS system is introduced
for automotive ECUs, the concept is not limited to that use
case. The system is designed in a flexible way, enabling an
easy adaption to different network technologies, as well as
ECUs in different application areas.

Primary goal of the presented system is improving the
cyber security of ECUs. As one part of the last defense
barrier, it checks for irregularities in vehicle networks and
it does not rely on pre-defined attack patterns. With this
approach, it is possible to recognize also unknown and newly
arising cyber-attacks. However, the detection mechanisms
work independent of the root cause of an irregularity, which
potentially is a cyber-attack but also could be a malfunction
of an ECU. For the automotive domain, the latter is especially
relevant for the next generation of vehicles, if we consider the
upcoming self-adapting and machine learning-based vehicle
functions. The proposed system could help safeguarding
these functions during runtime since a complete validation at
development time becomes difficult.

The remaining part of this paper is structured as follows:
Section II introduces the term anomaly and its different types,
followed by the discussion of related work in section III.
The first central aspect is the elaboration of the proposed
hybrid anomaly detection system in section IV, starting
with a general system overview and continuing with an
explanation of the single building blocks. The second part of

1 | P a g e

Embedded Real Time Software and Systems (ERTS2) 2018

this paper starts with section V, which discusses the topic of
anomaly detection in time series data with special emphasis
on automotive communication signals. With respect to the
proposed system and its boundary conditions, Lightweight
On-line Detector of Anomalies is selected to be evaluated in
more detail for this use case. Therefore, section VI introduces
its working principle, followed by the description of its
application on CAN communication signals in section VI-A.
This second central aspect of the paper at hand is further
elaborated in section VII by presenting first evaluation results.
Section VIII concludes this paper with a summary and gives
an outlook on future work regarding the hybrid anomaly
detection system.

II. DIFFERENT TYPES OF ANOMALIES

Irregularities, so-called anomalies, are deviations from
normal behavior. In literature, an anomaly is also referred to as
outlier, besides others. D. M. Hawkins gives a corresponding
definition, which reflects the basic assumption of the proposed
system [10]:

“An outlier is an observation that deviates so much
from other observations as to arouse suspicion that it was
generated by a different mechanism.”

The following paragraphs introduce different types of
anomalies, which are useful to classify anomaly detection
mechanisms. The simplest form of an anomaly is the point
anomaly, defined by Chandola et al. as follows [11]:

“If an individual data instance can be considered as
anomalous with respect to the rest of data, then the instance
is termed as a point anomaly.”

Exemplarily for the automotive context, the available data
could be a CAN bus log. In this case, the mentioned data
instance is a single recorded CAN message. If that single
message can be classified as anomaly without considering
other data instances, e.g. because it contains the information
that the vehicle is driving 200 km/h at 1500 rpm in the 1st
gear, it is a point anomaly. In contrast to the point anomaly, a
contextual anomaly can only be classified as such, if additional
contextual information is taken into account [11]. Having a
look at the example above, if a CAN message contains the
data 250 km/h at 4000 rpm in the 6th gear, this would not be
a point anomaly since it is realistic in the first place. However,
if the message was recorded while driving inner city, it can
be declared as a contextual anomaly. The last type is the
collective anomaly, referring to a sequence of data instances,
which together form an anomaly [11]. This would e.g. be the
case if two or more consecutive CAN messages indicate an
unrealistic or physical impossible acceleration of the vehicle.

III. RELATED WORK

Besides defining the different anomaly types, Chandola
et al. did a comprehensive state of the art analysis for
anomaly detection techniques [11]. Many of them are based
on machine learning algorithms, having the advantage that

the behavior of the observed system has not to be known
in advance but the normal behavior is learned from training
data. Machine learning is powerful but also has some
disadvantages. Although most algorithms are successfully
applied in different application domains, including intrusion
detection, for some of them it is hard to understand what
happens in detail inside the system, e.g. when using large
neural networks. In consequence, it is hard to prove that
machine learning algorithms work as intended under all
circumstances. Additionally, most of them are resource
intensive in terms of required computing power and/or storage
consumption. Therefore, their application within embedded
software is currently limited and has to be evaluated with care.

As mentioned previously, researchers and industry experts
recommend the usage of an IDS for automotive CAN commu-
nication [1][7][8][9]. However, there is one crucial difference
compared to the classical application areas of IDS solutions
in computers and computer networks: In-vehicle networks are
used in a well-defined environment. E.g. all exchanged CAN
messages, sent and received by ECUs, are defined by the
vehicle manufacturers in advance to guarantee interoperability.
This means that there is a lot of knowledge available, defining
the normal behavior of the bus system. Additionally, the au-
tomotive industry has established several standards to specify
the communication between ECUs in a semi-formal manner,
often referred to as communication matrix. This specification
includes the exchanged messages, which are distinguished
based on their identifiers, and the transported payload. The
payload itself consists of signals, each representing a single
transported data element, e.g. vehicle speed, rpm and gear.
Figure 1 illustrates a CAN frame with an exemplary payload.
Re-using the available knowledge in an anomaly detection sys-
tem for CAN communication is vital. This is also reflected in
the discussion of anomaly detection for in-vehicle networks by
Müter et al. [12]. After discussing signature- versus anomaly-
based detection mechanisms for IDS in the automotive context,
they argue in favor of anomaly-based detection. For signature-
based systems, the need for regular updates and the focus on
known attack patterns are presented as the main disadvantages.
Although the first disadvantage gets smaller or will even
disappear in future due to the possibility of remote updates,
the focus on known attacks remains and is inherent to the
principle of signature-based detection. Therefore, to further
discuss anomaly-based detection is still valid today. Müter et
al. mention the disadvantage of a high false positive rate for
most anomaly detection mechanisms. This is not acceptable
for a system installed in a vehicle. As a consequence, they
present an anomaly detection concept which does not produce
false positives at all. Their proposed system is based on the
assumption that the normal behavior of vehicle networks can
be defined successfully, which supports the statement that
re-using OEM knowledge is important. In the remainder of
their paper, Müter et al. introduce eight classes of network
monitors - so-called anomaly detection sensors. Figure 2 shows
the different sensor classes defined in [12]. Furthermore, the
authors discuss the applicability of the different sensors and
summarized their results in Figure 3. The realization of these
sensors in context of the proposed hybrid anomaly detection
system is further elaborated in section IV.

2 | P a g e

Embedded Real Time Software and Systems (ERTS2) 2018

Fig. 1: CAN frame with exemplary payload

Fig. 2: Sensor classes defined by Müter et al. (from [12])

Fig. 3: Applicability of anomaly detection sensors (from [12])

Anomalies can occur on message level as well as on
payload level. It is worth to note that all detection sensors,
working on message level (Payload-Inspection set to false in
Figure 3), are classified as specification-based. This type of
checks can be implemented efficiently without using machine
learning algorithms. It is not necessary to learn e.g. the period
of a CAN message, if it is already statically defined in the
communication matrix. But there are payload properties, which
cannot be checked purely based on a given specification.
One example is the time series of a signal. While absolute
minimum and maximum values are usually defined, there is
no explicit information about the normal temporal behavior
of a signal given statically. However, this temporal behavior
can be checked for anomalies by applying machine learning
algorithms on the corresponding time series data as shown e.g.
by Andreas Theissler [13], although his work focuses on offline
analysis instead of real-time intrusion detection on ECUs.

IV. HYBRID ANOMALY DETECTION SYSTEM

The basic idea of the proposed system is to use
specification-based anomaly detection and machine learning
algorithms sequentially within the embedded software of an
ECU. Figure 4 depicts the principle building blocks of the two-
stage system. Because of not issuing false positives and due
to the possibility to implement them efficiently, specification-
based checks are applied in the first stage and are favored
over machine learning algorithms. But there is one restriction:
The checks shall be completely derivable from a commu-
nication matrix of standardized format. This first stage is
further referred to as static checks. Müter et al. classified
their first six sensor classes (S-1 to S-6) as specification-
based [12], see Figure 3. Therefore, they are candidates for
static checks. However, there are some differences regarding
the underlying specifications. Some checks of the formality
sensor class (S-1) only refer to a protocol specification and
do not require OEM or vehicle specific information. As
long as the protocol specification is standardized, this is no
issue and a realization within the static checks is possible.
Location (S-2) and range (S-3) sensors are derivable from a
communication matrix, given that the value range of signals
is defined. For the frequency sensor (S-4) the situation is
different. Checks of this class can be derived for periodic
messages, whereas the implementation of frequency sensors
for purely event-driven messages is more challenging. For
this purpose, advanced mechanisms like machine learning can
be used, which e.g. determine the minimum and maximum
period of such a message during their training phase. The
required information to implement correlation sensors (S-5)
can also be included in a communication matrix of a gate-
way ECU which bridges different communication networks.
Protocol sensors (S-6) are related to formality sensors. As
an example, in case of diagnostic requests and responses, a
protocol sensor can check whether the response does formally
belong to the preceding request based on the standardized

3 | P a g e

Embedded Real Time Software and Systems (ERTS2) 2018

Fig. 4: Block diagram of the hybrid anomaly detection system for CAN

Unified Diagnostic Services (UDS) specification. However,
some OEMs also use small proprietary protocols, e.g. on top
of CAN communication, which could be checked in a similar
way. The required information to implement these kind of
protocol checks is mostly available in an OEM-specific and
not standardized specifications. Therefore, such sensors are
currently not realized as part of the static checks.
In the second stage of the system, learning checks extend
the detection possibilities beyond the purely specification-
based approach. To apply the corresponding machine learning
algorithms, relevant information has to be extracted from
CAN messages. The static checks only forward selected data
elements like signal values to the learning checks, depicted
in Figure 4 as feature base. The feature extraction block,
pre-processes the data elements and generates features, which
represent the input data for the following algorithms. Pre-
processing can contain multiple aspects, like building time
series, calculating derivations and normalization. Coming back
to the sensors, defined by Müter et al. [12], the last two
classes, namely plausibility (S-7) and consistency sensors (S-
8), require semantic information about the transported signals,
which is neither included in the protocol specification nor in
the communication matrix. Therefore, static checks cannot be
derived for these sensors. To realize consistency sensors, prob-
ably the evaluation of additional OEM-specific specifications is
necessary to determine the signals between which the semantic
consistency can be checked. In contrast, plausibility sensors
focus on the temporal behavior of one communication signal.
The single signals can be extracted from CAN messages by
using the communication matrix and their temporal behavior
can be examined using learning checks. This topic is further
discussed in the second part of the paper at hand, starting with
section V.
From another perspective, static checks are very well suited
to detect point anomalies like signal values out of range
(range sensor). In addition, simple collective anomalies can

be detected efficiently using static checks, as long as they can
be derived from the communication matrix, e.g. the period
evaluation of cyclic messages (frequency sensor). Learning
checks are required for advanced contextual and collective
anomalies, which cannot be detected based on the communica-
tion matrix, e.g. an unnatural time series of a communication
signal (plausibility sensor).
In their state of the art analysis, Chandola et al. [11] present
different machine learning algorithms for anomaly detection.
Each of them is well suited for different use cases. Therefore,
the proposed system allows using a variety of algorithms,
working on the same features. Figure 4 shows three examples:
Replicator Neural Networks (RNN) [14], One-Class Support
Vector Machines (OCSVM) [15] and Lightweight On-line
Detector of Anomalies [16]. This list is by far not complete
and can be extended easily. Each algorithm produces as output
either a binary value (’normal’/’anomaly’) or a so-called
anomaly score, which represents the probability of an anomaly.
These produced outputs are evaluated within the anomaly
analyzer block, which e.g. checks an anomaly score for a
defined threshold value before it securely stores the anomaly
in a log. The design of the learning checks also allows for
ensemble-based methods, as proposed in recent research e.g.
by Andreas Theissler [17]. In an ensemble, multiple algorithms
run in parallel, checking for the same anomalies and each of
them producing its own output. In such a setup, the anomaly
analyzer performs a voting between the different outputs and
finally decides whether an anomaly is logged or not. This kind
of post-processing is not necessary for static checks, since they
do not work with probabilities. Therefore, they directly log the
detected anomalies together with the corresponding boundary
conditions (e.g. which CAN frame caused the anomaly) to
enable an improved post-evaluation.

4 | P a g e

Embedded Real Time Software and Systems (ERTS2) 2018

V. ANOMALY DETECTION IN TIME SERIES DATA

Data exchange between ECUs via CAN signals is vital
for the majority of the implemented vehicle functions like
engine control and electronic stability control. Besides the
pre-defined signal properties like absolute minimum and
maximum value the time series of a signal - further referred
to as signal sequence - is one major characteristic. Especially
signals, representing continuous physical values, are well
suited for anomaly detection in their sequence. As an example,
the speed of a vehicle is bound to physical constraints. It
cannot change too rapidly and some signal sequences are very
unlikely to occur, e.g. oscillation. These constraints are not
pre-defined within the communication matrix and therefore
cannot be observed by static checks. However, wrong signal
sequences are collective anomalies, which are detectable by
learning checks representing a plausibility sensor [12].
In a first step, a machine learning algorithm has to be
selected, which is suited for real-time anomaly detection in
signal sequences. There are several criteria which have to be
considered for the decision. First, it is important whether the
training is done on dedicated infrastructure like a workstation
(offline) or on the target system itself (online). For most
algorithms, the training is computationally expensive and
therefore not applicable on ECUs whereas the classification
task itself requires less processing power. On the other hand,
online learning is required if the algorithm needs to adapt its
behavior to changing system constraints during runtime. To
account for this so-called concept drift [18], the training of the
algorithm is continued while classifying data instances. Later
decisions of the algorithm are influenced by the parameter
adaption, which is usually performed after each processed
data instance. However, many algorithms do not support the
continuous adaption of parameters with every data instance,
since they can only be trained with a complete data set.
The second important criteria is the selection of supervised
or unsupervised learning, dependent on the available training
data. Supervised learning requires the existence of labeled
data, i.e. each data instance has to be annotated with the
expected result - in this case normal or anomaly. Considering
anomaly detection, this knowledge is used to learn a classifier,
which shall be able to distinguish normal from anomalous
data instances. However, to obtain labeled data for anomalous
signal sequences in a large scale is difficult or even impossible
because of the data collection and labeling effort. Additionally,
training with anomalous data would result in a classifier,
which is probably only able to detect known anomalies.
This contradicts the idea of anomaly detection, which tries
to find any kind of deviation from normal behavior. Due to
these reasons, supervised learning is not further considered
in the selection process of finding an appropriate algorithm.
Unsupervised learning does not require labeled data and is
mostly used for clustering techniques. These algorithms group
data instances and thereby try to find the classes normal and
anomaly automatically. On the other hand, most of these
algorithms require a lot of data instances to be available
during runtime in order to perform the grouping. Since the
proposed anomaly detection system shall be implemented
on an embedded ECU, considering the required resources
- in terms of computing power and storage consumption
- is important. Both is limited on an embedded device,
compared to office computers or server systems. Following

Name Time
Complexity

Storage
Complexity Description

HS-Trees O(t(h + l)) O(t2h)
t: Number of parallel trees
h: Maximum tree depth
l: Sliding window length

LODA O(k(d− 1
2 + b)) O(k(d− 1

2 + b))

k: Number of histograms
d: Number of input features
b: Number of bins

TABLE I: Comparison of the big O-notation between LODA
and HS-Trees (Source [16][23]). The time complexity of HS-
Trees and LODA includes the time to update the classifier.1

this constraint, the computational complexity of the selected
algorithm must be low when executed on an ECU to detect
anomalies.

An unsupervised method, that is especially designed for
anomaly detection, is Isolation Forest (iForest) [19]. The
basic idea of iForest is that anomalous data instances can
be isolated easier than normal data instances. The isolation
is done by randomly selecting a feature and performing
axis-parallel splits until all data instances are separated from
each other. This process is repeated multiple times from
scratch to construct diverse decisions trees. This can be
seen on an conceptual level as the exploration of random
local sub-spaces [20]. The anomaly score of a tested data
instance is computed by checking the average depth in all
trees. Data instances with small average tree depth have a
higher anomaly score, because they need less splits to be
separated [19]. iForest is an example for ensemble-based
machine learning algorithms. This type of algorithm combines
multiple weak classifiers and votes on the total outcome.
Ensemble-based methods can handle a large number of input
data instances with many features and improve speed by
making parallel processing possible. Ensembles can be used
within one algorithm as done by iForest but also between
different algorithms as described at the end of section IV
and in [17]. Different researchers published optimizations
for iForest targeting different use cases [21][22]. The most
notable approach for online learning are Half-Space-Trees
(HS-Trees) [23]. This algorithm randomly splits the input data
space until a predefined maximum tree depth is reached or
there is just one data instance left in the corresponding branch
of the tree. The procedure is repeated to build an ensemble
of trees similar to the iForest algorithm. Each end point of a
tree represents a remaining region, which is not split further.
The value of the end point is the number of data instances in
the corresponding region (mass). A data instance, which has
to be classified, is traversed through all trees. Thereby, the
mass of all traversed end points is recorded and their average
is calculated. This average mass represents the anomaly score
of the data instance. The lower the average mass, the higher
is the probability for an anomaly.

Lightweight On-Line Detector of Anomalies (LODA) is an
unsupervised anomaly detection algorithm especially designed
for low time and storage complexity with the capability of

1The storage complexity of HS-Trees in the LODA-Paper [16] differs from
the complexity given by the authors of HS-Trees [23]. The storage complexity
given here is the complexity taken from the HS-Tree-Paper.

5 | P a g e

Embedded Real Time Software and Systems (ERTS2) 2018

online learning. LODAs’ concept of using random projections
is similar to iForest and HS-Trees. The time complexity is not
only deterministic, but it also can be sub-linear with respect
to the number of input features, as shown in Table I. Another
advantage is that there are no parameters to be set or tuned
manually, but all parameters are optimized automatically. For
other algorithms, especially neuronal networks, tuning those
parameters can be a complicated and long process. LODA
is also able to handle missing data values and it allows to
figure out the feature(s) causing an anomaly. Even though
normalizing values (see section VI-A) improves the detection
rate, LODA can - in contrast to most other machine learning
algorithms - cope with values, that are out of the normalized
scale. The described HS-Trees for example can only use values
that are bound between zero and one. This is a disadvantage
when applied in real world applications because the range
of values might change due to concept drift or there is no
predefined range of values available but a range has to be
estimated.
The author states, that in his tests LODA outperformed HS-
Trees by factor seven to eight [16]. By benchmarking eight
selected machine learning algorithms, Emmot et al. found that
only iForest and LODA are able to scale to big data sets
[24]. Both were able to generally outperform OCSVM [15]
and Support Vector Data Description (SVDD) [25].
Considering the discussion above and the future goal of online
learning on ECUs, LODA is a promising algorithm for the
learning checks of the proposed anomaly detection system and
is investigated in more detail.

VI. LIGHTWEIGHT ON-LINE DETECTOR OF ANOMALIES

This section gives an overview about the working principles
of LODA as proposed by Tomáš Pevný in 2016 [16]. The
basis of the classifier are randomly projected histograms whose
generation is described in the following paragraph.
In the first step a sparse random projection is applied on the
input data instance. A random projection is constructed by
setting up a vector of the same dimension as the number of
input features and assigning element values from N (0, 1), as
recommended by the Johnson-Lindenstrauss lemma to approx-
imately maintain L2-Distance [26]. The sparsity of the vector
is created by setting random elements to zero. The probability
of setting an element to zero is 1 − 1√

d
as recommended by

Li et al. [27], where d is the dimensionality of the input data.
The reason for projecting data instances randomly instead of
using single features to construct the histograms is that diverse
sub-spaces improve the detection rate. This type of diversity
is not only used in iForest but also in most other ensemble
based algorithms like the supervised Random Forest [28][16].
In the second step an one dimensional histogram is constructed
for each projection of the input data. Tests showed that two
alternating equi-width histograms work best for LODA [16].
An equi-width histogram is constructed by dividing the value
axis in bins (intervals) of equal width. For online learning, two
alternating histograms are used. An incoming data instance is
classified using the first histogram. Simultaneously, the second
histogram is constructed including the new data instance. At
the end of the classification the histograms are exchanged. The
number of bins is especially important since it influences the
time and storage complexity of the algorithm as seen in Table
I. There are several methods for computing this number like

Sturges’ formula [29], Scotts’ normal reference rule [30] or
the Freedman-Diaconis rule [31]. The easiest and default rule
for most statistical software is Sturges’ formula [29] which
calculates the number of bins b to b = 1+log2 n, where n is the
number of initial data instances. However, for large data sets,
Sturges’ formula is too conservative. Therefore, the method
by Birgé and Rozenholc [32][33] is used for LODA, which
optimizes the penalized maximum likelihood Ln as shown in
equation 1.

Ln(b) =

b∑
i=1

ni log

(
bni
n

)
−b+ 1− {log(b)}2,5︸ ︷︷ ︸

discount factor,
sanctioning of high b

(1)

Here, ni is the number of data instances, that fall in the i-th
bin. This method provides good results for high dimensional
data and has an acceptable computational cost [33]. In the end,
the anomaly score f of a data instance x can be calculated as
follows:

f(x) = −1

k

k∑
i=1

log p̂i(x
Twi) = − log

(
k∏

i=1

p̂i(x
Twi)

) 1
k

(2)

xTwi projects a data instance to a scalar value zi. The
joint probability p̂i(zi) is calculated as the number of data
instances in the same bin as zi, divided by the total number
of considered data instances. This procedure is repeated for
all k projections. Finally, the average joint probability value
over all histogramms is calculated. In the following statement,
Pevný describes the anomaly score of LODA, where a sample
corresponds to a data instance.

Loda’s output is proportional to the negative log-likelihood
of the sample, which means that the less likely a sample is,
the higher the anomaly value it receives. [16]

The maximum number of projections and associated his-
tograms can either be defined manually or is also automatically
optimized. By defining the number of histograms the necessary
storage can be limited to a fixed size. To automatically find the
minimum number of projections, the reduced variance σ̂k after
adding a histogram is measured. The variance is computed
by the following equation, where f is the anomaly function
described in equation 2, k is the number of projections and n
the number of data instances.

σ̂k =
1

n

n∑
i=1

|fk+1(xi)− fk(xi)| (3)

With the given equation, a high number of projections
will not be sanctioned since the variance decreases with each
added projection. Therefore, the variance is normalized by
the first variance σ̂1 and a new projection is only added if
the normalized variance change is bigger than a predefined
threshold τ . For LODA the recommended threshold τ is 0.01
which was used for all following experiments.

6 | P a g e

Embedded Real Time Software and Systems (ERTS2) 2018

A. LODA for Time Series Data

In the proposed system, LODA is used as a learning
check for observing the time series of a communication signal.
Regarding the implementation, first the sequences of CAN
signals have to be made available as input values for the
machine learning algorithms of the anomaly detection system.
Every time a CAN message is received, the static checks
extract the single signals, which are then passed to the feature
extraction block, please refer to Figure 4. This block builds
up and manages the time series of those signals with a
configurable count of history values. Internally, it implements a
sliding window mechanism, which shifts the already available
signal values as soon as a new value arrives. The oldest value
is disposed.
The input values for the machine learning algorithms like
LODA are not directly the CAN signal values but their
normalized representation. A normalization around zero is
performed by column-wise standardization

(
xi−mean(x)

std(x)

)
. For

later work there are several other online and offline normaliza-
tion approaches [34] that might be able to improve the results
and can for example utilize the minimum and maximum values
of signals defined in the communication matrix.
The training itself is realized by a special program, which takes
recorded CAN logs as input. Since all data is available at once,
currently offline training in batch mode is used for simplicity
reasons. Online learning is going to be the next step of our
research.

VII. EVALUATION

To evaluate the performance of the proposed system, a
synthetic CAN signal is used. The signal sequence as well as
the corresponding CAN messages are generated with CANoe
from Vector Informatik, which is a simulation and analysis
tool for automotive networks. A corresponding communication
matrix is used to automatically generate the static checks
including the signal extraction from CAN messages. The
signal sequence itself is periodic and one period consists of
approximately 850 samples emulating a physical value of a
vehicle, e.g. speed. It is depicted in Figure 5 as reference
signal and represents the normal behavior for the following
considerations.
For the evaluation of the anomaly detection performance, an
altered signal sequence was defined as well, containing five
anomalies of different types. Anomalies are inserted starting
from sample 1350. The anomalous signal as well as the
highlighted anomalies are shown in the lower part of Figure
5.

1) 1350-1550 - limitation of the value range: This
anomaly limits the minimum and maximum value of
the signal, which is different from the pre-defined
one.

2) 1900-2100 - value freeze: In this case, a value is kept
for an unnatural long time before it resumes to the
original signal sequence.

3) 2800-2950 - alternative signal sequence: In contrast
to the two types discussed before, an alternative
sequence is not an anomaly. Instead it shall be a first
check of the generalization of the trained algorithm.
Alternative signal sequences, which represent another

0.50

0.25

0.00

0.25

0.50

Si
gn

al
 v

al
ue

 (n
or

m
al

iz
ed

)

Reference signal

0 1000 2000 3000 4000 5000
Signal sample

0.50

0.25

0.00

0.25

0.50

Si
gn

al
 v

al
ue

 (n
or

m
al

iz
ed

)

Anomalous signal

Fig. 5: CAN signal sequences - reference and anomalous signal

form of realistic or normal behavior, shall not be
detected as anomaly. Otherwise, many false positive
alarms would be issued when implemented in a real
ECU, since e.g. the actual sequence of speed values
will never be completely identical to the sequences
contained in the training data set.

4) 3650-3750 - peak: The peak anomaly refers to a spike
in the signal sequence, which should not be present.

5) 4450-4600 - signal jump: Instead of having a continu-
ous shape, the signal sequence includes an unrealistic
high value step. This type of dramatic value change
is impossible, e.g. the vehicle speed cannot instantly
switch from a high value to zero.

As discussed before, no paramters need to be tuned to
execute LODA. All parameters are automatically derived and
optimized as described in section VI. The only tuning point,
not directly related to LODA, is the size of the sliding window,
i.e. the number of history values of the signal sequence
considered for anomaly detetion.

A. Amount of Training Data

The first evaluation concerns the amount of training data
necessary for LODA to function properly. One period of the
reference signal (sample 0-850 in Figure 5) was periodically
repeated a specified number of times. Afterwards the anomaly
score was determined as shown in equation 2 by classifying
the anomalous signal.
As shown in Figure 6 the amount of normal training data
has influence on the anomaly score but in all three cases,
LODA detects the anomalies. In case only five reference signal
periods are used for training (last row), the anomaly score
is noisy, which makes thresholding difficult and which could
lead to an increased false positive rate. However, even with
very little training data a surprisingly good classification is
possible. Noise and baseline of the anomaly score (visible on
the left side of the third and forth row) decreases with more
training data. Also, the difference in anomaly score between
normal data and anomalies increases - comparable to a better
signal-to-noise ratio.

7 | P a g e

Embedded Real Time Software and Systems (ERTS2) 2018

0.50

0.25

0.00

0.25

0.50

Si
gn

al
 v

al
ue

 (n
or

m
al

iz
ed

)

Reference signal

0.50

0.25

0.00

0.25

0.50

Si
gn

al
 v

al
ue

 (n
or

m
al

iz
ed

)

Anomalous signal

2

0

2

A
no

m
al

y
sc

or
e

Training with 50 normal signal periods

2

1

0

1

A
no

m
al

y
sc

or
e

Training with 25 normal signal periods

0 1000 2000 3000 4000 5000
Signal sample

1.5

1.0

0.5

0.0

0.5

A
no

m
al

y
sc

or
e

Training with 5 normal signal periods

0.50

0.25

0.00

0.25

0.50

Si
gn

al
 v

al
ue

 (n
or

m
al

iz
ed

)

Reference signal

0.50

0.25

0.00

0.25

0.50

Si
gn

al
 v

al
ue

 (n
or

m
al

iz
ed

)

Anomalous signal

2

0

2

A
no

m
al

y
sc

or
e

Training with 50 normal signal periods

2

1

0

1

A
no

m
al

y
sc

or
e

Training with 25 normal signal periods

0 1000 2000 3000 4000 5000
Signal sample

1.5

1.0

0.5

0.0

0.5

A
no

m
al

y
sc

or
e

Training with 5 normal signal periods

Fig. 6: Anomaly detection performance of LODA after a
different number of reference signal periods for training.
Please note the different scaling of the y-axis (anomaly score)
and that the input values (reference and anomalous signal) are
normalized as described in section IV.

One issue in this evaluation is that the alternative signal
sequence (sample 2800-2950) has a high anomaly score in-
dependent of the amount of training data or the window size
described in the next sub-section. However, some concepts to
overcome this issue are introduced in section VII-C.

B. Window Size

The second evaluation targets the influence of different
window sizes (the number of history values of the signal
sequence taken into account) on the resulting anomaly score.
Figure 7 shows the results. Again the first two rows show the
reference and anomalous signal. The next three rows depict
the anomaly score calculated by LODA with different window
sizes.

LODA was again able to detect all anomalies with any
given window size. The larger the window size the more
easily is the identification of anomalies in the anomaly score,
which makes thresholding easier. But due to some associated
disadvantages, the window size cannot be increased too much.

0.50

0.25

0.00

0.25

0.50

Si
gn

al
 v

al
ue

 (n
or

m
al

iz
ed

)

Reference signal

0.50

0.25

0.00

0.25

0.50

Si
gn

al
 v

al
ue

 (n
or

m
al

iz
ed

)

Anomalous signal

2

0

2

A
no

m
al

y
sc

or
e

Training with 50 normal signal periods

2

1

0

1

A
no

m
al

y
sc

or
e

Training with 25 normal signal periods

0 1000 2000 3000 4000 5000
Signal sample

1.5

1.0

0.5

0.0

0.5

A
no

m
al

y
sc

or
e

Training with 5 normal signal periods

0.50

0.25

0.00

0.25

0.50

Si
gn

al
 v

al
ue

 (n
or

m
al

iz
ed

)

Reference signal

0.50

0.25

0.00

0.25

0.50

Si
gn

al
 v

al
ue

 (n
or

m
al

iz
ed

)

Anomalous signal

4

2

0

A
no

m
al

y
sc

or
e

Window size 64 samples

1

0

A
no

m
al

y
sc

or
e

Window size 128 samples

0 1000 2000 3000 4000 5000
Signal sample

0.5

0.0

0.5

A
no

m
al

y
sc

or
e

Window size 256 samples

Fig. 7: Anomaly detection performance of LODA with a
window size of 64, 128 and 256 signal samples (history
values).

First, a larger window size increases the relative noise on the
anomaly score. Second, it gets harder to pinpoint the exact
moment of an anomaly since the anomaly score is influenced
longer. Third, the required computing power and storage
consumption increases - even though moderately compared to
other machine learning algorithms. A larger window size is
also relevant for the startup time of the system, because it has
to be waited for the first n samples until a classification can be
performed. For example, with a window size of 256 samples
and a typical CAN message period of 10ms the startup time
is going to be about 2.5s. Choosing the right window size is
an issue that needs to be addressed in future work. For the
other evaluations within this paper a fixed window size of 128
samples is used.

C. Detection of the Alternative Signal Sequence

In the previous evaluations, the alternative signal sequence,
described at the beginning of this section, is classified as
anomaly even though it represents a valid sequence and should
not be detected. Up to now, the training data consists of

8 | P a g e

Embedded Real Time Software and Systems (ERTS2) 2018

multiple identical reference signal periods. To get a first
indication whether more diverse training data improves the
situation, the reference signal is modified. For this evaluation,
it consists of original reference signal periods alternating with
signal periods including the alternative sequence, see first row
of Figure 8. For real world applications also diverse training
data is used and it is likely that normal signal sequences are
contained several times in slightly different forms.

0.50

0.25

0.00

0.25

0.50

Si
gn

al
 v

al
ue

 (n
or

m
al

iz
ed

)

Reference signal

0.50

0.25

0.00

0.25

0.50

Si
gn

al
 v

al
ue

 (n
or

m
al

iz
ed

)

Anomalous signal

0 1000 2000 3000 4000 5000
Signal sample

1.0

0.5

0.0

0.5

1.0

A
no

m
al

y
sc

or
e

0.50

0.25

0.00

0.25

0.50

Si
gn

al
 v

al
ue

 (n
or

m
al

iz
ed

)

Reference signal

0.50

0.25

0.00

0.25

0.50

Si
gn

al
 v

al
ue

 (n
or

m
al

iz
ed

)

Anomalous signal

0 1000 2000 3000 4000 5000
Signal sample

1.0

0.5

0.0

0.5

1.0

A
no

m
al

y
sc

or
e

Fig. 8: Anomaly detection performance of LODA with the
alternative signal sequence injected in the training data.

As highlighted in Figure 8, the anomaly score during the
alternative signal sequence is now similar to the baseline and
therefore classified as normal data. The other anomalies are
still detected. However, the anomaly score for parts of the
original signal sequence is now increased (sample 300-500 and
sample 1100-1300). This can be explained by the fact that a
constant signal value over several samples is present less often
in the modified training data. Overall, diverse training data is
important for LODA to avoid overfitting. This fact has to be
investigated in more detail in future using real signal sequences
e.g. extracted from CAN logs of test drives.

VIII. CONCLUSION AND FUTURE WORK

This paper motivated the need for intrusion detection
systems in automotive ECUs. Today, anomaly detection, which
comes along with IDS, is mostly used within information
technology (IT) infrastructure like servers and networking
equipment. Since automotive and embedded networks are
far more static than IT infrastructure, a different approach
is proposed. Instead of using a solution, purely based on
machine learning or other complex algorithms, we favor a
hybrid anomaly detection system. In a first stage, the sys-
tem works specification-based. Especially in the automotive
industry, there exist semi-formal network specifications which

are perfectly suited to implement an efficient and effective
IDS. However, the specifications do not contain information
about the temporal behavior of communication signals. For
the advanced observation of this temporal behavior machine
learning algorithms can be used.
In the second part of this paper the maschine learning al-
gorithm LODA was investigated in more detail by focusing
on anomaly detection in time series data. It was shown that
LODA can deliver good results in this use case. Also the low
complexity of the algorithm is a plus, especially when it comes
to online learning. However, only testing with real data in a
real environment will show whether the performance is good
enough to be applicable in an ECU. In future, all components
of LODA have to be examined more thoroughly. Also, different
thresholding techniques to convert the anomaly score into the
classes normal and anomaly have to be investigated.
Since the evaluation is up to now based on synthesized
communication signals, the next step is to perform similar tests
with real data. As a starting point, vehicle signals, collected via
the standardized On-Board Diagnostics II port, can be used.
However, in a final step, real bus logs should be used to do
a performance evaluation under the same conditions as if the
anomaly detection system would run in a real ECU.
A second field of work is the extension of the proposed system
to support additional bus and networking systems. As Ethernet
is currently becoming an important in-vehicle networking
technology, the extension by static checks for Ethernet would
be another next step. Since the learning checks work on com-
munication signals, they are independent from the underlying
networking or bus system. Therefore, the investigated LODA
algorithm is re-usable in an extended hybrid anomaly detection
system.
In future, also a more detailed classification of detected
anomalies is required to enable appropriate countermeasures.
However, this is a different topic of research and not addressed
by this work.

REFERENCES

[1] C. Miller and C. Valasek, “A survey of remote automotive attack
surfaces,” Black Hat USA, vol. 2014, 2014.

[2] ——, “Remote exploitation of an unaltered passenger vehicle,” Black
Hat USA, vol. 2015, 2015.

[3] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al.,
“Comprehensive experimental analyses of automotive attack surfaces,”
in USENIX Security Symposium, 2011.

[4] H. Onishi, “Paradigm change of vehicle cyber security,” in 4th Inter-
national Conference on Cyber Conflict (CYCON), 2012, C. Czosseck,
Ed. Piscataway, NJ: IEEE, 2012.

[5] AUTO-ISAC, Automotive Cybersecurity Best Practices: Executive Sum-
mary, 2016th ed. AUTO-ISAC, 2016.

[6] D. A. Brown, G. Cooper, I. Gilvarry, D. Grawrock, A. Rajan, A. Ta-
tourian, R. Venugopalan, C. Vishik, D. Wheeler, M. Zhao, D. Clare,
S. Fry, H. Handschuh, H. Patil, C. Poulin, A. Wasicek, and R. Wood,
Automotive Security Best Practices: Recommendations for security and
privacy in the era of the next-generation car. White Paper. McAfee,
Inc., 2015.

[7] T. van Roermund and A. Birnie, A multi-layer vehicle security frame-
work: Whitepaper, may 2016 ed. NXP B.V., 2016.

[8] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to automotive
can networks—practical examples and selected short-term countermea-
sures,” Reliability Engineering & System Safety, vol. 96, no. 1, pp.
11–25, 2011.

9 | P a g e

Embedded Real Time Software and Systems (ERTS2) 2018

[9] I. Studnia, V. Nicomette, E. Alata, Y. Deswarte, M. Kaâniche, and
Y. Laarouchi, “Security of embedded automotive networks: state of
the art and a research proposal,” in SAFECOMP 2013 - Workshop
CARS (2nd Workshop on Critical Automotive applications : Robustness
& Safety) of the 32nd International Conference on Computer Safety,
Reliability and Security, M. Roy, Ed., Toulouse, France, 2013.

[10] D. M. Hawkins, Identification of Outliers, ser. Monographs on Applied
Probability and Statistics. Dordrecht: Springer, 1980.

[11] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Computing Surveys, vol. 41, no. 3, pp. 1–58, 2009.

[12] M. Müter, A. Groll, and F. C. Freiling, “A structured approach to
anomaly detection for in-vehicle networks,” in Sixth International
Conference on Information Assurance and Security (IAS), 2010. Pis-
cataway, NJ: IEEE, 2010, pp. 92–98.

[13] A. Theissler, “Anomaly detection in recordings from in-vehicle net-
works,” in Big Data Applications and Principles: Proceedings, A. Mozo
and Hernando, Antonio, Gómez (Eds.), Sandra, Eds., 2014, pp. 23–38.

[14] S. Hawkins, H. He, G. Williams, and R. Baxter, “Outlier detection
using replicator neural networks,” in Data Warehousing and Knowledge
Discovery, ser. Lecture Notes in Computer Science, Y. Kambayashi,
M. Arikawa, and W. Winiwarter, Eds. Berlin, Heidelberg: Springer-
Verlag Berlin Heidelberg, 2002.

[15] B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt,
“Support vector method for novelty detection,” in Advances in Neural
Information Processing Systems 12. Cambridge, MA, USA: MIT Press,
2000, pp. 582–588.

[16] T. Pevný, “Loda: Lightweight on-line detector of anomalies,” Machine
Learning, vol. 102, no. 2, pp. 275–304, 2016.

[17] A. Theissler, “Detecting known and unknown faults in automotive
systems using ensemble-based anomaly detection,” Knowledge-Based
Systems, vol. 123, pp. 163–173, 2017.

[18] J. Gama, “A survey on learning from data streams: Current and future
trends,” Progress in Artificial Intelligence, vol. 1, no. 1, pp. 45–55,
2012.

[19] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Eighth
IEEE International Conference on Data Mining, 2008. Piscataway,
NJ and Piscataway, NJ: IEEE, 2008, pp. 413–422.

[20] C. C. Aggarwal, Outlier Analysis, 2nd ed. Cham and s.l.: Springer
International Publishing, 2017.

[21] Z. Ding and M. Fei, “An anomaly detection approach based on
isolation forest algorithm for streaming data using sliding window,”
IFAC Proceedings Volumes, vol. 46, no. 20, pp. 12–17, 2013.

[22] L. Sun, S. Versteeg, S. Boztas, and A. Rao, “Detecting anomalous user
behavior using an extended isolation forest algorithm: An enterprise
case study,” arXiv preprint arXiv:1609.06676, 2016.

[23] S. C. Tan, K. M. Ting, and T. F. Liu, “Fast anomaly detection for
streaming data,” in Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence, T. Walsh, Ed. Menlo Park,
California: AAAI Press, 2011, pp. 1511–1516.

[24] A. Emmott, S. Das, T. Dietterich, A. Fern, and W.-K. Wong, “A
meta-analysis of the anomaly detection problem,” arXiv preprint
arXiv:1503.01158, 2015.

[25] D. M. Tax and R. P. Duin, “Support vector data description,” Machine
Learning, vol. 54, no. 1, pp. 45–66, 2004.

[26] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz mappings
into a hilbert space,” in Conference on Modern Analysis and Probability,
ser. Contemporary Mathematics, R. Beals, A. Beck, A. Bellow, and
A. Hajian, Eds. Providence, Rhode Island: American Mathematical
Society, 1984, vol. 26, pp. 189–206.

[27] P. Li, T. J. Hastie, and K. W. Church, “Very sparse random projections,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD ’06, L. Ungar, M. Craven,
D. Gunopulos, and T. Eliassi-Rad, Eds. New York, New York, USA:
ACM Press, 2006, pp. 287–296.

[28] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 20, no. 8, pp. 832–844, 1998.

[29] H. A. Sturges, “The choice of a class interval,” Journal of the American
Statistical Association, vol. 21, no. 153, pp. 65–66, 1926.

[30] D. W. Scott, “On optimal and data-based histograms,” Biometrika,
vol. 66, no. 3, pp. 605–610, 1979.

[31] D. Freedman and P. Diaconis, “On the histogram as a density estimator:
L 2 theory,” Z. Wahrscheinlichkeitstheorie verw Gebiete (Zeitschrift für
Wahrscheinlichkeitstheorie und Verwandte Gebiete), vol. 57, no. 4, pp.
453–476, 1981.

[32] L. Birgé and Y. Rozenholc, “How many bins should be put in a regular
histogram,” ESAIM: Probability and Statistics, vol. 10, pp. 24–45, 2006.

[33] L. Davies, U. Gather, D. Nordman, and H. Weinert, “A comparison of
automatic histogram constructions,” ESAIM: Probability and Statistics,
vol. 13, pp. 181–196, 2009.

[34] I. Saarinen, “Adaptive real-time anomaly detection for multi-
dimensional streaming data,” Master’s Thesis, Aalto University,
Helsinki, 2017-02-22.

10 | P a g e

	Introduction
	Different Types of Anomalies
	Related Work
	Hybrid Anomaly Detection System
	Anomaly Detection in Time Series Data
	Lightweight On-line Detector of Anomalies
	LODA for Time Series Data

	Evaluation
	Amount of Training Data
	Window Size
	Detection of the Alternative Signal Sequence

	Conclusion and Future Work
	References

