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Eduardo Abi Jaber † Omar El Euch‡

February 24, 2018

Abstract

We characterize the Markovian and affine structure of the Volterra Heston model in
terms of an infinite-dimensional adjusted forward process and specify its state space. More
precisely, we show that it satisfies a stochastic partial differential equation and displays an
exponentially-affine characteristic functional. As an application, we deduce an existence
and uniqueness result for a Banach-space valued square-root process and provide its state
space. This leads to another representation of the Volterra Heston model together with its
Fourier-Laplace transform in terms of this possibly infinite system of affine diffusions.
Keywords: Affine Volterra processes, stochastic Volterra equations, Markovian representa-
tion, stochastic invariance, Riccati-Volterra equations, rough volatility.
MSC2010 Classification: 60H20, 45D05, 91G99.

1 Introduction
The Volterra Heston model is defined by the following dynamics

dSt = St
√
VtdBt, S0 > 0, (1.1)

Vt = g0(t) +
∫ t

0
K(t− s)

(
−λVsds+ ν

√
VsdWs

)
, (1.2)

with K ∈ L2
loc(R+,R), g0 : R+ → R, λ, ν ∈ R+ and B = ρW +

√
1− ρ2W⊥ such that (W,W⊥)

is a two-dimensional Brownian motion and ρ ∈ [−1, 1]. It has been introduced in [2] for the
purpose of financial modeling following the literature on so-called rough volatility models [10].
Hence St typically represents a stock price at time t with instantaneous stochastic variance Vt.
This model nests as special cases the Heston model for K ≡ 1, and the rough Heston model of
[8], obtained by setting K(t) = tα−1

Γ(α) for α ∈ (1
2 , 1) and

g0(t) = V0 +
∫ t

0
K(s)λθds, t ≥ 0, for some V0, θ ≥ 0, (1.3)

so that the only model parameters are V0, θ, λ, ρ, ν, α. Recall that the rough Heston model does
not only fit remarkably well historical and implied volatilities of the market, but also enjoys a
semi-closed formula for the characteristic function of the log-price in terms of a solution of a
deterministic Riccati-Volterra integral equation.
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In [7], the authors highlight the crucial role of (1.3) in the design of hedging strategies for the
rough Heston model. Here we consider more general input curves g0. Our motivation is twofold.
In practice, the function g0 is intimately linked to the forward variance curve (E[Vt])t≥0. More
precisely, taking the expectation in (1.2) leads to the following relation

E[Vt] + λ

∫ t

0
K(t− s)E[Vs]ds = g0(t), t ≥ 0.

Thus, allowing for more general input curves g0 leads to more consistency with the market
forward variance curve. From a mathematical perspective, this enables us to understand the
general picture behind the Markovian and affine nature of the Volterra Heston model (1.1)-(1.2).
More precisely, adapting the methods of [2], we provide a set of admissible input curves GK
defined in (2.5) such that (1.1)-(1.2) admits a unique R2

+-valued weak solution for any g0 ∈ GK .
In particular, we show that the Fourier-Laplace transform of (logS, V ) is exponentially affine
in (logS0, g0). Then we prove that, conditional on Ft, the shifted Volterra Heston model
(St+·, Vt+·) still has the same dynamics as in (1.1)-(1.2) provided that g0 is replaced by the
following adjusted forward process

gt(x) = E
[
Vt+x + λ

∫ x

0
K(x− s)Vt+sds

∣∣∣ Ft] , x ≥ 0. (1.4)

This leads to our main result which states that GK is stochastically invariant with respect to
the family (gt)t≥0. In other words, if we start from an initial admissible input curve g0 ∈ GK ,
then gt belongs to GK , for all t ≥ 0, see Theorem 3.1. This in turn enables us to characterize
the Markovian structure of (S, V ) in terms of the stock price and the adjusted forward process
(gt)t≥0. Furthermore, (gt)t≥0 can be realized as the unique GK-valued mild solution of the
following stochastic partial differential equation of Heath–Jarrow–Morton-type

dgt(x) =
(
d

dx
gt(x)− λK(x)gt(0)

)
dt+K(x)ν

√
gt(0)dWt, g0 ∈ GK ,

and displays an affine characteristic functional.
As an application, we establish the existence and uniqueness of a Banach-space valued square-
root process and provide its state space. This leads to another representation of (Vt, gt)t≥0.
Moreover, the Fourier-Laplace transform of (logS, V ) is shown to be an exponential affine
functional of this process. These results are in the spirit of the Markovian representation of
fractional Brownian motion, see [3, 13].
The paper is organized as follows. In Section 2, we prove weak existence and uniqueness for the
Volterra Heston model and provide its Fourier-Laplace transform. Section 3 characterizes the
Markovian structure in terms of the adjusted forward variance process. Section 4 establishes the
existence and uniqueness of a Banach-space valued square-root process and provides the link
with the Volterra framework. In Appendix A we derive general existence results for stochastic
Volterra equations. Finally, for the convenience of the reader we recall in Appendix B the
framework and notations regarding stochastic convolutions as in [2].
Notations : Elements of Cm are viewed as column vectors, while elements of the dual space
(Cm)∗ are viewed as row vectors. For h ≥ 0, ∆h denotes the shift operator, i.e. ∆hf(t) =
f(t + h). If the function f on R+ is right-continuous and of locally bounded variation, the
measure induced by its distribution derivative is denoted df , so that f(t) = f(0) +

∫
[0,t] df(s)

for all t ≥ 0. Finally, we use the notation ∗ for the convolution operation, we refer to Appendix
B for more details.
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2 Existence and uniqueness of the Volterra Heston model
We study in this section the existence and uniqueness of the Volterra Heston model given by
(1.1)-(1.2) allowing for arbitrary curves g0 as input. When g0 is given by (1.3), [2, Theorem
7.1(i)] provides the existence of a R2

+-valued weak solution to (1.1)-(1.2) under the following
mild assumptions on K:

K ∈ L2
loc(R+,R), and there is γ ∈ (0, 2] such that

∫ h
0 K(t)2dt = O(hγ) and∫ T

0 (K(t+ h)−K(t))2dt = O(hγ) for every T <∞,
(H0)

K is nonnegative, not identically zero, non-increasing and continuous on
(0,∞), and its resolvent of the first kind L is nonnegative and non-increasing

in the sense that s→ L([s, s+ t]) is non-increasing for all t ≥ 0.
1 (H1)

We show in Theorem 2.1 below that weak existence in R2
+ continue to hold for (1.1)-(1.2) for a

wider class of admissible input curves g0. Since S is determined by V , it suffices to study the
Volterra square-root equation (1.2). Theorem A.1(ii) in the Appendix guarantees the existence
of an unsconstrained continuous weak solution V to the following modified equation

Vt = g0(t) +
∫ t

0
K(t− s)

(
−λVsds+ ν

√
V +
s dWs

)
, (2.1)

for any locally Hölder continuous function g0, where x+ : x → max(0, x). Clearly, one needs
to impose additional assumptions on g0 to ensure the nonnegativity of V and drop the positive
part in (2.1) so that V solves (1.2). Hence, weak existence of a nonnegative solution to (1.2)
boils down to finding a set GK of admissible input curves g0 such that any solution V to (2.1)
is nonnegative.
To get a taste of the admissible set GK , we start by assuming that g0 and K are continuously
differentiable on [0,∞). In that case, V is a semimartingale such that

dVt =
(
g′0(t) + (K ′ ∗ dZ)t −K(0)λVt

)
dt+K(0)ν

√
V +
t dWt, (2.2)

where Z =
∫ ·

0(−λVsds+ ν
√
V +
s dWs). Relying on Lemma B.1 in the Appendix2, we have

K ′ = (K ′ ∗ L)(0)K + d(K ′ ∗ L) ∗K,

so that K ′ ∗ dZ can be expressed as a functional of (V, g0) as follows

K ′ ∗ dZ = (K ′ ∗ L)(0)(V − g0) + d(K ′ ∗ L) ∗ (V − g0). (2.3)

Since V0 = g0(0), it is straightforward that g0(0) should be nonnegative. Now, assume that V
hits zero for the first time at τ ≥ 0. After plugging (2.3) in the drift of (2.2), a first-order Euler
scheme leads to the formal approximation

Vτ+h ≈
(
g′0(τ)− (K ′ ∗ L)(0)g0(τ)− (d(K ′ ∗ L) ∗ g0)(τ) + (d(K ′ ∗ L) ∗ V )τ

)
h,

for small h ≥ 0. Since K ′ ∗ L is non-decreasing and V ≥ 0 on [0, τ ], it follows that (d(K ′ ∗ L) ∗
V )τ ≥ 0 yielding the nonnegativity of Vτ+h if we impose the following additional condition

g′0 − (K ′ ∗ L)(0)g0 − d(K ′ ∗ L) ∗ g0 ≥ 0.
1We refer to Appendix B for the definition of the resolvent of the first kind and some of its properties.
2Under (H1) one can show that K′ ∗ L is right-continuous, non-decreasing and of locally bounded variation

(as in Remark B.3 in the Appendix), thus the associated measure d(K′ ∗ L) is well defined.
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In the general case, V is not necessarily a semimartingale, and a delicate analysis should be
carried on the integral equation (2.1) instead of the infinitesimal version (2.2). This suggests
that the infinitesimal derivative operator should be replaced by the semigroup operator of right
shifts leading to the following condition on g0

∆hg0 − (∆hK ∗ L)(0)g0 − d(∆hK ∗ L) ∗ g0 ≥ 0, h ≥ 0, 3 (2.4)

and to the following definition of the set GK of admissible input curves

GK =
{
g0 ∈ Hγ/2 satisfying (2.4) and g0(0) ≥ 0

}
, (2.5)

where Hα = {g0 : R+ → R, locally Hölder continuous of any order strictly smaller than α}.
Recall that γ is the exponent associated with K in (H0).
The following theorem establishes the existence of a R2

+-valued weak continuous solution to
(1.1)-(1.2) on some filtered probability space (Ω,F ,F = (Ft)t≥0,P) for any admissible input
curve g0 ∈ GK . Since S is determined by V , the proof follows directly from Theorems A.1-A.2.

Theorem 2.1. Assume that K satisfies (H0)-(H1). Then, the stochastic Volterra equation
(1.1)-(1.2) has a R2

+-valued continuous weak solution (S, V ) for any positive initial condition
S0 and any admissible input curve g0 ∈ GK . Furthermore, the paths of V are locally Hölder
continuous of any order strictly smaller than γ/2 and

sup
t≤T

E[|Vt|p] <∞, p > 0, T > 0. (2.6)

Example 2.2. The following classes of functions belong to GK .

(i) g ∈ Hγ/2 non-decreasing such that g(0) ≥ 0. Since K is non-increasing and L is nonneg-
ative, we have 0 ≤ ∆hK ∗L ≤ 1 for all h ≥ 0 (see the proof of [2, Theorem 3.5]) yielding,
for all t, h ≥ 0, that ∆hg(t)− (∆hK ∗ L)(0)g(t)− (d(∆hK ∗ L) ∗ g)(t) is equal to∫ t

0
(g(t)− g(t− s))(∆hK ∗ L)(ds) + g(t+ h)− g(t) + g(t)(1− (∆hK ∗ L)(t)) ≥ 0

(ii) g = V0+K∗θ, with V0 ≥ 0 and θ ∈ L2
loc(R+,R) such that θ(s)ds+V0L(ds) is a nonnegative

measure. First, g ∈ Hγ/2 due to (H0) and the Cauchy-Schwarz inequality

(g(t+ h)− g(t))2 ≤ 2
(∫ t

0
(K(s+ h)−K(s))2ds+

∫ h

0
K(s)2ds

)∫ t+h

0
θ(s)2ds.

Moreover, g(0) = V0 ≥ 0 and

∆hg − (∆hK ∗ L)(0)g − d(∆hK ∗ L) ∗ g (2.7)

is equal to

V0(1−∆hK ∗ L) + ∆h(K ∗ θ)− (∆hK ∗ L)(0)K ∗ θ − d(∆hK ∗ L) ∗K ∗ θ.

(2.4) now follows from Lemma B.2 with F = ∆hK, after noticing that (2.7) becomes

∆h(K ∗ (V0L+ θ))−∆hK ∗ (V0L+ θ) =
∫ ·+h
·

K(·+ h− s)(V0L(ds) + θ(s)ds) ≥ 0.
3 Recall that under (H1) one can show that ∆hK ∗L is right-continuous and of locally bounded variation (see

Remark B.3 in the Appendix), thus the associated measure d(∆hK ∗ L) is well defined.
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We now tackle the weak uniqueness of (1.1)-(1.2) by characterizing the Fourier-Laplace trans-
form of the process X = (logS, V ). Indeed, when g0 is of the form (1.3), X is a two-dimensional
affine Volterra process in the sense of [2, Definition 4.1]. For this particular g0, [2, Theorem
7.1(ii)] provides the exponential-affine transform formula

E[exp(uXT + (f ∗X)T )] = exp
(
ψ1(T ) logS0 + u2g0(T ) +

∫ T

0
F (ψ1, ψ2)(s)g0(T − s)ds

)
(2.8)

for suitable u ∈ (C2)∗ and f ∈ L1([0, T ], (C2)∗) with T > 0, where ψ = (ψ1, ψ2) solves the
following system of Riccati-Volterra equations

ψ1 = u1 + 1 ∗ f1, (2.9)
ψ2 = u2K +K ∗ F (ψ1, ψ2), (2.10)

with

F (ψ1, ψ2) = f2 + 1
2
(
ψ2

1 − ψ1
)

+ (ρνψ1 − λ)ψ2 + ν2

2 ψ
2
2. (2.11)

A straightforward adaptation of [2, Theorems 4.3 and 7.1] shows that the affine transform (2.8)
carries over for any admissible input curve g0 ∈ GK with the same Riccati equations (2.9)-(2.10).

Theorem 2.3. Assume that K satisfies (H0) and that the shifted kernels ∆hK satisfy (H1) for
all h ∈ [0, 1]. Fix g0 ∈ GK , S0 > 0 and denote by (S, V ) a R2

+-valued continuous weak solution
to (1.1)-(1.2). For any u ∈ (C2)∗ and f ∈ L1

loc(R+, (C2)∗)) such that

Reψ1 ∈ [0, 1], Reu2 ≤ 0 and Re f2 ≤ 0, (2.12)

with ψ1 given by (2.9), the Riccati–Volterra equation (2.10) admits a unique global solution
ψ2 ∈ L2

loc(R+,C∗). Moreover, the exponential-affine transform (2.8) is satisfied. In particular,
weak uniqueness holds for (1.1)-(1.2).

3 Markovian structure
Using the same methodology as in [7], we characterize the Markovian structure of the Volterra
Heston model (1.1)-(1.2) in terms of the F-adapted infinite-dimensional adjusted forward curve
(gt)t≥0 given by (1.4) which is well defined thanks to (2.6). Furthermore, we prove that the set
GK is stochastically invariant with respect to (gt)t≥0.

Theorem 3.1. Under the assumptions of Theorem 2.1, fix g0 ∈ GK . Denote by (S, V ) the
unique solution to (1.1)-(1.2) and by (gt)t≥0 the process defined by (1.4). Then, (St0 , V t0)
satisfies

dSt0t = St0t

√
V t0
t dB

t0
t , St00 = St0 ,

V t0
t = gt0(t) +

∫ t

0
K(t− s)

(
−λV t0

s ds+ ν

√
V t0
s dW

t0
s

)
,

where (Bt0 ,W t0) = (Bt0+· − Bt0 ,Wt0+· −Wt0) are two Brownian motions independent of Ft0
such that d〈Bt0 ,W t0〉t = ρdt. Moreover, GK is stochastically invariant with respect to (gt)t≥0,
that is

gt ∈ GK , t ≥ 0.
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Proof. The part for V t0 is immediate after observing that

gt0(t) = g0(t0 + t)−
∫ t0

0
K(t+ t0 − s)λVsds+

∫ t0

0
K(t+ t0 − s)ν

√
VsdWs, (3.1)

for all t0, t, h ≥ 0. The part for St0 is straightforward. We move to proving the claimed
invariance. Fix t0, t, h ≥ 0 and define Z =

∫ ·
0(−λVsds + ν

√
VsdWs). By Lemma B.2 and

Remark B.3 in the Appendix,

∆hK = (∆hK ∗ L)(0)K + d(∆hK ∗ L) ∗K, (3.2)

so that

(∆hK ∗ dZ) = (∆hK ∗ L)(0)(V − g0) + d(∆hK ∗ L) ∗ (V − g0).

Hence,

V t0
t+h = g0(t0 + t+ h) + (∆hK ∗ dZ)t0+t +

∫ h

0
K(h− s)dZt0+t+s

= g0(t0 + t+ h) + (∆hK ∗ L)(0)(V t0
t − g0(t0 + t))

+ (d(∆hK ∗ L) ∗ (V − g0))t0+t +
∫ h

0
K(h− s)dZt0+t+s

= g0(t0 + t+ h)− (∆hK ∗ L)(0)g0(t0 + t)− (d(∆hK ∗ L) ∗ g0) (t0 + t)

+ (∆hK ∗ L)(0)V t0
t + (d(∆hK ∗ L) ∗ V )t0+t +

∫ h

0
K(h− s)dZt0+t+s

≥ (∆hK ∗ L)(0)V t0
t + (d(∆hK ∗ L) ∗ V )t0+t −

∫ h

0
K(h− s)λV t0

t+sds

+
∫ h

0
K(h− s)ν

√
V t0
t+sdW

t0
t+s,

since g0 ∈ GK . We now prove (2.4). Set Gt0h = ∆hgt0 − (∆hK ∗L)(0)gt0 −d(∆hK ∗L) ∗ gt0 . The
previous inequality combined with (1.4) yields

Gt0h (t) = E
[
V t0
t+h + (λK ∗ V t0)t+h − (∆hK ∗ L)(0)(V t0

t + (λK ∗ V t0)t)
∣∣∣ Ft0]

− E
[(
d(∆hK ∗ L) ∗ (V t0 + λK ∗ V t0)

)
t

∣∣∣ Ft0]
≥ E

[
(d(∆hK ∗ L) ∗ V )t0+t −

(
d(∆hK ∗ L) ∗ V t0

)
t
−
∫ h

0
K(h− s)λV t0

t+sds
∣∣∣ Ft0

]
+ E

[
(λK ∗ V t0)t+h −

(
((∆hK ∗ L)(0)K + d(∆hK ∗ L) ∗K) ∗ λV t0

)
t

∣∣∣ Ft0] .
Relying on (3.2), we deduce

Gt0h (t) ≥ E
[∫ t0+t

t
(d(∆hK ∗ L))(ds)Vt0+t−s −

∫ h

0
K(h− s)λV t0

t+sds
∣∣∣ Ft0

]

+ E
[∫ t+h

t
K(t+ h− s)λV t0

s ds
∣∣∣ Ft0

]

= E
[∫ t0+t

t
(d(∆hK ∗ L))(ds)Vt0+t−s

∣∣∣ Ft0] .
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Hence (2.4) holds for gt0 , since V ≥ 0 and d(∆hK ∗ L) is a nonnegative measure, see Remark
B.3. Finally, by adapting the proof of [2, Lemma 2.4], we can show that for any p > 1, ε > 0
and T > 0, there exists a positive constant C1 such that

E [|Vt+h − Vt|p] ≤ C1h
p(γ/2−ε), t, h ≥ 0, t+ h ≤ T + t0,

Relying on (H0), (1.4) and Jensen inequality, there exists a positive constant C2 such that

E [|gt0(t+ h)− gt0(t)|p] ≤ C2h
p(γ/2−ε), t, h ≥ 0, t+ h ≤ T,

By Kolmogorov continuity criterion, gt0 ∈ Hγ/2 so that gt0 ∈ GK since gt0(0) = Vt0 ≥ 0.

Theorem 3.1 highlights that V is Markovian in the state variable (gt)t≥0. Indeed, conditional on
Ft for some t ≥ 0, the shifted Volterra Heston model (St, V t) can be started afresh from (St, gt)
with the same dynamics as in (1.1)-(1.2). Notice that gt is again an admissible input curve
belonging to GK . Therefore, applying Theorems 2.1 and 2.3 with (St, V t, gt) yields that the
conditional Fourier-Laplace transform of X = (logS, V ) is exponentially affine in (logSt, gt):

E
[
exp(uXT + (f ∗X)T )

∣∣∣ Ft] = exp (ψ1(T − t) logSt + (u2gt + F (ψ1, ψ2) ∗ gt)(T − t)) , (3.3)

for all t ≤ T , where F is given by (2.11), under the standing assumptions of Theorem 2.3.
Moreover, it follows from (3.1) and the fact that g·(0) = V that the process (gt)t≥0 solves

gt(x) = ∆tg0(x) +
∫ t

0
∆t−s (−λKgs(0)) (x)ds+

∫ t

0
∆t−s

(
Kν

√
gs(0)

)
(x)dWs. (3.4)

Recalling that (∆t)t≥0 is the semigroup of right shifts, (3.4) can be seen as a GK-valued mild
solution of the following Heath–Jarrow–Morton-type stochastic partial differential equation

dgt(x) =
(
d

dx
gt(x)− λK(x)gt(0)

)
dt+K(x)ν

√
gt(0)dWt, g0 ∈ GK . (3.5)

The following proposition provides the characteristic functional of (gt)t≥0 leading to the strong
Markov property of (gt)t≥0. Define 〈g, h〉 =

∫
R+
g(x)h(x)dx, for suitable functions f and g.

Theorem 3.2. Under the assumptions of Theorem 2.3. Let h ∈ C∞c (R+) and g0 ∈ GK . Then,

E [exp (i〈gt, h〉)] = exp (〈Ht, g0〉) , t ≥ 0, (3.6)

where H solves

Ht(x) = ih(x− t)1{x>t} + 1{x≤t}

(
− λ〈Ht−x,K〉+ ν2

2 〈Ht−x,K〉2
)
, t, x ≥ 0. (3.7)

In particular, weak uniqueness holds for (3.4) and (gt)t≥0 is a strong Markov process on GK .

Proof. Consider S̃t = 1 +
∫ t

0 S̃u
√
VudWu, for all t ≥ 0. Then, (S̃, V ) is a Volterra Heston model

of the form (1.1)-(1.2) with ρ = 1 and S̃0 = 1. Fix t ≥ 0, 〈gt, h〉 is well defined since x→ gt(x) is
continuous. It follows from (3.1) together with stochastic Fubini theorem, see [15, Theorem 2.2],
which is justified by (2.6), that

〈gt, h〉 = 〈g0(t+ ·), h〉+
(
ν

2 − λ
)∫ t

0
〈K(t− s+ ·), h〉Vsds+ ν

∫ t

0
〈K(t− s+ ·), h〉d(log S̃)s

= 〈g0, h(−t+ ·)〉+
(
ν

2 − λ
)∫ t

0
〈K,h(s− t+ ·)〉Vsds

+ ν〈K,h〉 log S̃t − ν
∫ t

0
〈K,h′(s− t+ ·)〉 log S̃sds,
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where the last identity follows from an integration by parts. Hence, setting

u2 = 0, u1 = iν〈K,h〉, f1(t) = −iν〈K,h′(−t+ ·)〉,
ψ1(t) = u1 + (1 ∗ f1)(t) = iν〈K(t+ ·), h〉,

f2(t) = i(ν2 − λ)〈K(t+ ·), h〉, ψ2 = K ∗ F (ψ1, ψ2),

with F as in (2.11), the characteristic functional follows from Theorem 2.3

E [exp (i〈gt, h〉)] = ei〈h(−t+·),g0〉E
[
exp

(
u1 log S̃t + (f1 ∗ log S̃)t + (f2 ∗ V )t

)]
= exp (〈Ht, g0〉)

where
Ht(x) = h(x− t)1{x>t} + 1{0≤x≤t}F (ψ1, ψ2)(t− x), x ≥ 0,

and (2.11) reads

F (ψ1, ψ2)(t) = −λ〈K(t+ ·), h〉+ ν2

2 〈K(t+ ·), h〉2

+ (ν2〈K(t+ ·), h〉 − λ)ψ2(t) + ν2

2 ψ2(t)2. (3.8)

Now observe that

〈Ht,K〉 = 〈h(−t+ ·),K〉+
∫ t

0
F (ψ1, ψ2)(t− x)K(x)dx = 〈h,K(t+ ·)〉+ ψ2(t).

Hence, after plugging ψ2(t) = 〈Ht,K〉 − 〈h,K(t+ ·)〉 back in (3.8) we get that

F (ψ1, ψ2)(t) = −λ〈Ht,K〉+ ν2

2 〈Ht,K〉2,

yielding (3.7). Weak uniqueness now follows by standard arguments. In fact, thanks to (2.6)
and stochastic Fubini theorem, (gt)t≥0 solves (3.5) in the weak sense, that is

〈gt, h〉 = 〈g0, h〉+
∫ t

0

(
〈gs,−h′〉 − λ〈K,h〉gs(0)

)
ds+

∫ t

0
ν〈K,h〉

√
gs(0)dWs, h ∈ C∞c (R).

Therefore, combined with Theorem 3.1, (gt)t≥0 solves a martingale problem on GK . In addi-
tion, (3.6) yields uniqueness of the one-dimensional distributions which is enough to get weak
uniqueness for (3.4) and the strong Markov property by [9, Theorem 4.4.2].

We notice that (3.6)-(3.7) agree with [11, Proposition 4.5] when λ = 0. Moreover, one can
lift (3.7) to a non-linear partial differential equation in duality with (3.5). Indeed, define the
measure-valued function H̄ : t→ H̄t(dx) = Ht(x)1{x≥0}dx. Then, it follows from (3.7) that

H̄t(dx) = ih(x− t)1{x>t}dx+
∫ t

0
δ0(dx− (t− s))(−λ〈H̄s,K〉+ ν2

2 〈H̄s,K〉2)ds

which can be seen as the mild formulation of the following partial differential equation

dH̄t(dx) = (− d

dx
H̄t(dx)+δ0(dx)(−λ〈H̄t,K〉+

ν2

2 〈H̄t,K〉2))dt, H̄0(dx) = ih(x)1{x>t}dx. (3.9)

We refer to [4, 5] for similar results in the discontinuous setting. The previous results high-
light not only the correspondence between stochastic Volterra equations of the form (1.2) and
stochastic partial differential equations (3.5) but also between their dual objects, that is the
Riccati-Volterra equation (2.10) and the non-linear partial differential equation (3.9). One can
establish a correspondence between (1.2) and other related stochastic partial differential equa-
tions which, unlike (gt)t≥0, do not necessarily have a financial interpretation but for which the
dual object satisfies a nicer non-linear partial differential equation than (3.9), see [14].
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4 Application: square-root process in Banach space
As an application of Theorems 2.1, 2.3, 3.1, we obtain conditions for weak existence and unique-
ness of the following (possibly) infinite-dimensional system of stochastic differential equations

dUt(x) =
(
−xUt(x)− λ

∫ ∞
0

Ut(z)µ(dz)
)
dt+ ν

√∫ ∞
0

Ut(z)µ(dz)dWt, x ∈ supp(µ), (4.1)

for a fixed positive measure of locally bounded variation µ4. This is achieved by linking (4.1)
to a stochastic Volterra equation of the form (1.2) with the following kernel

K(t) =
∫ ∞

0
e−xtµ(dx), t > 0. (4.2)

We will assume that µ is a positive measure of locally bounded variation such that∫ ∞
0

(1 ∧ (xh)−1/2)µ(dx) ≤ Ch(γ−1)/2,

∫ ∞
0

x−1/2(1 ∧ (xh))µ(dx) ≤ Chγ/2; h > 0, (H2)

for some γ ∈ (0, 2] and positive constant C. The reader may check that in that case K satisfies
(H0). Furthermore, [12, Theorem 5.5.4] guarantees the existence of the resolvent of the first
kind L of K and that (H1) is satisfied for the shifted kernels ∆hK for any h ∈ [0, 1]. Hence, K
satisfies assumptions of Theorems 2.1 and 2.3.
By a solution U to (4.1) we mean a family of continuous processes (U(x))x∈supp(µ) such that
x → Ut(x) ∈ L1(µ) for any t ≥ 0, (

∫∞
0 Ut(x)µ(dx))t≥0 is a continuous process and (4.1) holds

a.s. on some filtered probability space. If such solution exists, we set V =
∫∞
0 U·(x)µ(dx) and

g0 =
∫∞

0 U0(x)e−x(·)dx. Thanks to (H2), the stochastic Fubini theorem yields for each t ≥ 0

Vt = g0(t) +
∫ t

0
K(t− s)(−λVsds+ ν

√
VsdWs). (4.3)

The processes above being continuous, the equality holds in terms of processes. Thus, provided
that g0 belongs to GK , Theorem 2.3 leads to the weak uniqueness of (4.1) because for each
x ∈ supp(µ),

Ut(x) = e−xtU0(x) +
∫ t

0
e−x(t−s)(−λVsds+ ν

√
VsdWs), t ≥ 0. (4.4)

On the other hand, if we assume that g0 =
∫∞

0 U0(x)e−x(·)µ(dx) ∈ GK for some initial family of
points (U0(x))x∈supp(µ) ∈ L1(µ), there exists a continuous solution V for (4.3) by Theorem 2.1.
In that case, we define for each x ∈ supp(µ), the continuous process U(x) as in (4.4). Thanks
to (H2) and (2.6), another application of the stochastic Fubini theorem combined with the fact
that V satisfies (4.3) yields that, for each t ≥ 0, (Ut(x))x∈supp(µ) ∈ L1(µ) and

Vt =
∫ ∞

0
Ut(x)µ(dx). (4.5)

Moreover, by an integration by parts, we get for each x ∈ supp(µ),

Ut(x) = e−xtU0(x) + Zte
−xt +

∫ t

0
xe−x(t−s)(Zs − Zt)ds,

4We use the notation supp(µ) to denote the support of a measure µ, that is the set of all points for which
every open neighborhood has a positive measure. Here we assume that the support is in R+.
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with Z =
∫ ·
0(−λVsds + ν

√
VsdBs). We know that for fixed T > 0, η ∈ (0, 1/2) and for almost

any ω ∈ Ω there exists a positive constant CT (ω) such that |Zs − Zt| ≤ CT (ω)|t − s|η for all
t, s ∈ [0, T ]. Hence for any t ∈ [0, T ] and x ∈ supp(µ)

|Ut(x)| ≤ |U0(x)|+ CT (ω)e−xttη + CT (ω)x
∫ t

0
e−xssηds = |U0(x)|+ CT (ω)η

∫ t

0
e−xssη−1ds.

Then,

sup
t∈[0,T ]

|Ut(x)| ≤ |U0(x)|+ CT (ω)η
∫ T

0
e−xssηds ∈ L1(µ).

Therefore by dominated convergence theorem, the process (
∫∞

0 Ut(x)µ(dx))t≥0 is continuous.
In particular, (4.5) holds in terms of processes and it follows from (4.4) that U is a solution of
(4.1).
This leads to the weak existence and uniqueness of (4.1) if the initial family of points (U0(x))x∈supp(µ)
belongs to the following space Dµ defined by

Dµ = {(ux)x∈supp(µ) ∈ L1(supp(µ));
∫ ∞

0
uxe
−x(·)µ(dx) ∈ GK}, (4.6)

with K given by (4.2). Notice that for fixed t0 ≥ 0 and for any t ≥ 0 and x ∈ supp(µ),

Ut+t0(x) = Ut0(x)e−xt +
∫ t

0
e−x(t−s)

(
−λ

∫ ∞
0

Us+t0(z)µ(dz) + ν

√∫ ∞
0

Us+t0(z)µ(dz)dWs+t0

)

and then by stochastic Fubini theorem

∫ ∞
0

Ut+t0(y)µ(dy) = gt0(t)+
∫ t

0
K(t− s)

(
−λ

∫ ∞
0

Us+t0(z)µ(dz) + ν

√∫ ∞
0

Us+t0(z)µ(dz)dWs+t0

)
,

with gt0(t) =
∫∞

0 Ut0(y)e−ytµ(dy). Thanks to Theorem 3.1, we deduce that gt0 ∈ GK and there-
fore (Ut0(x))x∈supp(µ) belongs to Dµ. As a conclusion, the space Dµ is stochastically invariant
with respect to the family of processes (U(x))x∈supp(µ).

Theorem 4.1. Fix µ a positive measure of locally bounded variation satisfying (H2).There
exists a unique weak solution U of (4.1) for each initial family of points (U0(x))x∈supp(µ) ∈ Dµ.
Furthermore for any t ≥ 0, (Ut(x))x∈supp(µ) ∈ Dµ.

K(t) Parameter restrictions µ(dγ)
Fractional c t

α−1

Γ(α) α ∈ (1/2, 1) c x−α

Γ(α)Γ(1−α)dx

Gamma ce−λt tα−1

Γ(α) λ ≥ 0, α ∈ (1/2, 1) c
(x−λ)−α1(λ,∞)(x)

Γ(α)Γ(1−α) dx

Exponential sum
n∑
i=1

cie−γit ci, γi ≥ 0
n∑
i=1

ciδγi(dx)

Table 1: Some measures µ satisfying (H2) with their associated kernels K. Here c ≥ 0.
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Remark 4.2 (Representation of V in terms of U). In a similar fashion one can establish the
existence and uniqueness of the following time-inhomogeneous version of (4.1)

dUt(x) = (−xUt(x)− λ (g0(t) + 〈1, Ut〉µ)) dt+ ν
√
g0(t) + 〈1, Ut〉µdWt, x ∈ supp(µ), (4.7)

whenever
g0 = g̃0 +

∫ ∞
0

e−x(·)U0(x)µ(dx) ∈ GK ,

with g̃0 : R+ → R. In this case,

g̃0(t+ ·) +
∫ ∞

0
e−x(·)Ut(x)µ(dx) ∈ GK , t ≥ 0.

In particular, for U0 ≡ 0, g0 = g̃0 ∈ GK and K as in (4.2), the solution V to the stochastic
Volterra equation (1.2) and the forward process (gt)t≥0 admit the following representations

Vt = g0(t) + 〈1, Ut〉µ, gt0(t) = g0(t0 + t) + 〈e−t(·), Ut〉µ, t, t0 ≥ 0, (4.8)

where we used the notation 〈f, g〉µ =
∫ t

0 f(x)g(x)µ(dx). These results are in the spirit of [3, 13].

When µ has finite support, (4.7) is a finite dimensional diffusion with an affine structure in the
sense of [6]. This underlying structure carries over to the case of infinite support and is the
reason behind the tractability of the Volterra Heston model.

Remark 4.3 (Affine structure of (logS, V ) in terms of U). Let the notations and assumptions of
Remark 4.2 be in force. Relying on the existence and uniqueness of the Riccati-Volterra equation
(2.10) one can establish the existence and uniqueness of a differentiable (in time) solution χ2
to the following (possibly) infinite-dimensional system of Riccati ordinary differential equations

∂tχ2(t, x) = −xχ2(t, x) + F (ψ1(t), 〈χ2(t, ·), 1〉µ) , χ2(0, x) = u2, x ∈ suppµ, t ≥ 0, (4.9)

such that χ2(t, ·) ∈ L1(µ), for all t ≥ 0 and t→ 〈χ2(t, ·), 1〉µ ∈ L2
loc(R+) with ψ1 given by (2.9)

and F by (2.11). Moreover, the unique global solution ψ2 ∈ L2
loc(R+,C∗) to the Riccati–Volterra

equation (2.10) admits the following representation

ψ2 =
∫ ∞

0
χ2(·, x)µ(dx),

where χ2 is the unique solution to (4.9). In particular, combining the equality above with (3.3)
and the representation of (gt)t≥0 in (4.8) leads to the exponentially-affine functional

E
[
exp (uXT + (f ∗X)T )

∣∣∣ Ft] = exp (φ(t, T ) + ψ1(T − t) logSt + 〈χ2(T − t, ·), Ut〉µ)

for all t ≤ T where φ(t, T ) = (u2∆tg0 + F (ψ1, ψ2) ∗ ∆tg0)(T − t), (u, f) as in (2.12) and U
solves (4.7).

The representations of this section lead to a generic approximation of the Volterra Heston model
by finite-dimensional affine diffusions, see [1] for the rigorous treatment of these approximations.
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A Existence results for stochastic Volterra equations
In this section, we consider the following d-dimensional stochastic Volterra equation

Xt = g(t) +
∫ t

0
K(t− s)b(Xs)ds+

∫ t

0
K(t− s)σ(Xs)dWs, (A.1)

where K ∈ L2
loc(R,Rd×d), W is a m-dimensional Brownian motion, g : Rd → Rd, b : Rd → Rd,

σ : Rd → Rd×m are continuous with linear growth. By adapting the proofs of [2, Appendix
A] (there, g is constant), we obtain the following existence results. Notice how the domain GK
defined in (2.5) enters in the construction of constrained solutions in Theorem A.2 below.

Theorem A.1. Under (H0), assume that g ∈ Hγ/2.

(i) If b and σ are Lipschitz continuous, (A.1) admits a unique continuous strong solution X.

(ii) If b and σ are continuous with linear growth and K admits a resolvent of the first kind L,
then (A.1) admits a continuous weak solution X.

In both cases, X is locally Hölder continuous of any order strictly smaller than γ/2 and

sup
t≤T

E[|Xt|p] <∞, p > 0, T > 0. (A.2)

Theorem A.2. Assume that d = m = 1 and that the scalar kernel K satisfies (H0)-(H1).
Assume also that b and σ are continuous with linear growth such that b(0) ≥ 0 and σ(0) = 0.
Then (A.1) admits a nonnegative continuous weak solution for any g ∈ GK .

Proof. Theorem A.1(ii) yields the existence of an unsconstrained continuous weak solution X
to the following modified equation Xt = g(t) +

∫ t
0 K(t − s)b(X+

s )ds +
∫ t
0 K(t − s)σ(X+

s )dWs.
As in the proof of of [2, Theorem 3.5], it suffices to prove the nonnegativity of X under the
stronger condition, that, for some fixed n ∈ N,

x ≤ n−1 implies b(x) ≥ 0 and σ(x) = 0. (A.3)

Set Z =
∫

(b(X)dt+σ(X)dW ) and τ = inf{t ≥ 0: Xt < 0}. Since g(0) ≥ 0, τ ≥ 0. On {τ <∞},

Xτ+h = g(τ +h) + (K ∗dZ)τ+h = g(τ +h) + (∆hK ∗dZ)τ +
∫ h

0
K(h− s)dZτ+s, h ≥ 0. (A.4)

Using Lemma B.2 and Remark B.3 below, together with the fact that X ≥ 0 on [0, τ ],

g(τ + h) + (∆hK ∗ dZ)τ = g(τ + h) + (∆hK ∗ L)(0)(X − g)(τ)
+ (d(∆hK ∗ L) ∗X)τ − (d(∆hK ∗ L) ∗ g)(τ)
≥ g(τ + h)− (d(∆hK ∗ L) ∗ g)(τ)− (∆hK ∗ L)(0)g(τ),

which is nonnegative. In view of (A.4) it follows that

Xτ+h ≥
∫ h

0
K(h− s) (b(Xτ+s)ds+ σ(Xτ+s)dWτ+s) (A.5)

on {τ <∞} for all h ≥ 0. Now, on {τ <∞}, Xτ = 0 and Xτ+h < 0 for arbitrarily small h. On
the other hand, by continuity there is some ε > 0 such that Xτ+h ≤ n−1 for all h ∈ [0, ε). Thus
(A.3) and (A.5) yield Xτ+h ≥ 0 for all h ∈ [0, ε). This shows that τ =∞, ending the proof.
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B Reminder on stochastic convolutions and resolvents
For a measurable function K on R+ and a measure L on R+ of locally bounded variation, the
convolutions K ∗ L and L ∗K are defined by

(K ∗ L)(t) =
∫

[0,t]
K(t− s)L(ds), (L ∗K)(t) =

∫
[0,t]

L(ds)K(t− s)
whenever these expressions are well-defined. If F is a function on R+, we writeK∗F = K∗(Fdt).
We can show that L ∗ F is almost everywhere well-defined and belongs to Lploc(R+), whenever
F ∈ Lploc(R+). Moreover, (F ∗ G) ∗ L = F ∗ (G ∗ L) a.e., whenever F,G ∈ L1

loc(R+), see [12,
Theorem 3.6.1 and Corollary 3.6.2] for further details.
For any continuous semimartingaleM =

∫ .
0 bsds+

∫ .
0 asdBs the convolution (K∗dM)t =

∫ t
0 K(t−

s)dMs is well-defined as an Itô integral for every t ≥ 0 such that
∫ t
0 |K(t− s)||bs|ds+

∫ t
0 |K(t−

s)|2|as|2ds <∞. By stochastic Fubini Theorem, see [2, Lemma 2.1], we have (L ∗ (K ∗ dM)) =
((L ∗K) ∗ dM), a.s. whenever K ∈ L2

loc(R+,R) and a, b are locally bounded a.s.
We define the resolvent of the first kind of a d× d-matrix valued kernel K, as the Rd×d-valued
measure L on R+ of locally bounded variation such that K ∗ L = L ∗K ≡ id, where id stands
for the identity matrix, see [12, Definition 5.5.1]. The resolvent of the first kind does not always
exist. The following results are shown in [2, Lemma 2.6].
Lemma B.1. Let K ∈ L2

loc(R+) and Z =
∫ .
0 bsds+

∫ .
0 σsdWs a continuous semimartingale with

b and σ locally bounded. Assume that X and K ∗dZ are continuous processes and that K admits
a resolvent of the first kind L. Then X = K ∗ dZ if and only if L ∗X = Z.

Lemma B.2. Assume that K ∈ L1
loc(R+) admits a resolvent of the first kind L. For any

F ∈ L1
loc(R+) such that F ∗ L is right-continuous and of locally bounded variation one has

F = (F ∗ L)(0)K + d(F ∗ L) ∗K.
Remark B.3. The previous lemma will be used with F = ∆hK, for a fixed h ≥ 0. If K is
continuous on (0,∞), then ∆hK ∗ L is right-continuous. Moreover, if K is nonnegative and L
is non-increasing in the sense that s→ L([s, s+t]) is non-increasing for all t ≥ 0, then ∆hK ∗L
is non-decreasing since ∆hK ∗ L = 1−

∫
(0,h]K(h− s)L(·+ ds), t ≥ 0.
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