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INTRODUCTION

Chemostat refers to a laboratory device used for growing microorganisms in a cultured envi-
ronment and has been regarded as an idealization of nature to study microbial ecosystems at
steady state, which is a really important and interesting problem since they can be used to study
genetically altered microorganisms, waste water treatment and play an important role in ecology.

Feed Bottle Collection VesselCulture Vessel

The simplest chemostat device consists of three interconnected tanks called feed bottle, culture
vessel and collection vessel. The nutrient is pumped from the first tank to the culture vessel, where
the interactions between the species and the nutrient take place, and there is also another flow
being pumped from the culture vessel to the third tank such that the volume in the culture vessel
remains constant. The mathematical model is given by the following system of ordinary diffe-
rential equations

ds

dt
= (sin − s)D −

msx

a+ s
,

dx

dt
= −Dx+

msx

a+ s
.

s(t), x(t): concentration of nutrient and micrs.

D : dilution rate

sin: input concentration of nutrient

a: half-saturation constant

m: max. consumption rate of microorganisms.

In this work, we are interested in modeling and analyzing disturbances on the input flow in the
chemostat model. This kind of phenomena could explain, for instance, the presence of particles
of dirt inside the pumps or temporary clogs at the input or output of the chemostat. There are
many different ways to introduce randomness and/or stochasticity in some deterministic model.
The most common way is to use the standard Wiener process, ω, and replace D by D + αω̇(t),
where α > 0 represents the intensity of the noise, as made in [1]. However, several drawbacks
can be found when using this way to model disturbances on the input flow in the chemostat
model. As a consequence, we are interested in considering another approach which consists on
replacingD by D+αz∗β,ν(θtω), where z∗β,ν(θtω) represents a suitable Ornstein-Uhlenbeck process.
We refer the interested readers to [1, 2] for more detailed explanations concerning this work.

THE ORNSTEIN-UHLENBECK PROCESS

Let us consider the metric dynamical system (Ω,F ,P, {θt}t∈R), where

Ω = {ω ∈ C(R,R) : ω(0) = 0}, θtω(·) = ω(·+ t)− ω(t), t ∈ R,

F is the Borel σ−algebra on Ω and P is the corresponding Wiener measure on F .

Now, we will introduce the Ornstein-Uhlenbeck (O-U) process as the random variable given by

z∗β,ν(θtω) = −βν

∫ 0

−∞

eβsθtω(s)ds, t ∈ R, ω ∈ Ω, β, ν > 0,

which solves the following Langevin equation

dz + βzdt = νdω(t), t ∈ R.

For every given b2 > b1 > 0, we define the probability space (Ωβ ,Fβ ,Pβ) as follows: the new set
of events

Ωβ =
{

ω ∈ Ω : b1 ≤ D + αz∗β,ν(θtω) ≤ b2, for all t ∈ R
}

,

which is measurable, the new σ−algebra Fβ = {A ∩ Ωβ, A ∈ F} and the probability measure
defined as Pβ(Fβ) = P(Fβ)/P(Ωβ), for all Fβ ∈ Fβ .

It is not difficult to check that (Ωβ ,Fβ,Pβ , {θt}t∈R) is also a metric dynamical system.

RANDOM DYNAMICAL SYSTEMS

Definition 1 Let (X , ‖ · ‖X ) be a separable Banach space. An random dynamical system (RDS) on
X consists of two ingredients: (a) a metric dynamical system (Ω,F ,P, {θt}t∈R), where (Ω,F ,P) is a
probability space and a family of mappings θt : Ω → Ω verifying

(1) θ0 = IdΩ and θs ◦ θt = θs+t for all s, t ∈ R,

(2) the mapping (t, ω) 7→ θtω is measurable,

(3) the probability measure P is preserved by θt, i.e., θtP = P.

and (b) a measurable mapping ϕ : [0,+∞)× Ω×X → X such that for each ω ∈ Ω,

(i) the mapping ϕ(t, ω) : X → X , x 7→ ϕ(t, ω)x is continuous for every t ≥ 0,

(ii) ϕ(0, ω) is the identity operator on X ,

(iii) (cocycle property) ϕ(t+ s, ω) = ϕ(t, θsω)ϕ(s, ω) for all s, t ≥ 0.

Definition 2 A bounded random set K(ω) ⊂ X is said to be tempered respect to {θt}t∈R if for a.e. ω ∈ Ω,

lim
t→+∞

e−ηt sup
x∈K(θ

−tω)

‖x‖X = 0, for all η > 0.

We will denote the set of all tempered random sets of X by E(X ).

Definition 3 A random set B(ω) ⊂ X is called a tempered random absorbing set if for any E ∈ E(X )
and a.e. ω ∈ Ω, there exists TE(ω) > 0 such that

ϕ(t, θ−tω)E(θ−tω) ⊂ B(ω), ∀t ≥ TE(ω).

Definition 4 Let {ϕ(t, ω)}t≥0,ω∈Ω be an RDS over (Ω,F ,P, {θt}t∈R) with state space X and let
A(ω)(⊂ X ) be a random set. Then A = {A(ω)}ω∈Ω is called a global random E−attractor (or pull-
back E−attractor) for {ϕ(t, ω)}t≥0,ω∈Ω if

(i) A(ω) is a compact set of X for any ω ∈ Ω;

(ii) For any ω ∈ Ω and all t ≥ 0, it holds ϕ(t, ω)A(ω) = A(θtω);

(iii) For any E ∈ E(X ) and a.e. ω ∈ Ω, lim
t→∞

distX (ϕ(t, θ−tω)E(θ−tω), A(ω)) = 0, where

distX (G,H) = supg∈G infh∈H ‖g − h‖X is the Hausdorff semi-metric for G,H ⊆ X .

Proposition 1 Let B ∈ E(X ) be a closed absorbing set for the continuous RDS {ϕ(t, ω)}t≥0,ω∈Ω. Then
ϕ has a unique pullback random attractor A = {A(ω)}ω∈Ω.

For more detailed information about the theory of RDSs and pullback attractors, see [3].

RANDOM CHEMOSTAT MODEL

We are interested in investigating the following random chemostat model

ds

dt
= (sin − s)

(

D + αz∗β,ν(θtω)
)

−
msx

a+ s
, (1)

dx

dt
= −

(

D + αz∗β,ν(θtω)
)

x+
msx

a+ s
. (2)

Theorem 1 For any ω ∈ Ωβ and any v0 := (s0, x0) ∈ X = {(s, x) ∈ R
2 : x ≥ 0, y ≥ 0}, system

(1)-(2) possesses a unique global solution v(·; 0, ω, v0) := (s(·; 0, ω, s0), x(·; 0, ω, x0)) ∈ C1([0,+∞),X )
with v(0; 0, ω, v0) = v0, where s0 := s(0; 0, ω, v0) and x0 := x(0; 0, ω, v0). Moreover, the solution
mapping generates a random dynamical system ϕv : R+ × Ωβ ×X → X defined by

ϕv(t, ω)v0 := v(t; 0, ω, v0), for all t ∈ R
+, v0 ∈ X , ω ∈ Ωβ ,

the value at time t of the solution of system (1)-(2) with initial state v0 at time zero.

Theorem 2 There exists a tempered compact random absorbing set B0(ω) ∈ E(X ) for the RDS
{ϕv(t, ω)}t≥0, ω∈Ωβ

given by B0(ω) := {(s, x) ∈ X : s+ x = sin}.

Therefore, thanks to Proposition 1, the RDS generated by system (1)-(2) possesses a unique ran-
dom pullback attractor A = {A(ω)}ω∈Ωβ

⊂ B0(ω).

Proposition 2 Assume that D > µ(sin) is fulfilled. Then, the random pullback attractor of the chemostat
model (1)-(2) is reduced to a singleton component given by A = {(sin, 0)}.

Theorem 3 Assume that
s̄ < sin

holds true, where s̄ = µ−1(b2) and µ(s) = ms
a+s

. Then, there exists a tempered compact random absorbing
set, which is strictly contained in the positive cone X , for the RDS {ϕv(t, ω)}t≥0,ω∈Ωβ

.
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Figure 1. Persistence of the microbial biomass in the random and stochastic models
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Figure 2. Extinction of the microbial biomass in the random and stochastic models

We refer the readers to [2] for the proof of the results in this work.
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