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MODELING AND ANALYZING THE LONG-TIME BEHAVIOR OF RANDOM CHEMOSTAT MODELS

INTRODUCTION

Chemostat refers to a laboratory device used for growing microorganisms in a cultured environment and has been regarded as an idealization of nature to study microbial ecosystems at steady state, which is a really important and interesting problem since they can be used to study genetically altered microorganisms, waste water treatment and play an important role in ecology.

Feed Bottle Collection Vessel Culture Vessel

The simplest chemostat device consists of three interconnected tanks called feed bottle, culture vessel and collection vessel. The nutrient is pumped from the first tank to the culture vessel, where the interactions between the species and the nutrient take place, and there is also another flow being pumped from the culture vessel to the third tank such that the volume in the culture vessel remains constant. The mathematical model is given by the following system of ordinary differential equations In this work, we are interested in modeling and analyzing disturbances on the input flow in the chemostat model. This kind of phenomena could explain, for instance, the presence of particles of dirt inside the pumps or temporary clogs at the input or output of the chemostat. There are many different ways to introduce randomness and/or stochasticity in some deterministic model. The most common way is to use the standard Wiener process, ω, and replace D by D + α ω(t), where α > 0 represents the intensity of the noise, as made in [START_REF] Caraballo | Corrigendum to "Some aspects concerning the dynamics of stochastic chemostats[END_REF]. However, several drawbacks can be found when using this way to model disturbances on the input flow in the chemostat model. As a consequence, we are interested in considering another approach which consists on replacing D by D+αz * β,ν (θ t ω), where z * β,ν (θ t ω) represents a suitable Ornstein-Uhlenbeck process. We refer the interested readers to [START_REF] Caraballo | Corrigendum to "Some aspects concerning the dynamics of stochastic chemostats[END_REF][START_REF] Caraballo | Modeling and analysis of random and stochastic input flows in the chemostat model[END_REF] for more detailed explanations concerning this work.

ds dt = (s in -s)D - msx a + s , dx dt = -Dx + msx a + s . s(t

THE ORNSTEIN-UHLENBECK PROCESS

Let us consider the metric dynamical system (Ω, F , P, {θ t } t∈R ), where

Ω = {ω ∈ C(R, R) : ω(0) = 0}, θ t ω(•) = ω(• + t) -ω(t), t ∈ R,
F is the Borel σ-algebra on Ω and P is the corresponding Wiener measure on F . Now, we will introduce the Ornstein-Uhlenbeck (O-U) process as the random variable given by

z * β,ν (θ t ω) = -βν 0 -∞ e βs θ t ω(s)ds, t ∈ R, ω ∈ Ω, β, ν > 0,
which solves the following Langevin equation

dz + βzdt = νdω(t), t ∈ R.
For every given b 2 > b 1 > 0, we define the probability space (Ω β , F β , P β ) as follows: the new set of events

Ω β = ω ∈ Ω : b 1 ≤ D + αz * β,ν (θ t ω) ≤ b 2 , for all t ∈ R , which is measurable, the new σ-algebra F β = {A ∩ Ω β , A ∈ F } and the probability measure defined as P β (F β ) = P(F β )/P(Ω β ), for all F β ∈ F β .
It is not difficult to check that (Ω β , F β , P β , {θ t } t∈R ) is also a metric dynamical system.

RANDOM DYNAMICAL SYSTEMS

Definition 1 Let (X , • X ) be a separable Banach space. An random dynamical system (RDS) on X consists of two ingredients: (a) a metric dynamical system (Ω, F , P, {θ t } t∈R ), where (Ω, F , P) is a probability space and a family of mappings θ t : Ω → Ω verifying (1) θ 0 = Id Ω and θ s • θ t = θ s+t for all s, t ∈ R,

(2) the mapping (t, ω) → θ t ω is measurable, (3) the probability measure P is preserved by θ t , i.e., θ t P = P. and (b) a measurable mapping ϕ : [0, +∞) × Ω × X → X such that for each ω ∈ Ω, (i) the mapping ϕ(t, ω) : X → X , x → ϕ(t, ω)x is continuous for every t ≥ 0, (ii) ϕ(0, ω) is the identity operator on X , (iii) (cocycle property) ϕ(t + s, ω) = ϕ(t, θ s ω)ϕ(s, ω) for all s, t ≥ 0.

Definition 2 A bounded random set K(ω) ⊂ X is said to be tempered respect to {θ t } t∈R if for a.e. ω ∈ Ω, lim t→+∞ e -ηt sup x∈K(θ -t ω)
x X = 0, for all η > 0.

We will denote the set of all tempered random sets of X by E(X ).

Definition 3 A random set B(ω) ⊂ X is called a tempered random absorbing set if for any E ∈ E(X ) and a.e. ω ∈ Ω, there exists T E (ω) > 0 such that

ϕ(t, θ -t ω)E(θ -t ω) ⊂ B(ω), ∀t ≥ T E (ω).
Definition 4 Let {ϕ(t, ω)} t≥0,ω∈Ω be an RDS over (Ω, F , P, {θ t } t∈R ) with state space X and let A(ω)(⊂ X ) be a random set. Then A = {A(ω)} ω∈Ω is called a global random E-attractor (or pullback E-attractor) for {ϕ(t, ω)} t≥0,ω∈Ω if (i) A(ω) is a compact set of X for any ω ∈ Ω;

(ii) For any ω ∈ Ω and all t ≥ 0, it holds ϕ(t, ω)A(ω) = A(θ t ω);

(iii) For any E ∈ E(X ) and a.e. ω ∈ Ω, lim

t→∞ dist X (ϕ(t, θ -t ω)E(θ -t ω), A(ω)) = 0, where dist X (G, H) = sup g∈G inf h∈H g -h X is the Hausdorff semi-metric for G, H ⊆ X .
Proposition 1 Let B ∈ E(X ) be a closed absorbing set for the continuous RDS {ϕ(t, ω)} t≥0,ω∈Ω . Then ϕ has a unique pullback random attractor A = {A(ω)} ω∈Ω .

For more detailed information about the theory of RDSs and pullback attractors, see [START_REF] Caraballo | Applied Nonautonomous and Random Dynamical Systems[END_REF].

RANDOM CHEMOSTAT MODEL

We are interested in investigating the following random chemostat model

ds dt = (s in -s) D + αz * β,ν (θ t ω) - msx a + s , (1) 
dx dt = -D + αz * β,ν (θ t ω) x + msx a + s . (2) 
Theorem 1 For any ω ∈ Ω β and any

v 0 := (s 0 , x 0 ) ∈ X = {(s, x) ∈ R 2 : x ≥ 0, y ≥ 0}, system (1) 
-( 2) possesses a unique global solution v(•; 0, ω, v 0 ) := (s(•; 0, ω, s 0 ), x(•; 0, ω, x 0 )) ∈ C 1 ([0, +∞), X ) with v(0; 0, ω, v 0 ) = v 0 , where s 0 := s(0; 0, ω, v 0 ) and x 0 := x(0; 0, ω, v 0 ). Moreover, the solution mapping generates a random dynamical system ϕ v : R + × Ω β × X → X defined by ϕ v (t, ω)v 0 := v(t; 0, ω, v 0 ), for all t ∈ R + , v 0 ∈ X , ω ∈ Ω β , the value at time t of the solution of system (1)-( 2) with initial state v 0 at time zero.

Theorem 2 There exists a tempered compact random absorbing set B 0 (ω) ∈ E(X ) for the RDS {ϕ v (t, ω)} t≥0, ω∈Ω β given by B 0 (ω) := {(s, x) ∈ X : s + x = s in }.

Therefore, thanks to Proposition 1, the RDS generated by system (1)-( 2) possesses a unique random pullback attractor A = {A(ω)} ω∈Ω β ⊂ B 0 (ω).

Proposition 2 Assume that D > µ(s in ) is fulfilled. Then, the random pullback attractor of the chemostat model (1)-( 2) is reduced to a singleton component given by A = {(s in , 0)}.

Theorem 3 Assume that s < s in holds true, where s = µ -1 (b 2 ) and µ(s) = ms a+s . Then, there exists a tempered compact random absorbing set, which is strictly contained in the positive cone X , for the RDS {ϕ v (t, ω)} t≥0,ω∈Ω β . We refer the readers to [START_REF] Caraballo | Modeling and analysis of random and stochastic input flows in the chemostat model[END_REF] for the proof of the results in this work.
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 12 Figure 1. Persistence of the microbial biomass in the random and stochastic models