
HAL Id: hal-01716581
https://hal.science/hal-01716581v1

Submitted on 23 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

An exact algorithm for the bi-objective timing problem
Sophie Jacquin, Fanny Dufossé, Laetitia Jourdan

To cite this version:
Sophie Jacquin, Fanny Dufossé, Laetitia Jourdan. An exact algorithm for the bi-objective timing
problem. Optimization Letters, 2018, 12 (4), pp.903-914. �10.1007/s11590-018-1237-y�. �hal-01716581�

https://hal.science/hal-01716581v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


An exact algorithm for the bi-objective timing problem

Sophie Jacquin1, Fanny Dufossé1, Laetitia Jourdan1

Abstract The timing problem in the bi-objective just-in-time single-machine job-

shop scheduling problem (JiT-JSP) is the task to schedule N jobs whose order is fixed,

with each job incurring a linear earliness penalty for finishing ahead of its due date

and a linear tardiness penalty for finishing after its due date. The goal is to minimize

the earliness and tardiness simultaneously. We propose an exact greedy algorithm that

finds the entire Pareto front in O(N 2) time. This algorithm is asymptotically optimal.

Keywords Just-in-time scheduling · Bi-objective · Timing problem · Exact algorithm

1 Introduction

Just-in-time scheduling problems are studied by both researchers and practitioners for

more than two decades. JiT principles improve the production process of a company

under the condition of a good integration of customers and suppliers into the produc-

tion process. Their purpose is to develop scheduling policies that minimize due date

deviations of each job. Finishing a job before or after its due date involves direct and

indirect costs [16]. Jobs finishing too early incur storage and insurance costs [19].

Likewise, a job finishing late can incur shortage costs ranging from back order and

B Laetitia Jourdan

laetitia.jourdan@univ-lille1.fr

Sophie Jacquin

sophie.jacquin@inria.fr

Fanny Dufossé

fanny.dufosse@inria.fr

1 Inria Lille - Nord Europe, ORKAD, CRIStAL, University of Lille 1,

59655 Villeneuve d’Ascq, France

1



transportation expediting costs, to the loss of an important customer [10]. As under-

lined by Feldman and Biskup [7], the JiT scheduling problem has many practical

applications. For instance, in the food industry, perishable goods have to be delivered

to the customers shortly after they are produced. Similar constraints apply to chemical

or physical mixtures where some ingredients have a short half-life period.

The JiT problem is usually modeled as a single objective optimization task that

minimizes the weighted sum of total earliness and total tardiness of jobs. In most works

on JiT scheduling a branch an bound ([8,12,16,17]) or meta-heuristic ([8,11,13]) is

used to search though the jobs permutations while a timing algorithm is applied to

compute the job execution times and thus the sequence cost [18].

In the last decades, there is a growing interest in the multi-objective version of the

problem. Indeed, it could be difficult for the decision maker to design penalty values

for both earliness and tardiness on the same scale. The tardiness penalty is often

evaluated according to the risk of dissatisfaction of the customer, while the earliness

penalty models storage costs. Therefore it is more convenient for the decision maker to

evaluate the penalties of earliness and tardiness independently. This is exemplified by

studies [2,20], where just-in-time principles are modeled by minimizing the number

of tardy jobs and the weighted sum of total earliness costs. In this paper we choose

to model the just-in-time principles by minimizing simultaneously the weighted sum

of total earliness and the weighted sum of total tardiness. This choice was previously

done by several authors [4,10,14,15] who propose solutions based on meta-heuristics.

The advantage of this model is that it enables us to decide how important it is for a

given job not to be tardy and how important it is not to be early.

In a previous work [10] we proposed a solution of the bi-objective just-in-time

problem, where the order of jobs is fixed by a multi-objective evolutionary algorithm

while the idle times are optimally determined by the exact Aneja–Nahir method [1].

We have demonstrated the benefits of solving the scheduling and timing problems

separately, in a bi-objective context. Nevertheless, the efficiency of the method used

to solve the timing problem has a major impact on this kind of approach. Therefore, in

this paper, we are interested in the timing problem of the bi-objective version of the just-

in-time single-machine job shop scheduling problem (JiT-JSP), where both earliness

and tardiness are optimized as independent objectives. In the mono-objective version

of the timing problem, there exists an O(N log N ) algorithm to solve it [9], but to our

knowledge there is no algorithm for the bi-objective version. The main contribution of

this paper is a new exact algorithm to solve the timing problem. In Sect. 2, we define the

bi-objective timing problem, its properties and introduce notations and definitions. In

Sect. 3, we propose our algorithm to solve the bi-objective timing problem and prove

that this algorithm is exact and asymptotically optimal. Section 4 gives the conclusion

and perspective of this work.

2 The bi-objective timing problem

2.1 Problem formulation

In general JiT scheduling problems the order of jobs is not fixed. However, most

methods used to solve these problems work by exploring large amounts of different

2



job permutations. For each fixed permutation the algorithm needs to find the best

solution. This problem is called the timing problem and we can consider it to be a

sub-problem of the general JiT scheduling problems.

The timing problem consists of scheduling the execution times of an ordered set

of N jobs to optimize their total earliness E and total tardiness T . Each job Ji has

a processing time pi , a release date ri , a due date di , and the penalty factors for

earliness αi ≥ 0 and for tardiness βi ≥ 0. A scheduling s = (C1, . . . , CN ) is given

by completion times Ci of each job.

Formally, the problem can be defined as follows:

E(s) =

N
∑

i=1

αi × max(di − Ci , 0) (1)

T (s) =

N
∑

i=1

βi × max(Ci − di , 0) (2)

are to be minimized, subject to

Ci ≥ Ci−1 + pi i = 2, . . . , N (3)

Ci ≥ ri + pi i = 1, . . . , N . (4)

Formula for earliness (resp. tardiness) is formalized in Eq. 1 (resp. Eq. 2). Equation

3 prohibits simultaneous execution of two jobs, and Eq. 4 corresponds to the release

date. If S = (E(s), T (s)) we write s �→ S for short. We assume, without loss of

generality, that for any job Ji , ri + pi ≤ di .

In a given schedule, a job Ji is early (resp. tardy) if Ci < di (resp. Ci > di ) or

weakly early (resp. weakly tardy) with Ci ≤ di (resp. Ci ≥ di ). A job Ji is blocked

by its release date if Ci = ri + pi . In a solution, a group is a set of jobs that are run

sequentially without idle times.

2.2 Problem properties

It is easy to see that the feasible solution set given by Eqs. 3 and 4 is convex and can be

reduced to a compact set without excluding any Pareto optimal solution. Furthermore,

the objective functions given by Eqs. 1 and 2 are a sum of convex linear functions,

hence convex. Ehrgott et al. have demonstrated that these conditions are sufficient

to prove that the Pareto front is connected and convex [5] (Theorems 3.38 and 4.1).

Moreover, as the objective functions are piecewise linear, the timing problem’s Pareto

front is the union of finitely many semi-closed polyhedra [6]. So, in the objective

space, the Pareto front of the timing problem is piecewise linear, as shown in Fig. 1.

We call each end of these linear segments an extreme point (including first and last

points of the Pareto front). Thus, the whole Pareto front is completely determined just

by the extreme points. In the following, S j denotes the j th extreme point, sorted in

ascending order by earliness. A schedule s j which produces the j th extreme point

3



Fig. 1 Shape of the timing

problem Pareto front in the

objective space

Table 1 Table of notations for JiT-JSP

Notation Definition

Ji Job number i

ri Release time of job Ji

pi Processing time of job Ji

di Deadline of job Ji

αi Earliness penalty of job Ji

βi Tardiness penalty of job Ji

Ci Completion time of job Ji

s j j th extreme solution

S j j th extreme point

E(s) Earliness of schedule s

T (s) Tardiness of schedule s

γi Slope of the i th line segment in the Pareto front

s j �→ S j is called an extreme solution. There can be more than one extreme solution

for each extreme point. The slope of the line segment [S j , S j+1] is denoted by γ j .

These slopes are all strictly negative and form a strictly increasing sequence: −∞ <

γ0 < γ1 < · · · < γN < 0. The notation is summarized in Table 1.

The algorithm described in this paper is based on the following property:

Lemma 1 Let S j and S j+1 be two consecutive extreme points. Then for each solution

s = (C1, . . . , Cn) �→ S ∈ [S j , S j+1] there exists a solution s′ = (C ′
1, . . . , C ′

n) �→

S j+1, such that C ′
i ≤ Ci for i = 1, . . . , n.

In other words, we can get from any Pareto optimal solution to the next extreme

solution just by advancing jobs. We never have to delay any jobs.

Proof The proof is by construction. Let us take an arbitrary s = (C1, . . . , Cn) �→

S ∈ [S j , S j+1] and an arbitrary s′ = (C ′
1, . . . , C ′

n) �→ S j+1. Since the choice of

s′ is arbitrary, there may exist some C ′
i > Ci , i.e. some jobs have been delayed.

Let us consider the solution that we get by simply not delaying the jobs s′′ =

(min(C1, C ′
1), . . . , min(Cn, C ′

n)). It is easy to verify that s′′ satisfies Eqs. 3 and 4

and hence is a valid solution. We shall prove that s′′ �→ S j+1.

4



s′ and s′′ are different only because s′ has a set of jobs D that have been delayed

with respect to s′′. Delaying these jobs has decreased earliness of s′′ by a ≥ 0 and

increased its tardiness by b ≥ 0:

E(s′) = E(s′′) − a

T (s′) = T (s′′) + b

We shall see that any other choice than a = b = 0 leads to a contradiction. First let

us assume that a = 0 and b > 0. This means that s′′ has the same earliness as s′ but a

smaller tardiness. This is not possible, because s′ is Pareto optimal. Now assume that

a > 0. This allows us to examine the trade-off ratio − b
a

=
T (s′)−T (s′′)
E(s′)−E(s′′)

. That is the

slope of the line segment between s′ and s′′. Surely − b
a

> γ j , because s′ �→ S j+1

which is an extreme point marking the end of the line segment with slope γ j . But

that would mean that by modifying s by delaying the jobs in D we get a solution

s′′′ = (max(C1, C ′
1), . . . , max(Cn, C ′

n)) which is feasible, but which lies under the

Pareto front. Hence a = 0 and b = 0, which means that s′′ �→ S j+1. ⊓⊔

The proof of Lemma 1 showed us that any jobs whose completion times were later

in s j+1 than in s j did not have any effect on either the earliness or the tardiness of

s j . This means that these jobs were either tardy with β = 0 or early with α = 0.

These jobs are a nuisance for us. They do not affect our objectives in any way, except

indirectly, because they can block other more important jobs. It will help reduce our

cognitive load by tidying them out of the way:

Definition 1 Let s = (C1, . . . , CN ) be a valid solution. We call tardy jobs with β = 0

and weakly early jobs with α = 0 nuisance jobs. We say that s is normalized if all

nuisance jobs are either blocked by their release time or by the previous job.

In other words a normalized solution is the one where all the nuisance jobs have

been advanced as much as possible.

3 Solving method

3.1 Motivation

Lemma 1 reveals how to discover the entire Pareto front of the timing problem. All

we have to do is find the solution s0 and then advance some jobs in this solution to get

s1 and so on, until we discover all the extremal solutions. The big question is “which

jobs do we advance?”

The greedy algorithm paradigm tells us to make a move that is locally optimal at

a given stage. In single-objective optimization this would mean a move that would

yield the highest improvement in the value of the objective function. Since we have

two objectives, the locally optimal step is to move a job that would give us the best

trade-off between improving one objective and deteriorating the other. Since we are

moving from a solution s j �→ S j to a solution s j+1 �→ S j+1, we are looking for the

greatest possible reduction in tardiness in exchange for a unit of earliness.

5



Given a normalized Pareto optimal solution s, it is not possible to get to a different

Pareto optimal solution just by advancing a single job. Suppose it were possible and

there was such a job J . If J job is tardy it is either a nuisance job (β = 0) or a

normal job (β > 0). However nuisance jobs cannot be advanced by definition and

the existence of a normal job that can be advanced is in conflict with the assumption

that s is Pareto optimal. Therefore in order to travel along the Pareto front we have

to move blocks of consecutive jobs. Intuitively the early jobs at the beginning of the

block making way for the tardy jobs at its end.

Definition 2 A moving block is a group of jobs B = (Ji , . . . , Ji+k) preceded by idle

time, where no job J ∈ B is blocked by its release date.

Therefore a moving block is a set of jobs that can be simultaneously advanced to

produce a valid solution. Advancing a moving block by some δt will increase the

earliness and decrease tardiness of the solution. We can define a coefficient that will

tell us what is the trade-off between the earliness gained and tardiness lost.

Definition 3 Let B = (Ji , . . . , Ji+k) be a moving block where at least one job is

weakly early with a positive earliness penalty. The coefficient of B, denoted by c(B)

is the ratio of tardiness coefficients of tardy jobs to the earliness coefficients of weakly

early jobs:

c(B) = −

∑

i∈B,Ci >di
βi

∑

i∈B,Ci ≤di
αi

(5)

It is easy to see that in a normalized Pareto optimal solution each moving block

contains at least one weakly early job with a positive penalty, therefore the coefficient

given by Definition 3 is well defined for all moving blocks. In the following, we will

explore how far can we advance a moving block.

Definition 4 Let B = (Ji , . . . , Ji+k) be a moving block, preceded by an idle time of

length d . We define:

a(B) = min(d, di , . . . , di+k)

where

di =

{

Ci − pi − ri if Ji is weakly early or αi = 0 and βi = 0

min(Ci − pi − ri , Ci − di ) otherwise

We call a(B) the advance time of B.

The following lemma shows that it makes sense to advance the moving blocks with

the smallest possible coefficient by their advance time.

Lemma 2 Let s �→ S be a solution containing a moving block B with coefficient γ .

Then by advancing B by ǫ ≤ a(B) we obtain a valid solution s′ �→ S′ such that the

slope of line [S, S′] is γ . Furthermore, if B is still a moving block, then its coefficient

has increased or remains the same.

6



Proof The only tardy jobs that can become early are the ones with both α = 0 and

β = 0. These jobs can be ignored in the computation of earliness and tardiness change:

E(s) − E(s′) =
∑

i∈B,Ci ≤di

−ǫαi

T (s) − T (s′) =
∑

i∈B,Ci >di

ǫβi

By dividing the two equations we get the slope of [S, S′] on the left side and c(B) on

the right side. It is possible that a tardy job with non-zero penalty factors has become

weakly early in the process of advancing B. Substituting this into (5) shows that the

coefficient of c(B) has increased in this case. ⊓⊔

But can we travel along the Pareto front just by advancing a single block, or are

there some situations where any infinitesimal advancement along the Pareto front

would require the simultaneous advancing of several non-consecutive blocks? The

following lemma tells us that the former is true. Furthermore, it gives us a hint at how

to find such a block.

Lemma 3 Let s be a Pareto optimal solution such that s �→ S ∈ [S j , S j+1], S �=

S j+1. Then in s there exists a moving block B with coefficient c(B) = γ j .

Proof From Lemma 1 we know that there exists a set of jobs in s that can be advanced

to produce an extremal solution s′ �→ S j+1. Let us divide these jobs into groups

(G1, . . . , Gm). Two jobs belong to the same group if and only if they are consecutive

both in s and s′. Let us suppose that if i < j then all jobs in Gi run before jobs in

G j . It is impossible for any c(Gk) < γ j . If such a group existed, let us choose k

as the smallest index: c(G1) ≥ γ j , . . . , c(Gk−1) ≥ γ j . Since Gk is a group, it must

be preceded by idle time either in s or in s′. If it were preceded by idle time in s,

Lemma 2 tells us that we could produce a better than Pareto optimal solution just by

advancing Gk . Clearly, Gk is preceded by idle time only in s′. But then there has to

a group G p, p ∈ (1, . . . , k − 1) with c(G p) > γ j . Otherwise if all coefficients of

these groups were equal to γ j , then the average coefficient of the first k groups would

be smaller than γ j and by advancing only the first k groups by a sufficiently small

period of time we would get a better than Pareto optimal solution. However, since

Gk is preceded by idle time in s′, it is possible to modify s′ by delaying the groups

G p, . . . , Gk−1 by a sufficiently small period of time to produce a valid solution. Since

the average coefficient of these groups is greater than γ j , delaying these groups would

again produce a solution that is better than a Pareto optimal one. We now know that

c(G1) ≥ γ j , . . . , c(Gm) ≥ γ j . But if any of these inequalities were strict, the average

coefficient would be bigger than γ j which would again produce a better than Pareto

optimal solution. Therefore c(Gi ) = γ j for i = 1, . . . , m and G1 is the moving block,

whose existence we were trying to prove. ⊓⊔

We now have all the parts needed to find the entire Pareto front. We just need to find

the solution with the smallest earliness s1 and then compute γ1. Next we will advance

all the moving blocks whose coefficient is γ1. When there are no more such blocks,

7



we know we found s2. Then we will determine γ2 and advance blocks of jobs until

we get to s3 and so on, until we discover the entire Pareto front. The following section

describes our ideas in more rigor.

3.2 Detailed description

The exact method to solve the bi-objective timing problem in JiT-JSP is described in

Algorithm 1 and illustrated in Fig. 2.

The algorithm iteratively finds all normalized extreme solutions, sorted in

ascending order of earliness. First, solution s1 is found using the find_min_-

earliness_solution subroutine described in Algorithm 2. This solution is then

fed into the so-called pareto_glide subroutine described in Algorithm 3 to pro-

duce the next normalized extreme solution s2. s2 is immediately used to produce s3

and so on, until there are no more moving blocks to be advanced.

Algorithm 2 finds a solution with the smallest possible earliness. First it examines

job J1. If its earliness penalty αi = 0 it means that J1 can be scheduled as early as

possible in order to get out of the way of J1. If αi > 0 we can schedule the job to finish

exactly on its deadline, thus not causing any earliness penalty. Once J1 is scheduled,

we schedule J2 in essentially the same way, except now we have to make sure that

J2 does not overlap with J1. We continue until all jobs have been scheduled. Later

we shall prove that the solution constructed by Algorithm 2 is a normalized extreme

solution and that its earliness is zero.

The pareto_slide subroutine is built on ideas from Lemma 2. Its purpose is to

produce solution s j+1 from s j and, as the name suggests, it does so by sliding down

the Pareto front. First, the slope of the Pareto front line segment (γ j ) is calculated as

the smallest moving block coefficient in s j . Then we iteratively seek and advance all

Algorithm 1: Solving method.

Require: problem parameters values

Ensure: normalized extreme solutions s j �→ S j .

j ← 1

s j ← find_min_earliness_solution() // Algorithm 2

while there exists a moving block in s j do

s j+1 ← pareto_glide(s j ) // Algorithm 3

j ← j + 1

end while

Fig. 2 Illustration of

Algorithm 1
T

E

s
1 
= find_min_earliness_solution()

s
2
= pareto_glide(s

1
)

s
3
= pareto_glide(s

2
)

s
4
= pareto_glide(s

3
)

s
5
= pareto_glide(s

4
)

8



Algorithm 2: find_min_earliness_solution

Require: problem parameters values

Ensure: normalized extreme solution s1

if α1 = 0 then

C1 ←− r1 + p1

else

C1 ←− d1

end if

for i = 2 to N do

if αi = 0 then

Ci ←− max(ri + pi , Ci−1 + pi )

else

Ci ←− max(ri + pi , Ci−1 + pi , di )

end if

end for

Algorithm 3: pareto_slide

Require: problem parameters values, extreme point s j in normalized form

Ensure: s j+1

γ j ← min c(B) where B is a moving block in s j

i ←− 1

while i ≤ N do

Increment i until Ji is preceded by idle time.

i ←− k

while B = (Ji , . . . , Jk ) is a moving block and c(B) > γ j do

k ←− k + 1

end while

if c(B) = γ j then

Advance B by a(B).

k ←− k + 1

while k ≤ N and Jk is a nuisance job do

Advance Jk until it is no longer a nuisance job, or until a constraint is met

k ←− k + 1

end while

i ←− k

end if

end while

moving blocks with this coefficient. After advancing each block, we also advance any

nuisance jobs that became unblocked.

3.3 Proof of correctness

First we have to prove that Algorithm 2 finds the solution with the smallest earliness.

Theorem 1 The solution, s1, computed by Algorithm 2 is the extreme point that min-

imizes the earliness criteria.

Proof By construction, the earliness value of s1 is 0 since the only early jobs are

the ones whose earliness coefficient is 0. The only possibility to reduce the tardiness

criteria is to advance the completion time of some tardy jobs. However, in s1, each

9



tardy job is obstructed by the previous job or by its release date. So each tardy job is

in a group that begins by a job Ji that is either completed in its due date and αi > 0,

or blocked by its release date. So the tardiness criteria can not be reduced without

increasing the earliness criteria for job Ji or violating a release constraint. So s1 can

not be Pareto dominated and thus is an extreme point. ⊓⊔

Theorem 2 The solution, s j+1, computed by Algorithm 3 is an extreme point. Fur-

thermore, s j+1 is in normalized form.

Proof By Lemma 2 we see that the intermediary solutions produced by advancing

moving blocks with c(B) = γ j all lie on [S j , S j+1]. If the resulting solution would

not be an extreme solution, then by Lemma 3 there would be a moving block with

c(B) = γ j . But this is not possible, since by Lemma 2 we know that if we advance B

by a(B), either it merges with a previous block, or its coefficient increases. Therefore

when we advance B, we know that there are no moving blocks with coefficient γ j

ahead of B. This means that at the end of the loop there are no more moving blocks

with c(B) = γ j . ⊓⊔

3.4 Complexity

Building on our previous results, we are ready to prove the following:

Theorem 3 The number of extreme points is linear in the number of jobs.

Proof The number of extreme points is the number of iterations of pareto_slide

plus one. In each such iteration at least one of these events will happen:

– M1 : A tardy job becomes weakly early or a job gets blocked by release date.

– M2 : A moving block merges with a previous block.

Event M1 can happen only 2N times. Let us now examine M2.

There are N − 1 possible gaps that can be closed by the merging of blocks. Once

two blocks merge, they cannot split, unless a M1 type event occurs in the given block.

Indeed if Bk is the block resulting from advancing block B j until it merges with Bi ,

then c(B j ) ≤ c(Bl) for all Bl ⊆ Bi or Bl ⊂ B j . Then it can be shown by simple

arithmetic that for each block Bl ⊂ Bk , c(Bk) ≤ c(Bl). Therefore it can not be possible

to create more than N new gaps which means that the total number of moves M2 is

bounded by 2N − 1. Then the number of extreme points is bounded by 4N − 1. ⊓⊔

Theorem 4 The complexity of Algorithm 1 is O(N 2) and this is asymptotically opti-

mal.

Proof Algorithm 1 invokes the find_min_earliness_solution subroutine

only once and the pareto_slide at most O(N ) times. Since both these subroutines

end in O(N ), the resulting complexity is O(N 2). Since the length of the output is

O(N 2) (N completion times for each of the O(N ) extreme solutions), it is not possible

to improve this result asymptotically. ⊓⊔

In comparison, the well known Aneja–Nair method [1] applied with the mono-

objective timing method proposed by Bauman and Józefowska [3], which is to the

best of our knowledge the most efficient method for this problem, has a complexity

of O(N 2 log(N )).

10



4 Conclusion

In this article, we proposed a new exact algorithm for the timing problem of the

bi-objective version of the just-in-time single-machine jobshop scheduling problem

(JiT-JSP). The next step is to incorporate this algorithm in a solving multi-objective

method to improve the results on the bi-objective just-in-time single-machine jobshop

scheduling problem as for example in [10].

Acknowledgements We acknowledge Dr. Martin Drozdik for proof reading the article and corrected

mathematical proofs in the article during the revision phase.

References

1. Aneja, Y.P., Nair, K.P.: Bicriteria transportation problem. Manag. Sci. 25(1), 73–78 (1979)

2. Azizoglu, M., Kondakci, S., Kksalan, M.: Single machine scheduling with maximum earliness and

number tardy. Comput. Ind. Eng. 45(2), 257–268 (2003)

3. Bauman, J., Józefowska, J.: Minimizing the earliness–tardiness costs on a single machine. Comput.

Oper. Res. 33(11), 3219–3230 (2006)

4. Dantas, J.D., Varela, L.R.: Scheduling single-machine problem based on just-in-time principles. In:

2014 Sixth World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 164–169.

IEEE (2014)

5. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2006)

6. Fang, Y.P., Meng, K., Yang, X.Q.: Piecewise linear multicriteria programs: the continuous case and its

discontinuous generalization. Oper. Res. 60(2), 398–409 (2012)

7. Feldmann, M., Biskup, D.: Single-machine scheduling for minimizing earliness and tardiness penalties

by meta-heuristic approaches. Comput. Ind. Eng. 44(2), 307–323 (2003)

8. Hendel, Y., Runge, N., Sourd, F.: The one-machine just-in-time scheduling problem with preemption.

Discrete Optim. 6(1), 10–22 (2009)

9. Hendel, Y., Sourd, F.: An improved earliness–tardiness timing algorithm. Comput. Oper. Res. 34(10),

2931–2938 (2007)

10. Jacquin, S., Allart, E., Dufossé, F., Jourdan, L.: Decoder-based evolutionary algorithm for bi-objective

just-in-time single-machine job-shop. In: IEEE Symposium Series on Computational Intelligence,

SSCI, pp. 1–8 (2016)

11. Liu, L., Zhou, H.: Hybridization of harmony search with variable neighborhood search for restrictive

single-machine earliness/tardiness problem. Inf. Sci. 226, 68–92 (2013)

12. Mahnam, M., Moslehi, G., Ghomi, S.M.T.F.: Single machine scheduling with unequal release times

and idle insert for minimizing the sum of maximum earliness and tardiness. Math. Comput, Model.

57(9), 2549–2563 (2013)

13. Qin, T., Peng, B., Benlic, U., Cheng, T., Wang, Y., Lü, Z.: Iterated local search based on multi-type

perturbation for single-machine earliness/tardiness scheduling. COR 61, 81–88 (2015)

14. Rahimi-Vahed, A., Dangchi, M., Rafiei, H., Salimi, E.: A novel hybrid multi-objective shuffled frog-

leaping algorithm for a bi-criteria permutation flow shop scheduling problem. Int. J. Adv. Manuf.

Technol. 41(11–12), 1227–1239 (2009)

15. Rahimi-Vahed, A., Mirzaei, A.H.: Solving a bi-criteria permutation flow-shop problem using shuffled

frog-leaping algorithm. Soft Comput. 12(5), 435–452 (2008)

16. Sourd, F., Kedad-Sidhoum, S.: An efficient algorithm for the earliness–tardiness scheduling problem.

Optim. Online 1205 (2005)

17. Tanaka, S., Fujikuma, S.: A dynamic-programming-based exact algorithm for general single-machine

scheduling with machine idle time. J. Sched. 15(3), 347–361 (2012)

18. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A unifying view on timing problems and algorithms.

CIRRELT-2011-43, Montréal, QC, Canada (2011)

11

19. Vincent, T.: Multicriteria models for just-in-time scheduling. Int. J. Prod. Res. 49(11), 3191–3209

(2011)

20. Wan, G., Yen, B.P.C.: Single machine scheduling to minimize total weighted earliness subject to

minimal number of tardy jobs. Eur. J. Oper. Res. 195(1), 89–97 (2009)


	An exact algorithm for the bi-objective timing problem
	Abstract
	1 Introduction
	2 The bi-objective timing problem
	2.1 Problem formulation
	2.2 Problem properties

	3 Solving method
	3.1 Motivation
	3.2 Detailed description
	3.3 Proof of correctness
	3.4 Complexity

	4 Conclusion
	Acknowledgements
	References


