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A method combining perturbation theory with a simplifying ansatz is used to describe the exciton-phonon
dynamics in complex networks. This method, called PT∗, is compared to exact calculations based on the numerical
diagonalization of the exciton-phonon Hamiltonian for eight small-sized networks. It is shown that the accuracy
of PT∗ depends on the nature of the network, and three different situations were identified. For most graphs, PT∗

yields a very accurate description of the dynamics. By contrast, for the Wheel graph and the Apollonian network,
PT∗ reproduces the dynamics only when the exciton occupies a specific initial state. Finally, for the complete
graph, PT∗ breaks down. These different behaviors originate in the interplay between the degenerate nature of
the excitonic energy spectrum and the strength of the exciton-phonon interaction so that a criterion is established
to determine whether or not PT∗ is relevant. When it succeeds, our study shows the undeniable advantage of PT∗

in that it allows us to perform very fast simulations when compared to exact calculations that are restricted to
small-sized networks.

DOI: 10.1103/PhysRevE.96.022304

I. INTRODUCTION

In molecular crystals and large molecules, the study of
exciton dynamics has a long history [1] that can be traced
back to the seminal works of Agranovich [2], Davydov [3], and
Silbey [4,5], to name but a few. Understanding how excitons
carry energy is a key step in explaining many phenomena in
physics, chemistry, and biology [6]. Nowadays, this knowledge
is exploited to design technological devices with specific
properties. Among the many examples are artificial light
harvesting systems [7], organic light-emitting diodes [8],
J-aggregates with specific optical properties [9], and exciton
transistors [10].

Recently, it has been suggested that exciton propagation
in molecular networks may be used to perform scalable
quantum computing [11–13]. For instance, the exciton is a
good candidate to promote high-fidelity quantum-state transfer
(QST) at the nanoscale, a fundamental task to ensure an
ideal communication within and between computers [14].
Depending on how the information is encoded, different
strategies have been elaborated upon that involve, for example,
electronic excitons in an array of quantum dots [15,16], spin
excitations in Heisenberg ferromagnets [17–19], phonons in
low-dimensional crystals [20–22], and vibrons in molecu-
lar nanowires [23]. Similarly, exciton delocalization in a
hyperbranched molecule defines a physical realization of a
continuous-time quantum walk (CTQW) [24]. CTQWs are
a very active research topic due to their potential use in
developing quantum algorithms [25,26]. Their powerfulness
was demonstrated to solve various problems, such as the
element distinctness problem [27], the hitting problem [28],
and the quantum search problem [29,30]. Consequently,
CTQWs have been characterized in a great variety of networks,
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including dendrimers [31], trees [32,33], Apollonian net-
works [34,35], fractals [36,37], small-world networks [38],
and star graphs [39–43].

In that context, exciton-mediated QST or CTQWs require
that the exciton keeps its coherent wavelike nature over a
sufficiently long time. Unfortunately, in a realistic system,
the exciton does not propagate freely. It interacts with the
remaining degrees of freedom of the medium that usually form
a phonon bath responsible for quantum decoherence [44]. In
large molecules, the phonons act as a reservoir that is insensi-
tive to the exciton [45], and the Born-Markov approximation
is legitimate. The dynamics is well-described by a generalized
master equation (GME) that accounts for the irreversible
decay of the coherence. By contrast, in finite-size lattices, the
phonons no longer form a reservoir [46]. The Born-Markov
approximation fails to capture the exciton dynamics, and the
GME approach breaks down [47]. To overcome this problem,
we recently introduced a method based on the operatorial
formulation of perturbation theory (PT) [48,49]. Within this
method, the exciton and the phonons are treated on an equal
footing. The dynamics is governed by an effective Hamiltonian
that takes exciton-phonon entanglement into account: the
exciton gets dressed by a virtual phonon cloud, and the
phonons are dressed by virtual excitonic transitions. Quantum
decoherence occurs mainly because dressed phonons and free
phonons evolve differently.

Until now, PT has been successfully applied in finite-size
chains [48,49]. It provides a powerful tool for describing the
spectral properties of the exciton-phonon Hamiltonian, and it
is particularly suitable for characterizing the exciton dynamics.
However, the powerfulness of the method is intimately related
to the nondegenerate nature of the exciton spectra in linear
chains. In complex networks, a different situation arises since
the corresponding spectra usually exhibit more or less highly
degenerate energy levels. In that case, the method requires
additional numerical diagonalizations that may drastically
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increase the numerical cost of the procedure. To overcome
this difficulty, we have proposed a simplifying ansatz [50,51].
From a detailed study of the star graph, it has been observed
that when the phonons are accompanied by an exciton that
occupies a degenerate eigenstate, their dynamics are basically
described by the unperturbed phonon Hamiltonian. In other
words, the phonon dressing effect is negligible when the
exciton lies in a degenerate subspace. Although such an
approximation successfully captures the dynamics in a star
graph, the fundamental question arises as to whether it can be
generalized to other graph families.

In that context, the aim of the present paper is to check
the relevance of PT when it is combined with the previous
ansatz. To proceed, this approach will be compared with
exact calculations based on the numerical diagonalization
of the exciton-phonon Hamiltonian. We shall consider the
Holstein model [52], which refers to an exciton coupled
with optical phonons, i.e., a model currently used to describe
excitons in molecular crystals [53]. Both approximate and
exact simulations will be carried out to describe the time
evolution of the excitonic coherences in various networks.
These coherences are the elements of the exciton reduced
density matrix that measure the ability of the exciton to
develop or to maintain superpositions involving the vacuum
and one-exciton states. They thus correspond to key quantities
whose knowledge is required for defining QST and CTQWs.
Note that in this work, which is clearly more formal than
applied, we focus our attention on the standard structures
usually considered in quantum graph theory (see Fig. 1). This
work can thus be viewed as a necessary step to validate our
approach. The next step will be to consider more realistic
structures such as dendrimers or light-harvesting complexes.

The paper is organized as follows. In Sec. II, the graphs we
consider are described, and the exciton-phonon Hamiltonian
is defined. Then, the perturbation theory is summarized and
the excitonic coherences are defined. In Sec. III, a numerical
analysis is performed to describe the time evolution of the
excitonic coherence using both perturbation theory and exact
calculations. Finally, the results are discussed in Sec. IV.

II. THEORETICAL BACKGROUND

A. Exciton-phonon Hamiltonian

The various networks we consider correspond to the graphs
displayed in Fig. 1. Each graph G = {S,L} consists of a set
of N sites S, and a set of links L that connect sites. The sites
are labeled by the index � = 1, . . . ,N , and the notation (�,�′)
stands for the link between two sites � and �′. Within these
notations, the graph is completely described by the so-called
adjacency matrix A�,�′ . It reduces to 1 if � and �′ correspond
to connected sites, otherwise it vanishes:

A��′ =
{

1 if (�,�′) ∈ L,

0 otherwise. (1)

In that context, the exciton dynamics on a graph is modeled
as follows. Each site � is occupied by a molecular subunit
whose internal dynamics is described by a two-level system
with Bohr frequency ω0. Let |�〉 denote the state in which the
�th two-level system occupies its first excited state, the other
two-level systems remaining in their ground state. Similarly,
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FIG. 1. Representation of the networks considered in this paper.
(a) The star graph, (b) the wheel graph, (c) the H graph, (d) the hat
graph, (e) the fork graph, (f) the Apollonian network, (g) the complete
graph, and (h) the random complete graph.

let |�〉 stand for the vacuum state in which all the two-level
systems occupy their ground state. The exciton Hamiltonian
that governs both the zero- and the one-exciton dynamics is
thus defined as (within the convention h̄ = 1)

HA =
N∑

�=1

ω0|�〉〈�| +
N∑

�=1

N∑
�′=1

���′ |�〉〈�′|, (2)

where ���′ = �A��′ is the exciton hopping matrix. It reduces
to a constant � when � and �′ correspond to connected
sites, otherwise it vanishes. The Hamiltonian HA acts in the
Hilbert space EA whose dimension is equal to N + 1. Its
diagonalization yields the unperturbed one-exciton eigenstates
|χk〉, with k = 1, . . . ,N , the corresponding eigenenergies
being denotes εk . Within this notation, the exciton Hamiltonian
is finally written as

HA =
N∑

k=1

εk|χk〉〈χk|. (3)

According to the Holstein model, the exciton interacts with
N independent oscillators localized on each site of the graph
and with frequency �0. These oscillators form a set of optical
phonons whose Hamiltonian HB acts in the Hilbert space EB .
In terms of the standard phonon operators a

†
� and a�, HB is
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written as

HB =
N∑

�=1

�0a
†
�a�. (4)

Within the so-called deformation potential model [6], the
exciton-phonon interaction results from the modulation of
the Bohr frequency of each two-level system induced by the
local oscillators. The corresponding coupling Hamiltonian is
written as

V =
N∑

�=1

M (�)(a†
� + a�), (5)

where M (�) = �0|�〉〈�| is expressed in terms of the exciton-
phonon coupling strength �0. Acting in EA only, M (�) is
diagonal in the local basis {|�〉}, the �th element representing
the influence of the �th optical phonon on the �th two-level
Bohr frequency. By contrast, in the exciton eigenbasis {|χk〉},
M (�) is no longer diagonal. Its elements are defined as

M
(�)
kk′ = �0χ

∗
k�χk′�, (6)

where χk� = 〈�|χk〉 is the exciton wave function.
The exciton-phonon system is governed by the Hamilto-

nian H = H0 + V , where H0 = HA + HB is the unperturbed
Hamiltonian. The corresponding Hilbert space E = EA ⊗ EB

is partitioned into two independent subspaces: E = E0 ⊕ E1.
In the zero-exciton subspace E0, V = 0. The exciton-phonon
eigenstates are the unperturbed states involving the tensor
products between the vacuum |�〉 and the phonon number
states |{n�}〉 = |n1, . . . ,nN 〉. They describe n� free phonons
with energy n��0 localized on each site �. In the one-exciton
subspace E1, V turns on. The unperturbed states |χk〉 ⊗ |{n�}〉
are no longer eigenstates of H . They refer to free phonons
accompanied by an exciton in state |χk〉 whereas the exact
eigenstates correspond to entangled exciton-phonon states.

In the following, we shall restrict our attention to the
so-called nonadiabatic weak-coupling limit: � 
 �0 (nona-
diabatic limit) and �0 ≤ �0 (weak-coupling limit). Note that
such a situation corresponds, for instance, to high-frequency
vibrational excitons (vibrons) propagating in a molecular
lattice [54]. In that case, there is no resonance between the
coupled unperturbed states, and second-order PT can be used
to treat the coupling V .

B. Quasidegenerate perturbation theory

As discussed in great detailed in Refs. [50,51], the coupling
V is partially removed using quasidegenerate PT [55]. To
proceed, we introduce a transformation U = exp(S) that gen-
erates a new point of view in which the effective Hamiltonian
Ĥ = UHU † defines a phonon-conserving Hamiltonian that
is block-diagonal in the unperturbed basis. Within PT, S is
expanded as a Taylor series with respect to V so that the
diagonalization is achieved at a given order. In the original
point of view, the corresponding system eigenstates involve the
transformation U † so that they no longer describe independent
excitations but refer to entangled exciton-phonon states.

Up to second order, the transformed Hamiltonian is ex-
pressed as

Ĥ = HA + δHA +
N∑

�=1

N∑
�′=1

[�0δ��′ + 
��′]a†
�a�′ , (7)

where δHA and 
��′ are operators in EA whose matrix elements
are defined as (in the unperturbed basis {|χk〉})

δHAk1k2 = 1

2

N∑
�=0

N∑
k=0

M
(�)
k1k

M
(�)
kk2

εk1 − εk − �0
+ M

(�)
k1k

M
(�)
kk2

εk2 − εk − �0
,


��′k1k2 = 1

2

N∑
k=0

M
(�)
k1k

M
(�′)
kk2

εk1 − εk + �0
+ M

(�′)
k1k

M
(�)
kk2

εk2 − εk − �0

+1

2

N∑
k=0

M
(�′)
k1k

M
(�)
kk2

εk1 − εk − �0
+ M

(�)
k1k

M
(�′)
kk2

εk2 − εk + �0
. (8)

In Eq. (7), δHA is the correction of the exciton Hamiltonian
that results from the coupling with the phonons. It originates
from the spontaneous emission of a phonon during which the
exciton is scattered from |χk1〉 to |χk〉. Because the energy
is not conserved during this scattering process, the emitted
phonon is immediately reabsorbed and the exciton is again
scattered from |χk〉 to |χk2〉. Therefore, the exciton no longer
propagate freely and it is dressed by a virtual phonon cloud.
The dressed exciton forms a small polaron whose dynamics is
governed by the effective Hamiltonian ĤA = HA + δHA. The
diagonalization of ĤA yields the polaron eigenstates {|χ̂μ〉},
with μ = 1, . . . ,N , and the corresponding eigenenergies ε̂μ,
so that

ĤA =
N∑

μ=1

ε̂μ|χ̂μ〉〈χ̂μ|. (9)

In Eq. (7), 
��′ is the phonon hopping constant matrix that
accounts for the correction of the phonon Hamiltonian. It has
two origins. First, a phonon can be absorbed on a particular site
� giving rise to an excitonic transition. Because this transition
does not conserve energy, the phonon is immediately reemitted
but on another site �′. Second, a phonon localized on a site � can
favor the stimulated emission of a second phonon during which
the exciton realizes a transition. But, as discussed previously,
the emitted phonon is immediately reabsorbed on a second
site �′. Both mechanisms are virtual processes indicating that
the phonons are dressed by virtual transitions realized by the
exciton.

Strictly speaking, the phonon hopping constant matrix is
an operator acting in the exciton subspace EA. It thus provides
additional modifications of the polaron eigenstates, making it
even more difficult to diagonalize the matrix Ĥ . To overcome
these difficulties, we follow our study of the star graph and
propose two simplifying approximations [50,51]. First, in the
weak-coupling limit, the modifications induced by the matrices

��′ remain small when compared with those induced by
δHA. Therefore, up to second order in V , the phonon hopping
constant matrices will be treated to first order in the polaronic
eigenbasis {|χ̂μ〉}. Second, two situations arise depending on
whether the polaron eigenstate |χ̂μ〉 is degenerate or not. If
|χ̂μ〉 is associated with a nondegenerate energy level, the
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influence of the phonon hopping constant matrices to lowest
order is encoded in the diagonal matrix elements 〈χ̂μ|
��′ |χ̂μ〉.
By contrast, if |χ̂μ〉 is associated with a degenerate energy
level, the first-order treatment requires an additional numerical
diagonalization in the subspace involving the tensor products
between the corresponding polaronic degenerate subspace
and the phonon subspace. Such a procedure may present
a quite important numerical cost preventing the use of PT
in networks of large size. To overcome this difficulty, we
disregard such effects and propose an ansatz that consists
in neglecting the influence of the phonon hopping constant
matrices on the degenerate polaronic eigenstates. The method
combining PT with this ansatz will be called PT∗. Within these
approximations, the effective exciton-phonon Hamiltonian is
finally rewritten as

Ĥ ≈
N∑

μ=1

ε̂μ|χ̂μ〉〈χ̂μ| + Ĥ
(μ)
B ⊗ |χ̂μ〉〈χ̂μ|, (10)

where Ĥ
(μ)
B defines the Hamiltonian that governs the phonon

dynamics when the exciton lies in the polaronic state |χ̂μ〉.
Therefore, when the exciton occupies a degenerate eigenstate
|χ̂μ〉, the phonon dynamics is described by the unperturbed
Hamiltonian so that Ĥ

(μ)
B = HB .

This is no longer the case when the exciton lies in a non-
degenerate state. In that case, by setting 


(μ)
��′ = 〈χ̂μ|
��′ |χ̂μ〉,

the phonon Hamiltonian is written as

Ĥ
(μ)
B =

N∑
�=1

N∑
�′=1

[
�0δ��′ + 


(μ)
��′

]
a
†
�a�′ . (11)

According to Eq. (11), the effect of the exciton is twofold. First,
it favors a shift 


(μ)
�� of the frequency of each local oscillator

� = 1, . . . ,N . Then, it yields a coupling 

(μ)
��′ between distinct

local oscillators so that the dressed phonons can delocalize
along the network. Consequently, the vibrational normal
modes that define the dressed phonons are different from the
localized normal modes associated with free phonons. These
dressed normal modes are obtained from the diagonalization
of the phonon hopping constant matrix 
(μ). Such a procedure
allows us to define N eigenvalues δ�

(μ)
q and N eigenvectors

β
(μ)
q (�) labeled by the index q = 1, . . . ,N . The index q refers

to a particular phonon mode with energy �
(μ)
q = �0 + δ�

(μ)
q ,

the eigenvalues of the phonon hopping constant matrix defin-
ing the phonon frequency shifts. The dynamics of each mode
is described by the canonical creation a

(μ)†
q and annihilation

a
(μ)
q operators, defined by

a(μ)
q =

N∑
�=1

β(μ)∗
q (�)a�,

a(μ)†
q =

N∑
�=1

β(μ)
q (�)a†

�. (12)

Within the normal mode decomposition, the phonon Hamilto-
nian is finally rewritten in standard form as

Ĥ
(μ)
B =

∑
q

�(μ)
q a(μ)†

q a(μ)
q . (13)

C. Excitonic coherences

To test the accuracy of PT∗, we propose to study the time
evolution of excitonic coherences. According to the standard
theory of open quantum systems, a complete understanding
of the exciton dynamics is encoded in the reduced density
matrix σ (t) = TrB[exp(−iH t)ρ(0) exp(iH t)], where TrB is a
partial trace over the phonon degrees of freedom and where
ρ(0) is the initial exciton-phonon density matrix [44]. In that
case, the “coherences” are the off-diagonal elements σ��(t)
that yield information about the ability of the �th two-level
system to develop or to maintain a superposition between its
ground state and its first excited state at a time t .

Without any perturbation, the network is supposed to be in
thermal equilibrium at temperature T . We consider situations
for which ω0  kBT so that the exciton cannot be thermally
excited. By contrast, the phonons form a bath described by
the Boltzmann distribution ρB = exp(−βHB )/ZB , ZB being
the phonon partition function and β = 1/kBT . To study the
coherences, the network is brought in a configuration out of
equilibrium in which the exciton is prepared in a state |ψA〉 =
c0|�〉 + c1|�0〉, with |c0|2 + |c1|2 = 1. This step is supposed to
be rather fast when compared with the typical time evolution of
the phonons so that the initial density matrix becomes ρ(0) =
|ψA〉〈ψA| ⊗ ρB .

In that context, the coherences are expressed as σ��(t) =
G��0 (t)σ�0�(0) with

G��0 (t) = 〈�|TrB[ρBeiHBt e−iH t ]|�0〉. (14)

The effective exciton propagator G��0 (t) generalizes the con-
cept of transition amplitude. It yields the probability amplitude
to observe the exciton in |�〉 at time t given that it was in |�0〉 at
t = 0. Its effective nature results from the fact that the exciton
interacts with the phonons during its propagation.

The effective propagator is the central object of the present
study. Knowledge of this propagator provides key information
on the way the phonon bath modifies the excitonic coherences
either in the local basis or in the eigenbasis (by performing
a change of basis). As detailed previously [48,49], it can be
evaluated quite straightforwardly using PT∗. To proceed, we
first introduce the transformation U and diagonalize H in
Eq. (14). Then, we define the effective phonon density matrix

ρ
(μ)
B (t) = 1

Z (μ)
B (t)

exp
[ − βHB + i

(
HB − Ĥ

(μ)
B

)
t
]
, (15)

where

Z (μ)
B (t) = TrB exp

[ − βHB + i
(
HB − Ĥ

(μ)
B

)
t
]
. (16)

Strictly speaking, ρ
(μ)
B (t) is not a density matrix since it yields

complex values for the phonon population. However, it is
isomorphic to the phonon Boltzmann distribution and yields
averages equivalent to thermal averages with time-dependent
temperatures. After simple algebraic manipulations, G��0 (t) is
rewritten as

G��0 (t) =
N∑

μ=1

Z (μ)
B (t)

ZB

e−iε̂μt 〈〈�|U †
μ(t)|χ̂μ〉〈χ̂μ|Uμ(0)|�0〉〉μ,t ,

(17)

022304-4



EXCITON-PHONON DYNAMICS ON COMPLEX NETWORKS: . . . PHYSICAL REVIEW E 96, 022304 (2017)

where 〈· · · 〉μ,t = TrB[ρ(μ)
B (t) · · · ] and Uμ(t) =

eiĤ
(μ)
B tUe−iĤ

(μ)
B t . Expanding U in a Taylor series with

respect to V , one finally obtains the second-order expression
for G��0 (t). This expression is given in great detail in our
previous works (see, for instance, Ref. [51]).

To check the relevance of PT∗, exact simulations are carried
out for describing the time evolution of the coherences. To
proceed, we have developed a code in which we explicitly
build the Hamiltonian H = HA + HB + V using a truncated
(finite) basis for the phonon number states |n1, . . . ,nN 〉. The
numerical process we employ can be summarized as follows.
First, we set NP the maximum number of phonons on the
network by fixing the value NP = ∑

� n�. In practice, depend-
ing on the temperature, we judiciously choose Np in order
to correctly reproduce the phonon bath statistics (the error
on the average phonon number is less than 0.1%). Thus, we
ensure a good convergence of all our numerical calculations.
Second, using boson symmetry properties, we numerically
build the reduced set of phonon number states |n1, . . . ,nN 〉 to
span the truncated Hilbert space whose dimension reduces to
dim(EB) = (NP + N )!/(NP !N !). Finally, within this reduced
basis, we explicitly calculate each contribution of the three
operators HA, HB , and V in the global exciton-phonon basis
states formed by the tensor products between the one-exciton
states |�〉 and the phonon number states. Without going into
too much detail, the numerical process we use consists in
calculating the exciton-phonon state resulting from the action
of H over an initial state. The real difficulty is to correctly
reference the outgoing state as a function of a phonon number
state and a local excitonic state. Thus, step by step, we build
all the matrix elements of the full Hamiltonian H . In this way,
we obtain a very large matrix H that can be diagonalized
numerically. In doing so, we get access to all the required
information to efficiently simulate the time evolution of the
effective propagator.

III. NUMERICAL RESULTS

In this section, both PT∗ and exact calculations are
performed in order to describe the time evolution of the exciton
effective propagator |G��0 (t)|. The following reduced param-
eters are used: the exciton-phonon coupling strength and the
phonon frequency are fixed to �0/� = 5 and �0/� = 100,
respectively, and the temperature is expressed in terms of the
Einstein temperature TE = �0/kB through the introduction of
the parameter α = T/TE with either α = 0.5 or 1. Note that,
as mentioned in Sec. II A, this set of parameters corresponds to
the weak-coupling nonadiabatic limit, a situation encountered,
for instance, when studying vibrational excitons in molecular
networks [54]. In our numerical analysis, we consider small-
sized networks with N = 6. Exact calculations are carried
out with a maximum phonon number equal to NP = 9 so
that the size of the truncated basis reduces to 30 030. Note
that for the Apollonian network, we have N = 7. In that
case, the maximum phonon number is fixed to NP = 8,
resulting in a truncated basis whose size reaches 45 045. In
the following figures, red curves (gray curves in the printed
black-white versions) refer to exact calculations whereas black
curves correspond to PT∗ calculations. Note that the short-time
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FIG. 2. Time evolution of the effective propagator on the star
graph (N = 6 and α = 0.5). (a) Short-time and (b) long-time behavior
of the element |G12(t)|. (c) Short-time and (d) long-time behavior of
the element |G62(t)|. In (a) and (c), red dots correspond to exact
calculation whereas black lines refer to PT∗ calculations.

dynamics is illustrated for the star graph only (see Fig. 2), a
similar behavior having been observed for the other graphs.

For the star graph, the time evolution of the propagator
|G12(t)| is illustrated in Figs. 2(a) and 2(b). It characterizes
the ability of the exciton to reach the core site � = 1 at time t

given that it was initially created on the peripheral site � = 2
[see Fig. 1(a)]. Initially equal to zero, the propagator rapidly
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reaches a first maximum at time t = 0.7�−1 and its amplitude
is equal to 0.44 [see Fig. 2(a)]. This peak characterizes a direct
exciton transfer between the periphery and the core of the star.
Then, in the short-time limit (t < 50�−1), |G12(t)| exhibits
high-frequency oscillations whose amplitude remains smaller
than 0.44. The period of these oscillations is approximately
equal to 1.4�−1, i.e., very close to the theoretical period
π�−1/

√
N − 1 � 1.405�−1 that describes the dynamics of

a free exciton. As time increases, the maximum value of these
oscillations is modulated by a slowly varying envelope [see
Fig. 2(b)]. It turns out that the propagator does not vanish
in the long-time limit, and different features are observed.
First, the envelope exhibits incomplete quantum revivals that
recur almost periodically at times Tr,2Tr,3Tr, . . . with the
almost period Tr = 880�−1. Note that the amplitude of the
first revival is equal to 0.32. Second, the envelope decreases
until it reaches a minimum value at time t = 2400�−1 and
its amplitude reaches approximately 0.12. Therefore, as time
increases, the amplitude of the envelope increases again until
an almost complete revival takes place at a superrevival time
Tsr . In the present situation, one obtains Tsr = 5600�−1, the
corresponding amplitude of the propagator being approxi-
mately equal to 0.44.

Figures 2(c) and 2(d) display the time evolution of the
propagator |G62(t)| that characterizes the exciton transfer
between two peripheral sites � = 2 and 6 [see Fig. 1(a)]. As
discussed previously, the propagator initially equal to zero
reaches a first maximum equal to 0.4 at time t = 1.4�−1 [see
Fig. 2(c)]. Then, as time increases, the propagator exhibits
high-frequency oscillations whose amplitude follows a slowly
varying envelope. These oscillations vary around a nonvan-
ishing value approximately equal to 0.2 and with a period
equal to 2.8�−1 [see Fig. 2(c)]. Note that the amplitude of
the oscillations decreases as time increases and the propagator
no longer goes through zero. Nevertheless, the slowly varying
envelope supports incomplete revivals with revival time Tr =
880�−1 as well as an almost exact recurrence that arises at the
superrevival time Tsr = 5600�−1.

As shown in Fig. 2, PT∗ describes very accurately the time
evolution of the effective propagator, even in the long-time
limit. It perfectly reproduces the high-frequency oscillating
behavior of the propagator as well as the occurrences of both
the incomplete revivals and the almost exact recurrence. In
addition, we have verified that this accuracy remains even at
high temperature (α = 1) and for all the matrix elements of
the propagator.

For the wheel graph [see Fig. 1(b)], the time evolution of
the propagator |G12(t)| is shown in Fig. 3(a). Initially equal
to zero, |G12(t)| reaches a first maximum equal to 0.4 at time
t = 0.6�−1. Then, it shows high-frequency oscillations that
vary around a nonvanishing value approximately equal to 0.15.
The period of these oscillations is equal to 1.2�−1. As for the
star graph, these oscillations are modulated by a slowly varying
envelope that exhibits incomplete revivals. These revivals arise
almost periodically, with the corresponding almost period
being approximately equal to Tr = 1000�−1. Nevertheless,
the amplitude of the envelope varies from one revival to
another, and no exact recurrence is observed. In that case, the
figure clearly shows that PT∗ provides a very good estimate of
the propagator. It yields a perfect description of the oscillating
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FIG. 3. Time evolution of the effective propagator elements
(a) |G12(t)| and (b) |G62(t)| on the wheel graph (N = 6 and α = 0.5).

behavior of the propagator as well as of the shape of the
envelope. Note that a very slight discrepancy arises between
the numerical calculations and PT∗ calculations in the very
long-time limit.

A different situation occurs when one considers the propa-
gator |G62(t)| whose time evolution is displayed in Fig. 3(b).
|G62(t)| increases from its vanishing initial value to reach a
maximum equal to 0.63 at time t = 15.5�−1. Then, it exhibits
high-frequency oscillations whose amplitude decreases until
the time becomes equal to 800�−1. As time increases, the
oscillations vary around a nonvanishing value approximately
equal to 0.2 for the exact simulation and equal to 0.35
for the PT∗ approach. In the two cases, the period of high
oscillations is the same, namely ∼1.2�−1. The amplitude of
these oscillations is modulated by a slowly varying envelope
that exhibits small-amplitude revivals. These revivals recur
almost periodically with an almost period approximately equal
to Tr = 1000�−1. For this coherence, PT∗ yields a quite
good estimate of the propagator in the short-time limit, but
it fails to reproduce the time evolution of the propagator at
long times. Although the shape of the envelope is more or
less well captured, PT∗ clearly overestimates the value of the
propagator. We have verified that such a discrepancy affects
all the propagator elements that involve two peripheral sites of
the wheel graph. Moreover, it is enhanced as the temperature
increases.

As illustrated in the following three figures, PT∗ provides
a very good estimate of the time evolution of the effective
propagator for both the H graph (Fig. 4), the hat graph (Fig. 5),
and the fork graph (Fig. 6). It describes very accurately the
high-frequency oscillations of the propagator, and it perfectly
accounts for the occurrence of revivals. This accuracy remains
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FIG. 4. Time evolution of the effective propagator elements
(a) |G12(t)| and (b) |G65(t)| on the H graph (N = 6 and α = 0.5).

even at high temperature (α = 1) and for all the matrix
elements of the propagator.

For the H graph [see Fig. 1(c)], we consider two different
elements of the propagator. The element |G12(t)| describes
the exciton transfer between the peripheral sites � = 2 with
degree 1 and the site � = 1 with degree 3 (the degree of a
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FIG. 5. Time evolution of the effective propagator elements
(a) |G12(t)| and (b) |G62(t)| on the hat graph (N = 6 and α = 0.5).
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FIG. 6. Time evolution of the effective propagator elements
(a) |G16(t)| and (b) |G63(t)| on the fork graph (N = 6 and α = 0.5).

site is the number of links that emanate out from that site).
As illustrated in Fig. 4(a), |G12(t)| first increases from zero to
reach a maximum amplitude of 0.58 at time t = 0.95�−1.
Then, it exhibits high-frequency oscillations whose mean
period is 1.5�−1. These oscillations are modulated by a slowly
varying envelope that first decreases. Then, the envelope
increases again until an almost complete revival takes place at a
superrevival time Tsr = 7300�−1. The time evolution |G65(t)|
is displayed in Fig. 4(b). It characterizes the exciton transfer
between two peripheral sites � = 2 and 6. After reaching its
first maximum equal to 0.75 at time t = 2.1�−1, |G65(t)|
shows high-frequency oscillations whose amplitude follows
a slowly varying envelope. These oscillations vary around a
nonvanishing value approximately equal to 0.5. Note that at
time Tsr = 7600�−1, a very pronounced recurrence arises.

For the hat graph [see Fig. 1(d)], the element |G12(t)|, which
characterizes the transfer between the top site � = 1 and the
base site � = 2, basically behaves as the element |G12(t)| of
the H graph, except that no pronounced revivals are observed
[see Fig. 5(a)]. For the element |G62(t)|, a remarkable feature
arises since the high-frequency oscillations of the propagator
are modulated by a slowly varying envelope that scales
as a sinelike function [Fig. 5(b)]. Therefore, revivals recur
periodically according to an almost period Tr = 2550�−1.

As shown in Fig. 6, similar features are observed for the
fork graph [see Fig. 1(e)]. First, the time evolution of |G16(t)|,
which refers to a transition between two peripheral nodes with
degree unity, is quite similar to that of the element |G12(t)| of
the hat graph [see Fig. 6(a)]. Then, for the element |G63(t)|
[Fig. 6(b)], which describes a transition between the central
node � = 3 with degree 4 and the peripheral node � = 6, one
recovers the occurrence of a slowly varying envelope that
scales as a sinelike function.
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FIG. 7. Time evolution of the effective propagator elements
(a) |G72(t)| and (b) |G12(t)| on the Apollonian network (N = 7 and
α = 0.5).

For the Apollonian network [see Fig. 1(f)], a different
situation arises since the accuracy of PT∗ depends on the
propagator we consider. First, Fig. 7(a) displays the evolution
of the element |G72(t)|, which describes the exciton transfer
between the core site � = 7, whose degree is equal to 6, and
the peripheral site � = 2 with degree 5. As time increases,
the propagator, which is initially equal to zero, reaches a first
maximum equal to 0.47 at time t = 3�−1. Then, it shows
high-frequency oscillations that vary around a nonvanishing
value approximately equal to 0.15. The mean period of these
oscillations is 1.2�−1. These oscillations are modulated by
a slowly varying envelope that exhibits incomplete revivals.
These revivals arise almost periodically, the corresponding
almost period being approximately equal to Tr = 1250�−1.
Nevertheless, the amplitude of the envelope varies from one
revival to another, and no exact recurrence is observed. In
that case, PT∗ yields a very good estimate of the propagator, a
situation encountered each time one considers a matrix element
of the propagator that involves the central node � = 7.

A different situation occurs when one considers the
propagator |G12(t)| whose time evolution is displayed in
Fig. 7(b). This propagator refers to the excitonic transfer
between the two peripheral sites � = 2 and 1 [see Fig. 1(f)].
From its initial value equal to zero, |G12(t)| increases to reach
its maximum value equal to 0.65 at time t = 25�−1. As
time increases, it exhibits high-frequency oscillations whose
amplitude decreases until the time becomes equal to 980�−1.
Then, the oscillations vary around 0.2 for exact calculations
and 0.3 for PT∗ calculations. The corresponding period ∼1�−1

is the same for both approaches. The amplitude of these
oscillations is modulated by a slowly varying envelope that
exhibits small-amplitude revivals. These revivals recur almost
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FIG. 8. Time evolution of the effective propagator elements
(a) |G62(t)| and (b) |G66(t)| on the complete graph (N = 6 and
α = 0.5).

periodically with an almost period approximately equal to
Tr = 1250�−1.

As for the wheel graph, PT∗ allows us to capture the
shape of the envelope, but it clearly overestimates the value of
the propagator. Such a discrepancy affects all the propagator
elements that involve the sites of the Apollonian network
that differ from the central site. In addition, it is enhanced
as the temperature increases, so that PT∗ leads to completely
erroneous results.

As shown in Fig. 1(g), the complete graph involves N = 6
equivalent sites whose degree reduces to the number of
nodes. Therefore, the propagator is characterized by two
different kinds of elements, i.e., those involving distinct
sites (transfer amplitude) and those involving the same site
(survival amplitude). In that context, the time evolution of
the transfer amplitude G12(t) is shown in Fig. 8(a). Initially
equal to zero, the propagator rapidly increases to reach a
first peak value equal to 0.33 at time t = 0.55�−1. Then,
it develops high-frequency oscillations whose mean period
is approximately equal to 1.1�−1 and whose amplitude is
modulated by a slowly varying envelope. This envelope
behaves as an almost periodic function that exhibits two kinds
of revivals. Indeed, small-amplitude revivals take place at
times Tr,2Tr,3Tr, . . . with Tr = 1250�−1, their amplitude
being approximately equal to 0.2. By contrast, almost exact
recurrences arise regularly according to the characteristic
time Tsr = 2500�−1, their amplitude being approximately
equal to 0.3. As shown in Fig. 8(a), PT∗ partially captures
the behavior of the propagator. More precisely, it perfectly
accounts for its short-time evolution. It predicts the occurrence
of high-frequency oscillations with a mean period ∼1.05�−1

that basically corresponds to the period obtains from exact
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FIG. 9. Time evolution of the effective propagator elements
(a) |G62(t)| and (b) |G66(t)| on the inhomogeneous complete graph
(N = 6 and α = 0.5).

calculations. However, PT∗ fails to reproduce the shape of
the envelope. It favors the occurrence of a periodic sinelike
envelope whose period is equal to 1250�−1. Consequently,
PT∗ accounts for the occurrence of the complete revivals, at
least over the time scale shown in the figure. Conversely, it
clearly overestimates the amplitude of the incomplete revivals.

The behavior of the survival amplitude is displayed in
Fig. 8(b). Initially equal to unity, it exhibits high-frequency
oscillations whose mean period is equal to 1.05�−1. These
oscillations are modulated by a sinelike envelope that shows
an almost periodic behavior, the almost period being approxi-
mately equal to Tsr = 2600�−1. As a result, almost complete
recurrence arises according to the characteristic time Tsr for
which the survival amplitude reaches a value close to unity.
In that case, the figure reveals that PT∗ completely fails
to reproduce the time evolution of the survival amplitude.
Although it predicts high-frequency oscillations that match
the shape of the propagator in the short-time limit, it clearly
overestimates the propagator. It yields a nonvanishing slowly
varying envelope whose amplitude varies periodically around
an average value equal to 0.83, the period being approximately
equal to 1250�−1. Therefore, PT∗ predicts the occurrences of
exact revivals that recur periodically.

Finally, let us consider the inhomogeneous complete graph
in which the site energies have been chosen randomly [see
Fig. 1(h)]. Each site energy corresponds to a random variable
uniformly distributed over the energy range [ω0 − 0.5�,ω0 +
0.5�]. The behavior of the transfer amplitude G12(t) is
displayed in Fig. 9(a) for a given set of site energies. In
the short-time limit, the propagator rapidly increases from its
vanishing initial value. It thus reaches a maximum value equal
to 0.35 at time t = 0.55�−1. Then it exhibits high-frequency

oscillations whose mean period is approximately equal to
1.1�−1. These oscillations are modulated by a slowly varying
envelope whose shape evolves as time increases. This envelope
behaves as a damped sinelike function whose period is equal to
1250�−1, indicating that revivals recur periodically. However,
as time increases, the oscillating nature of the envelope tends
to disappear. The time evolution of the survival amplitude
is shown in Fig. 9(b). Initially equal to unity, it exhibits
high-frequency oscillations whose period is ∼1�−1. These
oscillations vary around an average value approximately equal
to 0.5. They are modulated by a slowly varying envelope that
exhibits a sinelike behavior. As a result, almost complete
recurrence arises according to the superrevival time Tsr =
1250�−1 and for which the survival amplitude reaches a
value close to unity. As shown in Fig. 9, PT∗ describes very
accurately the time evolution of the effective propagator. This
accuracy remains at high temperature (α = 1) and for all the
matrix elements of the propagator.

IV. DISCUSSION

The numerical results show that the accuracy of the method
PT∗ depends on the nature of the graph. Three different
situations have been identified. First, for most graphs, i.e.,
for the star graph, the H graph, the fork graph, the hat
graph, and the complete random graph, PT∗ provides a very
accurate description of the excitonic dynamics. This method
perfectly reproduces the oscillating behavior of the effective
exciton propagator over short, intermediate, and long time
scales. In addition, it accounts for the occurrence of both
incomplete revivals and almost exact recurrences. For these
graphs, the fundamental point is that PT∗ works very well for
all temperatures and regardless of the element of the propagator
under study. Then, for the Wheel graph and the Apollonian
network, the relevance of PT∗ depends on the nature of the
elements of the excitonic propagator, and two situations arise.
These graphs are organized around a central site, and they
exhibit a specific symmetry. We have shown that PT∗ is
particularly suitable for describing the time evolution of the
matrix elements of the propagator that involve the central site.
Conversely, for the other elements, PT∗ fails to reproduce the
dynamics. It overestimates the excitonic coherence, a feature
that is enhanced as the temperature increases. Finally, for
the complete graph, PT∗ breaks down. The method provides
satisfactory results over short time scales, only. For inter-
mediate and long time scales, it overestimates the excitonic
coherence, regardless of the element of the propagator that
we consider, this effect being strongly exacerbated as the
temperature increases.

In a general way, the relevance of PT∗ is intimately related
to the validity of our ansatz presented in Sec. II. According to
this ansatz, we assume that the influence of the phonon hopping
constant matrices 
��′ on the degenerate polaronic eigenstates
can be neglected. To check this hypothesis, we have realized
a detailed study of the phonon hopping constant matrices in
order to determine whether or not the residual exciton-phonon
coupling induced by those matrices can be disregarded. To
proceed, for degenerate polaronic eigenstates, we define a
measure of the coupling strength as the spectral radius ρD

of the restriction of the matrix 

μμ′
��′ = 〈χ̂μ|
��′ |χ̂μ′ 〉 to the
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TABLE I. Spectral radius in � units.

ρD ρND

Star graph 7.5 × 10−5 6.7 × 10−3

Wheel graph 4.5 × 10−3 2.5 × 10−2

H graph 2.5 × 10−7 5.3 × 10−2

Fork graph 2.5 × 10−5 6.0 × 10−3

Apollonian network 5.0 × 10−3 5.3 × 10−3

Complete graph 1.6 × 10−2 5.0 × 10−3

degenerate subspace under study. Note that the spectral radius
of a square matrix is the largest element among the absolute
values of the eigenvalues of that matrix [56]. In the same
way, in the case of a nondegenerate state |χ̂μ〉, the coupling
strength corresponds to the largest eigenvalues |δ�(μ)

q | of the
matrix 


μ

��′ (see Sec. II B). This quantity defines the matrix
spectral radius ρND . Within these notations, one thus expect
that PT∗ is relevant provided that ρD 
 ρND .

The pertinence of PT∗ can thus be interpreted as follows.
First, for both the hat graph and the random complete graph, the
excitonic spectrum does not show degeneracy. In that case, it
is not necessary to invoke our ansatz since PT∗ corresponds to
standard perturbation theory. It thus works very well provided
that the exciton-phonon coupling remains sufficiently weak, as
demonstrated previously [48,49]. Then, for the star graph, the
H graph, and the fork graph, the excitonic spectrum exhibits
degeneracy. However, two situations arise. If one considers the
elements of the propagator that involve a site whose degree
is greater than 1, as well as the site 1 for the fork graph,
it behaves as if the excitonic dynamics was confined in the
subspace entirely generated by the nondegenerate eigenstates.
Therefore, once again, PT∗ is equivalent to PT so that it
provides a perfect description of the excitonic dynamics.
Conversely, if one considers the elements of the propagator
that involve the other sites, the degenerate excitonic states
participate in the dynamics. However, for these three graphs,
the relation ρD 
 ρND is satisfied, as shown in Table I.
Consequently, PT∗ perfectly reproduces the time evolution
of the propagator.

A different situation appears for the Wheel graph and
for the Apollonian network whose excitonic spectra exhibit
degenerate energy levels. In both cases, the spectral radius
ρND and ρD are of the same order of magnitude so that
our ansatz breaks down (see Table I). Nevertheless, two
situations arise depending on the nature of the propagator
under study. If one considers the elements of the propagator
that involve the central site, the excitonic dynamics is confined
in the subspace generated by the nondegenerate eigenstates.
Therefore, as discussed previously, PT∗ is equivalent to PT
so that it perfectly describes the dynamics. By contrast, if
one considers the elements of the propagator that involve the
other sites, the degenerate excitonic states participate in the
dynamics. Since the ansatz is no longer valid, PT∗ fails to
reproduce the temporal evolution of the propagator.

Finally, for the complete graph with N sites, the excitonic
spectrum shows an (N − 1)-fold degenerate eigenenergy that
plays a key role in the dynamical processes. However, the
analysis of the phonon hopping constant matrices reveals that

ρD is one order of magnitude larger than ρND (see Table I).
In this particular case, regardless of the elements of the
propagator under study, our ansatz is no longer valid so that
PT∗ cannot be used to describe the excitonic properties. At this
point, let us mention that PT∗ gives very accurate results when
a weak disorder arises in the complete graph. The disorder
breaks the symmetry, and the degeneracy is lifted so that PT∗

becomes equivalent to PT.
These different results clearly show that PT∗ is a powerful

tool for studying the excitonic dynamics on a graph, as long
as the exciton-phonon coupling remains weak. Although it
cannot be generalized, it seems to be adapted to a large number
of graphs. Moreover, an analysis of the spectral radius of the
phonon hopping constant matrices in the degenerate excitonic
subspaces allows us to determine whether or not the method
is relevant.

To conclude, we must highlight the undeniable advantage
PT∗ has over exact calculations. Indeed, the perturbative
approach allows us to perform very fast calculations, even
for graphs whose size is important. Conversely, because of
the very important size of the Hamiltonian matrix H , exact
calculations can only be carried out on small graphs. And
even in this case, the computing times become very long when
compared to those provided by PT∗ simulations. Let us take an
example: we consider here a graph with N = 6 sites, and we
want to simulate 105 times steps. On the one hand, the use of
exact calculations (with a maximum phonon number NP = 9)
requires a CPU time approximately equal to 35 h using an
OpenMP INTEL MKL subroutine to diagonalize numerically
the Hamiltonian matrix H and distributing the computational
load over 16 cores. On the other hand, without any optimization
processes and with only one core of our laptop (3.6 GHz Intel
Core i7 processor), the PT∗ simulation only required 12 s of
computational time. Thus, the perturbative approach appears
to be 104 times faster than exact simulation in that context.
Therefore, this method is a very efficient way to obtain good
results in a very short time.

V. CONCLUSION

In this paper, a method involving standard perturbation
theory combined with a simplifying ansatz has been introduced
to describe the dynamics of the exciton-phonon system in a
complex molecular network. A detailed numerical analysis has
been carried out to check the relevance of this method, which
is called PT∗. PT∗ has been compared with exact calculations
based on the numerical diagonalization of the exciton-phonon
Hamiltonian for eight small-sized networks. Special attention
has been paid to characterize the time evolution of the
effective propagator. This propagator is a measure of the
excitonic coherence, and it characterizes the propagation of ex-
citonic superpositions involving the vacuum and one-exciton
states.

It has been shown that the accuracy of PT∗ depends
strongly on the nature of the network, so that three different
situations have been identified. First, for most graphs (star
graph, H graph, fork graph, hat graph, and complete random
graph), PT∗ yields a very accurate description of the exciton
dynamics. It perfectly reproduces the oscillating behavior of
the effective propagator, and it accounts for the occurrence of
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both incomplete and almost exact quantum recurrences. PT∗

works very well at all temperatures and for all the excitonic
coherences we have considered. Then, for the Wheel graph
and the Apollonian network, we have shown that the relevance
of PT∗ depends on the nature of the element of the propagator.
These graphs are organized around a central site so that they
exhibit a specific symmetry. Therefore, PT∗ perfectly accounts
for the time evolution of the matrix elements of the propagator
that involve the central site. By contrast, for the other elements,
PT∗ fails to reproduce the dynamics, a feature that is enhanced
as the temperature increases. Finally, for the complete graph,
the PT∗ method breaks down.

We have shown that these different behaviors originate in
the interplay between the degenerate nature of the excitonic
energy spectrum and the strength of the exciton-phonon
interaction. Therefore, a criterion has been established to

determine whether or not PT∗ is relevant. Consequently,
although it cannot be generalized, it turns out that PT∗ is
adapted to treat a large number of graphs. This is a fundamental
point due to its undeniable advantage over exact calculations.
The perturbative approach allows us to perform very fast
calculations, even for graphs whose size is important, whereas
exact calculations are restricted to small graphs because of
the large size of the exciton-phonon Hamiltonian matrix. The
superiority of PT∗ will be exploited in forthcoming works to
describe exciton-mediated QTS or CTQWs in large networks.
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