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Abstract. Part cooling during injection molding is the critical step as it is the most time consuming. An inefficient mold
cooling may have dramatic consequences on cycle time and part quality and may require expensive mold rectification. In
order to reduce mold and production costs, an automatic optimization of cooling device geometry and processing parameters
(temperature, flow rate...) has been developed. The first step of the optimization is to choose parameters describing the
geometry of the cooling device (which may be complex in case of molds obtained by prototyping process). Then numerical
simulation of the heat transfer during cooling stage is coupled to a non linear constraint optimization method (sequential
quadratic programming). The objective is to find the best set of parameters according to a cost function representing cooling
uniformity and/or cooling speed. At each step of the optimization, the boundary element method is used to solve the heat
transfer equation (the dual reciprocity method is used for transient problems) and to determine the effect of the parameters on
the cost function. The main advantage of the BEM is that remeshing procedure is easier. As a validation, the method is applied
to 2D mold geometries representative of difficulties arising during cooling of real industrial parts (with thickness changes or
angles). The first computations show fair results.

INTRODUCTION

Rapid prototyping processes such as laminated object
manufacturing (stratoconception) or selective laser sin-
tering start to be used to make production injection
molds. Beside possible cost and delay reductions, the ad-
vantage of these building processes is the possibility to
get almost any shape of mold geometry. An interesting
application of this feature could be the improvement of
the cooling of injection molds (by using conformal and
complex cooling channels) [1, 2].

Simulation of heat transfer
during injection molding

Several CAD and simulation tools are available to help
designing the cooling system of an injection mold. Sim-
ulation of heat transfer during injection can be used to
check a mold design or study the effect of a parameter
(geometry, materials...) on the cooling performance of
the mold. Several numerical methods such as Finite Ele-
ments Method (FEM) [3] or Boundary Element Method
(BEM) [4] can be used. Bikas [5] used C-Mold® simu-
lations and design of experiments to find expressions of
mean temperature and temperature variation as functions
of geometry parameters of the mold.

Mold cooling optimization approaches

Numerical simulation can also be used to perform an
automatic optimization of the mold cooling. Numerical
simulation is used to solve the thermal equations and
evaluate a cost function related to productivity or part
quality. An optimization method is used to modify the
parameters and improve the thermal performance of the
mold.

Tang [6, 7] used 2D transient FEM simulations cou-
pled with Powell’s optimization method [8] to optimize
the cooling channel geometry to get uniform tempera-
ture in the polymer part. Huang [9] used 2D transient
FEM simulations to optimize the use of molds materials
according to part temperature uniformity or cycle time.

Park [10, 11, 12] developped 2D and 3D stationary
BEM simulations in the injection molds coupled with
1D transient analytical computation in the polymer part
(throughout the thickness). The heat transfer integral
equation is differentiated to get sensitivities of a cost
function to the parameters [11]. The calculated sensitivi-
ties are then used to optimize the position of linear cool-
ing channels for simple shapes (sheet, box) [12].

In this paper, an optimization procedure is devel-
oped to improve cooling of injection molds. The model
uses a mathematical programming method (Sequential
Quadratic Programming [13]) to modify and improve au-
tomatically the geometry and the process parameters ac-
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FIGURE 1. Domain and boundary definition

cording to an objective function (e.g. cooling time or
temperature uniformity). The SQP method is coupled
with the boundary element method to solve thermal prob-
lems of cooling during injection (both stationary and
transient). The method is used on 2D geometries but with
complex cooling channel geometries which could be ob-
tained by rapid tooling processes.

HEAT BALANCE EQUATION

Two types of heat transfer problems representing cooling
during injection molding are solved :

• a transient problem allowing to get evolutions of
temperature both in the mold and the polymer dur-
ing the cooling step of the injection cycle;

• a easier-to-solve stationary problem to get the mean
temperature in the mold during a stabilized cycle.

Equations corresponding to these problems are detailled
in the following paragraphs.

Transient heat transfer

At time t = 0, the mold (ΩM) and the polymer part
(ΩP) are put into contact (figure 1). The mold is ini-
tially at a uniform temperature equal to coolant temper-
ature (TC) and the polymer is at injection temperature
(Tin jection). The evolutions of temprature in the mold and
in the polymer are governed by equation (1).
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The mold/polymer contact is modeled using a thermal
contact resistance R and is taken into account on the
interface ΣM/P using following relations :

∀M ∈ ΣM/P,

{

λM
~∇TM = λP

~∇TP

RλM
~∇TM = (TM −TP)

(2)

The external boundary of the mold insert (in contact
with the holding block of the mold or ambient air) is
assumed adiabatic [6].

∀M ∈ Γext , ~∇TM .~n = 0 (3)

The cooling channel surface is subject to convection
from the coolant which is at a temperature TC (4). The
heat transfer coefficient h is related to coolant flow rate
(via Nusselt number Nu), coolant properties and channel
geometry.

∀M ∈ Γcool , −λM
~∇TM = h(TM −TC) =

NuλC

D
(TM −TC)

(4)

Stationary heat transfer

In the particular case of stationary heat transfer, equa-
tion (5) can be solved in the mold only to get a mean
repartition of temperature during cooling.

∀M ∈ ΩM , ~∇
(

λM
~∇TM

)

= 0 (5)

The polymer is then taken into account with a heat flux
on the mold cavity surface. The flux density is calculated
from the cycle time and polymer properties (heat due to
polymer crystallization is neglected).

∀M ∈ ΣM/P, −λM
~∇TM .~n =

ρPVPCP(Tin ject −Te ject)

S tcooling
(6)

Boundary conditions on Γext and Γcool are unchanged.

HEAT TRANSFER SIMULATION USING
BOUNDARY ELEMENT METHOD

The Boundary Element Method (BEM) is used to solve
previous equations. Details on the method used can be
found in [14] and in [15]. This method has been devel-
oped to make re-meshing for each optimization iteration
easier as only 1D meshing is needed to solve 2D prob-
lems.

Stationary heat transfer

The BEM [14] is used to solve stationary heat trans-
fer problems described by equation (5) with a constant
conductivity λ .

Multiplying equation (5) by weighting function T ∗, in-
tegrating over the domain and using integration by parts
and Green’s theorem twice leads to equation (7), where
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FIGURE 2. Definition of distances used to compute funda-
mental solutions

Ti is the temperature at point Mi, q is he temperature gra-
dient and c is equal to 1

2 on a regular boundary and 1
inside the domain.

cTi +
∫

Γ
T.q∗dΓ =

∫

Γ
q.T ∗dΓ (7)

T ∗ and q∗ are the fundamental solutions defined for
2D problems by equations (8) where r is the distance
between point Mi and any boundary point (figure 2).











T ∗ =
1

2π
ln

1
r

q∗ =~∇T ∗.~n =
−~r.~n
2πr2

(8)

The boundary Γ of the domain is divided into Ne

elements. After discretization, equation (7) becomes :

cTi +
Ne

∑
j=1

∫

Γ j

T.q∗dΓ =
Ne

∑
j=1

∫

Γ j

q.T ∗dΓ (9)

Applying equation (9) to all nodes on the boundary
and writing Hi j = cδi j +

∫

Γ j
q∗dΓ and Gi j =

∫

Γ j
T ∗dΓ

result in a system of linear equations can be written in
matrix form :

[H]{T} = [G]{q} (10)

After applying the boundary conditions (T or q or a
combination of both), the system of equations can be
solved. Temperature at a point Mk inside the domain can
then be calculated using results on the boundary :

{Tk} = [G]{q}− [H]{T} (11)

Transient heat transfer

The Dual Reciprocity Method (DRM) [15] associated
with the BEM allows to solve transient heat transfer
problems described by equation (1). The DRM consists
in seeking the solution as series of particular solutions
T̂ and q̂ interpolated on N points inside and on the

boundary of the domain.

~∇2T =
N

∑
k=1

αk
~∇2T̂k with {αk} =

1
a

[F ]−1 {

Ṫk
}

(12)

Matrix [F ] consists of values of interpolation function f
at each point. A commonly used interpolation function is
the polynomial radial function (13) leading to particular
solutions (14).

f = 1+ r + r2 + r3 (13)
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Applying the BEM to the modified equation (12) leads
to the new linear system of equations (15).

[H]{T}− [G]{q} =
1
a

(

[H]
[

T̂
]

− [G]
[

Q̂
])

[F ]−1 {

Ṫ
}

(15)
A Newmark time scheme is applied to the tempera-
ture and flux leading to equation (16) where [C] =
−1
a

(

[H]
[

T̂
]

− [G]
[

Q̂
])

[F ]−1.

(

θT [H]+
1
δ t

[C]

)

{

T n+1}−θq [G]
{

qn+1} =

−

(

(1−θT ) [H]−
1
δ t

[C]

)

{T n}+(1−θq) [G]{qn}

(16)

Multi-domain computation for contact simulation
(mold polymer contact) is performed by introducing
continuity equation [16] before boundary conditions and
solving the system at each time step.

MOLD COOLING OPTIMIZATION

Heat transfer computation is coupled with an optimiza-
tion method to automatically modify parameters at each
optimization iteration as shown in figure 3. Given ini-
tial parameters, the BEM simulation is performed and
the cost function is calculated. The optimization method
allows to update parameters according to constraints un-
til a minimum of the cost function is found. Sequential
Quadratic Programming [13] is used for the optimization
of continuous non linear functions with continuous non
linear constraints.

Cost function

The objective or cost function F to minimize is a
function of the parameters X chosen according to the
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FIGURE 3. Heat transfer simulation / optimization coupling

results available from the simulation results (stationary
or transient). The general form of the cost function can
be written as functions of temperature T and heat flux Φ
inside domains or on the boundaries (17). Examples of
cost functions are given in the next paragraph.

F(X) =
∫

Ω
F1(T (X),Φ(X))dΩ+

∫

Γ
F2(T (X),Φ(X))dΓ

(17)

Parameters

Both process and geometry parameters can be in-
cluded in the optimization. Process parameters define the
thermal regulation : properties, temperature and flow of
the coolant. Position and dimensions of the cooling chan-
nels are used to describe the cooling device geometry. In
this study, circular and elliptical cooling channels (which
could be obtained by a rapid tooling process) are consid-
ered, ie. respectively 3 and 5 parameters are needed to
describe each cooling channel.

Constraints

Constraints on parameters are expressed as bounds
(18) or as equalities/inequalities of relations between
several parameters (19). Examples of constraints are
given in the next paragraph.

Xmin
i ≤ Xi ≤ Xmax

i (18)

g1(X) < 0 or g2(X) = 0 (19)

APPLICATION 1 : "T" SHAPED PART

The method is also used to optimize the mold depicted
on figure (4). The example was solved by Tang [6] with
a transient FEM analysis. The stationary BEM is used
to evaluate the objective function at the mold cavity
surface. Properties of mold, polymer and coolant used
for simulation are summarized in table 1.

The objective function is related to temperature unifor-
mity at the mold cavity surface compared to initial values
:

F(X) = 0.5 F1(X)+0.5 F2(X)

with F1(X) =

[
∫

Σ(T̄ (X)−T(X))2dΣ
]

1
2

F0
1 (X)

and F2(X) =
Tmax(X)−Tmin(X)

F0
2 (X)

(20)

The parameters defining the geometry are shown in fig-
ure 4. Two types of constraints are considered [6] :

• geometric constraints to keep cooling channels in
the mold and to avoid collisions;

• flow related constraints to force a turbulent flow.

Results obtained with the stationary BEM / SQP
algorithm show differences from 10 to 20% with results
obtained with the transient FEM / Powell’s method (ta-
ble 2 and figure 5). This difference can be explained by
the fact that F is evaluated using the mean temperature
during one cycle with stationary BEM and at the end
of cooling time with transient FEM. Anyway, results
show a very good improvement of the cavity surface
temperature as the maximum difference of temperature
is decreased from 25°C to 7°C (figure 6).

TABLE 1. Thermal Properties of the mold, poly-
mer and coolant materials

Mold Polymer Coolant

λ [W.m−1.K−1] 36.5 0.25 0.63

ρ [kg.m−3] 7820 996 996

C [J.kg−1.K−1] 460 1800 4180

X2 X3

X4X5

X6X7

X1

D

FIGURE 4. Definition of the geometry parameters



TABLE 2. Values of optimized geometrical parame-
ters compared to [6]

Parameters
[cm]

Initial
values

Optimized
values

Optimized
values [6]

D 0.76 0.68 0.74

X1 6.10 3.99 3.57

X2 2.03 1.34 1.5

X3 6.10 5.15 4.67

X4 1.49 1.14 1.51

X5 1.51 1.23 1.54

X6 1.26 1.07 1.30

X7 1.77 1.60 2.01
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FIGURE 5. Initial (- -) and optimized (–) cooling channel
positions and size
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FIGURE 6. Comparison of temperature at the mold cavity
surface

APPLICATION 2 : ANGULAR PART
COOLING

The method developed is used to optimize the cooling
of a mold producing angular parts. The effect of cooling
channel shape is investigated in this example. The cool-
ing device is composed of 3 circular or elliptical cool-
ing channels, each constrained in one zone of the mold
(figure 7). In case of circular cooling channels and using

symmetry of the problem, the parameters used are :

• cooling channel positions X1, X2, X3

• cooling channel size X4, X5

• coolant temperature X6

Assuming that each cooling channel must stay in zones
defined with dashed lines on figure 7, the following
constraints are assumed, where δ is a gap between the
cooling channel and the mold surface :



























X2 −X4−δ > 0

X2 +X4 +δ < 0.05

X1 −X5 > 0.05+δ + t

X2 +X3 +X4 < 0.15−δ
X3 −X4 > δ

(21)

A minimum and maximum radiuses are needed for the
cooling channel to allow manufacturing of the mold and
turbulent flow :

{

Rmin < X4 < Rmax

Rmin < X5 < Rmax
(22)

Finally, a range of temperature is imposed :

Tmin < X6 < Tmax (23)

Equivalent parameters (center positions and two radius
dimensions) and relations are used with elliptical cooling
channels. Two parameters (second ellipse radius) are
then added to the problem.

The objective function (24) is a combination of the
cooling time tcooling and the difference of the part tem-
perature to the average part temperature T̄ compared to
initial values.

F(X) = 0.5
tcooling(X)

t0
cooling

+0.5

∫

ΩP
(T̄ (X)−T(X))dΩ

(
∫

ΩP
(T̄ −T)dΩ)0

(24)
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FIGURE 7. Mold geometry and parameters definition



TABLE 3. Initial and final parameters for application case 2

X1[cm] X2[cm] X3[cm] X4[cm] X5[cm] X6[°C] F(X)

Initial 7.5 2.5 7.5 0.5 0.5 40 1

Final
(circular channel) 7.17 3.34 7.54 0.388 0.677 20 0.98

Final
(elliptical channel) 6.99 3.10 7.32 0.37 x 0.84 1.00 x 0.49 20 0.95

The transient heat equation is solved with the DRM
using properties summarized in table 1.The heat transfer
coefficient is updated to take into account cooling chan-
nel size and shape change according to equation (4).

Final geometry parameters obtained with elliptical and
circular channels are shown in table 3. Cooling time
reduction is very low as the part is 5mm thick but a
small improvement in temperature uniformity in the part
is obtained. The optimized configuration obtained with
elliptical channels is slightly better than with circular
channels.

CONCLUSION

The BEM has be used to solve the heat transfer equation
during the cooling step of the injection molding process.
Results of the simulation are used in an optimization pro-
cedure to find the best geometry and process parameters
according to a cost function. Results obtained with the
presented method are close to those obtained by other
methods found in the literature. The use of elliptical cool-
ing channels showed a small advantage here and should
be further investigated for more complex shapes.

SYMBOL LIST

M, P and C indices refer respectively to the mold, the
polymer part and the coolant.

a diffusivity [m2.s−1]
C specific heat [J.kg−1.K−1]
D cooling channel diameter [m]
h convective heat transfer coefficient [W.m2.K−1]
S surface [m2]

q temperature gradient ~∇T.~n [K.m−1]
R thermal contact resistance [K.m2.W−1]
tcooling estimated cooling time [s]
T temperature [°C]
V volume [m3]
λ conductivity [W.m−1.K−1]
Φ heat flux [W.m−2]
ρ density [kg.m−3]
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