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Abstract

Viscosity is an important characteristic of flow property’s and process ability for polymeric materials. A flat die was developed by Maillefer-
extrusion, to make rheological characterisations. In this paper, the rheological parameters of the melt are identified through optimisation by a 
response surface method. The objective is to minimize the differences between the measured pressure obtained in flat die and the pressures 
computed by one-dimensional finite difference code programme. An objective function is defined as the global relative error obtained through 
the differences between measured and computed pressures. This objective function is minimised by varying the rheological parameters. For 
this minimisation, two methods are used, i.e. the local response surface and the global response surface. The rheological parameters permit 
to calculate the viscosity. Then, we compare this calculated viscosity with an experimental viscosity measured on a capillary rheometer to 
validate our method.
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1. Introduction

The defects of extrusion (like theweld-lines, the fairly uni-
form exit velocity distribution throughout the extrusion and
problems of stagnation zones) are influenced by the geometry
of the die of extrusion as well as by the operating conditions
such as temperature of regulation, flow rate and the rheo-
logical parameters of melt. In fact, if the rheology of most
generic polymers is well known, the plastics used on produc-
tion extrusion lines are seldom known because the polymer
is obtained by blending or adding different additives. So, in
the first step and in order to validate the method of optimisa-
tion, we will identify the rheological (behaviour) parameters
of the plastic melts starting from the experimental data ob-
tained in a flat die. Our objective is to identify the rheology of
a plastic melt directly from on-line production, without using
conventional measurements on dies capillary standard.
A certain number of viscosity models have been pub-

lished [1,2], such as the well-known Power-law model, the
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Ostwald–Waele model, the Cross model, the Carreau model,
and so on. Liang [3] investigated the melt viscosity in steady
shear flow of several polymers by employing a capillary
rheometer and the characteristics of shear viscosity. Geiger
and Kuhnle [4] used a empirical correlation between den-
sity, pressure and temperature to obtain a rheological model.
Choosing one of these rheological laws, we will identify its
parameters. We will use classical design of experiments [7]
and algorithm of optimisation called the response surface
method, with a moving least squares approximation [5,6].
The experimental points are obtained with a standard ex-
truder feeding at various flow rates of the flat die. Two series
of tests were carried out, with different thickness of die to
cover a sufficient range of shear rate to make rheological
characterisations.

2. The optimisation benchmark

A flat die produced by Maillefer-extrusion [8] (Fig. 1)
is equipped with four pressure transducers, spaced 100mm
apart; however, only the pressure difference between the first



Fig. 1. Geometry of the flat die.

Table 1
Experimental data slit 5 and 10mm

Q (kg/h) T (K) !P (bar) ρ (kg/m3) h (mm)

11.2 439 53 779 5
60 448 99 779 5
143 465 125 773 5
239 483 138 767 5
10.9 458 12.7 779 10
69.2 468 26 772 10
189.5 483 34.3 761 10
339.5 502 36.7 755 10

and the last transducer was considered for the analysis. A first
series of tests has been realized with the flat die. Measure-
ments were made with two different slit heights at different
extrusion speeds for one type of material (LDPE). The ex-
perimental values are listed in Table 1. The properties of the
polymer (a LDPE grade) are referenced in Table 2.

3. Numerical simulation parameters

The measurement of viscosity cannot be obtained directly
because the shear rate is unknown as well as the three param-
eters for the Power-law. On the other hand, three physical
parameters related to viscosity such as pressure, temperature
and the flow rate are directly measurable. We will use one-
dimensional finite difference calculation software by sections
[1,2], to calculate the variation of pressure with the Power-
law for each point of measurement. The choice of this ge-
ometry was made in order to respect correction factor [9,10].
The shape factor, which is the thickness to width ratio, h/W
equals 0.1 and 0.05.

4. Design variables and objective functions

The Power-law is defined as:

η = K0e
β
(

1
T

)

˙̄γm−1 (1)

Table 2
Properties of the polymer under study and geometry

Specific heat, Cp (J/(kgK)) 1900
Conductivity, k (W/(◦Cm)) 0.115
Ltotal (mm) 500
L (mm) 300
W (mm) 100

There are three variables (K, m and β) for a Power-law with
a thermal dependence of the Arrhenius type.
The objective of this simulation to identify the rheologi-

cal parameters K, m and β. This is done by minimizing the
objective function representing the value of the sum of the
quadratic difference between the calculated pressures and the
experimental pressures for all point of measurement.

J =
(
∑

npm(pexp − pcal)
pexp

)2

(2)

5. Optimisation procedure

5.1. Choice of algorithm

The algorithm of optimisation must be carefully chosen
when one single analysis requires several hours of CPU time.
Non-deterministic or stochastic methods such as Monte-
Carlo method and genetic algorithm [11] can obtain global
minimum, but they need a lot of evaluations for the functions
to converge. Gradient methods [12] require the computations
of the gradients of the functions, such as BFGS [13] and
SQP [14]. The computation of gradients by finite difference
is time consuming and depends on the perturbed parameters.
For the above reasons, we decided to choice a response sur-
face method.

5.2. Response surface method

The method of response surface consists of the construc-
tion of an approximate expression of objective function start-
ing from a limited number of evaluations of the real function.
The main idea is to approximate the objective function

through a response surface. In order to obtain a good ap-
proximation, we used a moving least square method. In this
method, the approximation is computed by using the evalua-
tion points by design of experiments around the locus, where
the value of the function is needed.

6. Moving least-squares approximation

We will use moving least-square interpolations in order
to approximate the response surface of objective function.
Let the dependent variable be f(x) in the domain S and the
approximationf̃ (x).

f̃ (x) = p(x)aT(x) (3)

The nodes are defined by x1, . . ., xn, where x1 = (x1, y1) in
two-dimensional (2D), x1 = (x1, y1, z1) in three-dimensional
(3D); p(x) is a polynomial basis and aT(x) is the vector of
coefficients. The polynomial basis of order two in two di-



Fig. 2. Optimisation algorithm.

mensions is given by:

Pi =
[

1(x)(y)
1
2
(x)2(x)(y)

1
2
(y)2

]

(4)

In the moving least-square interpolation, at each point x, a is
chosen to minimize the weighted residual:

J(a) =
∑

wi(fi − P(x)Ta(x))2

⇒ J(a) = 1
2 (F − Pa)T(F − Pa) (5)

where wi is a weight function, such that w is non-zero over
a domain of influence.
In order to find the coefficients, we obtain the minimum

of J(a) by

J ′(a) = 0

So we have:

a(x) = Q−1BZ (6)

where

Q = PTWP (7)

and

B = PTWQ (8)

The iterative procedure stops when the successive points are
superposed with a certain tolerance ε= 10−3.

7. Local response surface

This method is based on traditional minimisation by the
algorithm of Fig. 2, with the use of a local response surface
of variable in each point. We fixed a step of grid at 0.01×X0,
where X0 is the initial value of the variable of optimisation.
The initial values are: K0 = 12,000 Pa s, m0 = 0.64 and

β0 = 1078K. We used a uniform local grid.

The constraints for the variables of optimisationK,m andβ

are, respectively, 400 Pa s<K< 20,000 Pa s, 0.01 <m<1 and
500K<β < 3000K for the first constraint, and n×P for the
second constraint, where P is the step of the grid and n is the
number of points of grid.

8. Global response surface

The objective of this technique is to reach the global min-
imum on the field domain: the constraints are similar to the
previous constraints in the local response surface method.
Initially, at first iteration we constructed a grid of 5× 5× 5
points (125 points) for a global approximation. Then, for each
iteration, we constructed a grid of 3× 3× 3 (27 points) for
the local approximation.

9. Results

9.1. Local response surface

Fig. 3 represents the evolution of the objective function
and Figs. 4–6 represent, respectively, the variation of the co-
efficients of the constitutive lawK,m andβ during the process
of optimisation. In iteration 20, the value of the function ob-
jective obtained is 8× 10−5, with K= 9826 Pa s, m= 0.4179

Fig. 3. Convergence of the objective function (the local method).

Fig. 4. Evolution ofK during the process of optimisation (the local method).



Fig. 5. Evolution ofm during the process of optimisation (the local method).

and β = 1553K. The CPU time is 1 h and 42min on a com-
puter Pentium IV, 2.4GHz, 512 Mo RAM.
We can choose between precision and CPU time: for ex-

ample, in iteration 10, we obtained an error of 6.848× 10−3

with a time CPU 51min; the values of the rheological param-
eters are:K= 10,562 Pa s,m= 0.4304, β = 1131K.With itera-
tion 15, we obtained an error of 5.2× 10−4, with a computing
time of 1 h and 16min in the same machine, the coefficients
obtained are: K= 10,077 Pa s, m= 0.4239 and β = 1350K.
In Fig. 4, the evolution of the parameter K is shown in

function of the iteration. We can see that it is varying quite
fast at the beginning of the optimisation, until the ninth step.
Its total variation is about 16%.
InFig. 5, the evolution of the parameterm in function of the

iteration,we notice that the variation is fast at the beginning of
the optimisation, until the 11th step. Its total variation (36%)
is more important than for K.
As in Fig. 7, the variation of beta in function of iteration

step, we can observe that this parameter is quite stable at the
beginning and starts to change after iteration 11, when K and
m have almost their final value.

9.2. Result of global response surface

The solution is obtained after six iterationswith a precision
of 8.4× 10−4 and a CPU time is 1 h and 13min. Fig. 7 rep-

Fig. 6. Evolution of β during the process of optimisation (the local method).

Fig. 7. Convergence of the objective function (the global method).

Fig. 8. Evolution of K during the process of optimisation (the global
method).

Fig. 9. Evolution of m during the process of optimisation (the global
method).

Fig. 10. Evolution of β during the process of optimisation (the global
method).



Table 3
Results of optimisation

h (mm) !P measured (bar) !P (bar) local (1) recalculated Relative error (1) !P (bar) global (2) recalculated Relative error (2)

5 53 52.11 2.8× 10−4 49.32 4.8× 10−3

5 99 96.69 5.4× 10−4 91.03 6.4× 10−3

5 125 121.6 7.3× 10−4 116.8 4.3× 10−3

5 138 132.9 1.3× 10−3 130.4 3.0× 10−3

10 12.7 12.49 2.7× 10−4 12.48 3.0× 10−4

10 26 25.15 1.0× 10−3 24.89 1.8× 10−3

10 34 34.69 1.2× 10−4 34.66 3.7× 10−4

10 36.7 39.27 4.9× 10−3 40 8.1× 10−3

resents the evolution of the function objective and Figs. 8–10
represent, respectively, the variables of optimisationK,m and
β. The optimum parameters are: K= 10,500 Pa s, m= 0.4027
and β = 1194K.
We can observe that the convergence process is much

faster in terms of iteration steps needed. But the computation
time is longer. Also, in this method, the three parameters are
evolving together in the first iteration steps before reaching
values close to the final one.

10. Comparison of the two methods

In Table 3, in function of the operating parameters (slit
height, output and temperature), we have reported the pres-
sures measured and recalculated using the identified rheolog-
ical parameters, so as the relative error (relative difference
between the two). We notice that the solution obtained by
the method (1) local response surfaces is more accurate, but
with an increased computing time. The difference in time be-
tween both methods is 30min. On the other hand, the global
response surface method (2) avoids local minimum. This can
be improved by varying the design of experiments and the
method of approximation to optimise the computing time
CPU.

10.1. Pressures

In Fig. 11, the measured pressures and computed pres-
sures obtained with the identified rheological parameters are

Fig. 11. Experimental and calculated pressure with parameters determinate
by method (2).

Fig. 12. Computed and measured viscosity method (1).

plotted. There is only a small discrepancy, which means that
ourmethod is very robust and gives very good results for both
global and local methods. This is also confirmed through the
relative error for methods (1) and (2), which are, respectively,
9.14× 10−3 and 2.9× 10−2.

Fig. 13. Computed and measured viscosity method (2).



10.2. Viscosity

In the graph of viscosity obtained by the coefficients found
through the response surface method (Figs. 12 and 13), we
can observe that there is no discrepancy between the points
of measurements obtained in capillary rheometer and the vis-
cosity obtained by the method of optimisation except in the
zone, where high shear rates appear.

11. Conclusion and prospects

We conclude that we obtain good results using the re-
sponse surface methods (global and local). It means that this
method allows us to determine the rheological parameters of
polymers directly on a production line. By on will not forced
tomakemeasurements on standard capillary rheometers.And
also this method will allow us to measure the parameters in
industrial conditions, starting from the real geometry even if
complex, using pressure measurements, flow rates and tem-
peratures.

12. Future works

Also to test the Kriging method [15], we will have to im-
prove precision (CPU time) of the global response surface
approximation.
We will use the same approximation method to apply on a

real 3D geometry to identify the rheological parameters and
then to optimise the geometry of die extrusion tolls. The ex-
trusion simulations will be processed by using the REM3D®
[16] FEM software.
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